
UNIVERSITAT DE BARCELONA

FUNDAMENTALS OF DATA SCIENCE MASTER’S THESIS

Unsupervised Segmentation Using CNNs
Applied to Food Analysis

Author:
Montserrat BRUFAU VIDAL
Àlex FERRER CAMPO
Markos GAVALAS

Supervisor:
Petia RADEVA

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamentals of Data Science

in the

Facultat de Matemàtiques i Informàtica

July 3, 2018

http://www.ub.edu
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Unsupervised Segmentation Using CNNs Applied to Food Analysis

by Montserrat BRUFAU VIDAL

Àlex FERRER CAMPO

Markos GAVALAS

In the recent times, there have been numerous papers on deep segmentation algo-
rithms for vision tasks. The main challenge of these tasks is to obtain sufficient
supervised pixel-level labels for the ground truth. The main goal of this project is to
explore if Convolutional Neural Networks can be used for unsupervised segmenta-
tion. We follow a novel unsupervised deep architecture, capable of facing this chal-
lenge, called the W-net and we test it on food images. The main idea of this model is
to concatenate two fully convolutional networks together into an autoencoder. The
encoding layer produces a k-way pixelwise prediction, and both the reconstruction
error of the autoencoder as well as the error from the decoder are jointly minimized
during training. We search for the best architecture for this network and we compare
the results for this unsupervised network with supervised results from a well-known
network.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
Thanks to our advisor Petia Radeva for her guidance and support through all the
project.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 State of the art 3
2.1 Segmentation . 3

2.1.1 First approaches, unsupervised segmentation 3
2.1.2 Recent advances, supervised segmentation 3

2.2 Food segmentation . 4
2.3 W-net . 4

3 Methodology 5
3.1 U-net . 5

3.1.1 Architecture . 5
3.1.2 U-net performance . 6

3.2 W-net . 6
3.2.1 Architecture . 7
3.2.2 W-net performance . 8

3.3 Loss Functions of the Network . 8
3.3.1 Soft Normalized Cut Loss . 8

Introduction . 8
Binary N-cut problem . 9
N-cut loss for the non binary problem 10
Soft N-cut loss . 10
Technical Optimization for the Soft N-cut loss 10

3.3.2 Fast alternatives inspired on clustering 11
Centroid loss . 11
Regularizing the segmentation by Penalizing bad shapes 14

3.3.3 Reconstruction Loss . 14
3.4 Post-processing and Coloring . 15

4 Validation and Results 17
4.1 Datasets . 17

4.1.1 Preprocessing . 17
4.1.2 Data augmentation . 18

4.2 Implementation details . 19
4.3 Metrics . 20

4.3.1 Intersection over union . 20
4.3.2 Visual evaluation . 20

4.4 U-net architecture . 22
4.4.1 Binary U-net . 22

viii

4.4.2 Multiclass U-net . 23
4.5 Classical N-cut . 24
4.6 Embedding architecture . 25
4.7 W-net architecture . 26

4.7.1 W-net 18-64 . 26
4.7.2 W-net 18-32 . 27
4.7.3 W-net 14-64 . 28
4.7.4 W-net 10-64 . 29

4.8 Optimizers and Kernel Initializers . 32
4.8.1 Optimizers . 32
4.8.2 Kernel Initializers . 33

He Uniform . 34
Random Normal . 34

4.8.3 W-net without Centroid Loss . 35
4.8.4 3D Visualization of pixel classification of our final model 35

4.9 Supervised W-net . 37
4.10 Result comparison . 38

5 Conclusions 43
5.0.1 Limitations and difficulties . 44
5.0.2 Next steps . 44

A Contribution of each team member 45

Bibliography 47

List of Tables

4.1 Results for the U-net with different optimizers 22
4.2 Results for the different W-net architectures 30
4.3 Results of the W-net 18-32 using different optimizers 33
4.4 Results for the different networks reviewed in the project 39

List of Figures

3.1 U-net architecture. Each blue box corresponds to a multi-channel fea-
ture map. The number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White boxes rep-
resent copied feature maps. The arrows denote the different operations. 6

ix

3.2 W-Net architecture: it consists of an UEnc (left side) and a correspond-
ing UDec (right side). It has 46 convolutional layers which are struc-
tured into 18 modules marked with the red rectangles. Each module
consists of two 3x3 convolutional layers. The first nine modules form
the dense prediction base of the network and the second 9 correspond
to the reconstruction decoder. 8

4.1 Example of an image from the UNIMIB2016 Dataset 17
4.2 Food classes from the UNIMIB2016 Dataset 18
4.3 Ground truth for the UNIMIB2016 Dataset 19
4.4 Example of UNIMIB2016 image after applying PCA 20
4.5 Example of unsupervised visualization 21
4.6 Example of contour visualization . 21
4.7 Results for the U-net with binary segmentation 23
4.8 Results for the U-net with multiclass segmentation 24
4.9 Results for the Classical N-cut . 25
4.10 Results for the Embedding; 0.45 IoU . 26
4.11 Results for the W-net 18-64 . 27
4.12 Results for the W-net 18-32 . 28
4.13 Results for the W-net 14-64 . 29
4.14 Results for the W-net 10-64 . 30
4.15 Evolution of the loss function for every architecture 31
4.16 Results for the W-net 18-32 using SGD optimizer 32
4.17 Evaluation of the loss function for W-net 18-32 with every optimizer . 33
4.18 Results for the W-net with He Uniform Kernel initializer 34
4.19 Results for the W-net with Random Normal Kernel initializer 35
4.20 Results for the W-net without Centroid Loss 36
4.21 3D pixel Visualization . 36
4.22 Results for the supervised W-net 18-32 37
4.23 Results for the W-net 18-32 with weights from the supervised W-net . 38
4.24 Comparison of the Binary U-net, Multiclass U-net, supervised W-net,

embedding with the Centroid loss, W-net 18-34 and crossdomain W-net 40
4.25 Comparison of the Binary U-net, Multiclass U-net, supervised W-net,

embedding with the Centroid Loss, W-net 18-34 and crossdomain W-net 41
4.26 Comparison of the Binary U-net, Multiclass U-net, supervised W-net,

embedding with the Centroid Loss, W-net 18-34 and crossdomain W-net 42

1

Chapter 1

Introduction

Nowadays, segmentation – applied to still 2D images, video, and even 3D or vol-
umetric data – is one of the key problems in the field of computer vision. Looking
at the big picture, segmentation is one of the high-level tasks that paves the way to-
wards complete scene understanding. Such problem has been addressed in the past
using various traditional computer vision and machine learning techniques includ-
ing normalized cuts (Cour, Benezit, and Shi, 2005), (Shi and Malik, 2000), Markov
random field-based methods (Zhang, Brady, and Smith, 2001), mean shift (Comani-
ciu and Meer, 2002), hierarchical methods (P et al., 2010), and many others.

Despite the popularity of those kind of methods, the deep learning revolution has
turned the tables so that many computer vision problems – segmentation among
them – are being tackled using deep architectures, usually Convolutional Neural
Networks (CNNs) segmentation, which are surpassing other approaches by a large
margin in terms of accuracy and sometimes even efficiency. While convolutional
networks have already existed for a long time (LeCun et al., 1989), their success was
limited due to the size of the available training sets and the size of the considered
networks. The breakthrough by Krizhevsky et al. (Krizhevsky, Sutskever, and Hin-
ton, 2012) was due to supervised training of a large network with 8 layers and mil-
lions of parameters on the ImageNet dataset with 1 million training images. Since
then, even larger and deeper networks have been trained (Simonyan and Zisserman,
2014). The typical use of convolutional networks is on classification tasks, where the
output to an image is a single class label. Typically, these methods are trained us-
ing models such as fully convolutional networks to produce a pixel-wise prediction.
Supervised training methods can then be employed to learn filters to produce seg-
ments on novel images. One such popular recent approach is the U-Net architecture
(Ronneberger, Fischer, and Brox, 2015), a fully convolutional network that has been
used to achieve impressive results in the biomedical image domain. Unfortunately,
existing segmentation methods require a significant amount of pixel-wise labeled
training data, which can be difficult and slow to collect on novel domains. Given the
importance of the segmentation problem in many domains, and due to the lack of
supervised data for many problems, unsupervised segmentation appears to be the
best solution.

One domain with many promising applications is food segmentation. For exam-
ple, it can help estimate food size and hence, calories and analyze people’s eating
habits for healthcare. Although some work has been done related to food image
recognition, there is not any relevant work which applies segmentation techniques
using deep learning to this field.

2 Chapter 1. Introduction

The main objective of this project is to see if unsupervised segmentation using con-
volutional neural networks can be useful for semantic segmentation and more specif-
ically, for food analysis, and compare it to other supervised and unsupervised seg-
mentation algorithms.
In particular, we design our architecture inspired by the W-Net (Xia and Kulis, 2017),
which ties two Fully Convolutional Network (FCN) architectures (each similar to the
U-Net architecture) together into a single autoencoder. The first FCN encodes an in-
put image, using fully convolutional layers, into a k-way soft segmentation. The
second FCN reverses this process, going from the segmentation layer back to a re-
constructed image. The idea given in (Xia and Kulis, 2017) is to jointly minimize
both the reconstruction error of the autoencoder as well as a “soft” normalized cut
loss function on the encoding layer. Instead of using the "soft" normalized cut loss
function, we propose to use a faster alternative inspired on clustering, which tries to
minimize the intra-class variance and to maximize the inter-class variance. In order
to achieve better results, after computing the results for the W-net, we apply post-
processing separating connected components in different classes. We compute the
results for different variations of the W-net in order to obtain the best results and
compare these results with other methods, such as the binary and the multi-class
U-net (Ronneberger, Fischer, and Brox, 2015) or the supervised W-net. We tested our
method on UNIMIB2015 Food Dataset, which contains 1027 tray images with multi-
ple foods and 73 food categories.

The rest of this project is organized as follows. We first review related and relevant
works in Chapter 2. Following this, in Chapter 3 we explain the methodology of our
architecture. We also provide the definition of our Centroid Loss function, which we
use analogously to the "soft" normalized cut loss in the classical W-Net. Chapter 4
presents the validation and results of the models and finally in Chapter 5 we discuss
the conclusions drawn from this project.

The source code for all the work in this project can be found in
https://github.com/mbrufau7/tfm_food_segm.

https://github.com/mbrufau7/tfm_food_segm

3

Chapter 2

State of the art

In this Chapter we talk about the advances which have been made regarding seg-
mentation, considering both supervised and unsupervised methods, and particu-
larly, food segmentation.

2.1 Segmentation

During the long history of computer vision, one of the grand challenges has been
studying and creating algorithms for segmentation, which is the ability to segment
an unknown image into different parts and objects. There are many different ap-
proaches for this task. We show an overlook of the most important advances through
the years.

2.1.1 First approaches, unsupervised segmentation

Traditional image segmentation algorithms are typically based on clustering, often
with additional information from contours and edges. For example, in the simplest
case, satellite image segmentation can often successfully be performed by clustering
pixels based on wavelength, that is, one would create clusters based on similar pixels
which are also located spatially nearby. The most important works can be seen in
(D, R, and E, 2011), (M, V, and R, 2014) and (DE and PF, 2011).

There have been numerous enhancements and evolutions to the clustering ap-
proach. One of the most well-known and significant approaches is modeling using
a Markov process (Geman, 1984). Another notable method is combining contour
detection in a hierarchical approach (P et al., 2010). In SAR imagery, region growing
with unsupervised learning is explored (P, AK, and DA, 2011). For good overviews
of the older pre-deep learning approaches, we refer the reader to several surveys
(DD and SG, 2013), (AA, SB, and N, 2011), (MW, 2014), (SR and E, 2012), (T et al.,
2011), (R and M, 2011) which cover the works spanning color and edge image seg-
mentation to medical image understanding. However, recent advances have made
many of the older methods obsolete.

2.1.2 Recent advances, supervised segmentation

To be more precise (Mostajabi, Yadollahpour, and Shakhnarovich, 2014), (Farabet
et al., 2012), (Dai, He, and Sun, 2014), (Hariharan et al., 2014b) and (Hariharan et
al., 2014a) all make pixel-wise annotations for segmentation based on supervised
classification using deep networks. Fully convolutional networks (FCNs) (Long,
Shelhamer, and Darrell, 2014) have emerged as one of the most effective models
for the semantic segmentation problem. In a FCN, fully connected layers of stan-
dard convolutional neural networks (CNNs) are transformed as convolution layers

4 Chapter 2. State of the art

with kernels that cover the entire input region. By utilizing fully connected layers,
the network can take an input of arbitrary size and produce a correspondingly-sized
output map; for example, one can produce a pixel-wise prediction for images of ar-
bitrary size. Recently a number of variants of FCN using segmentation have been
proposed and studied, like (Noh, Hong, and Han, 2015), (Badrinarayanan, Kendall,
and Cipolla, 2015), (Chaurasia and Culurciello, 2017), (Paszke et al., 2016), (Ron-
neberger, Fischer, and Brox, 2015), (Krähenbühl and Koltun, 2012) and (Zheng et
al., 2015). In (Krähenbühl and Koltun, 2012), a conditional random field (CRF) is
applied to the output map to fine-tune the segmentation.(Zheng et al., 2015) formu-
lates a mean-field approximate inference for the CRF as a Recurrent Neural Network
(CRFRNN), and then jointly optimize both the CRF energy as well as the supervised
loss. (Guo et al., 2018) and (Thoma, 2016) provide comprehensive coverage of the top
approaches and summarize the strengths, weaknesses and major challenges. Also,
(Zhao et al., 2017), reviews different types of deep learning based fine-grained image
classification approaches.

2.2 Food segmentation

Now we look more particularly at the works related to food segmentation. Food
image recognition is one of the promising applications of visual object recognition,
since it can help estimate food calories and analyze people’s eating habits for health-
care. For images which contain two or more food items, segmentation of food is
needed. Therefore, many unsupervised food segmentation papers have been pub-
lished. (Matsuda, Hoashi, and Yanai, 2012) proposed to used multiple methods to
detect food regions such as a deformable part model (DPM) (Felzenszwalb et al.,
2009). (He et al., 2013) employed Local Variation (Felzenszwalb et al., 2011) to seg-
ment food regions for estimating total calories of foods in a given food photo. (Chen
et al., 2015) follow a method based on a saliency-aware active contour model (ACM)
(Shimoda and Yanai, 2015) propose a model which is first obtain region proposals
by selective search, the estimate saliency maps and then apply GrabCut using the
obtained saliency maps as seeds of GrabCut. In this project we obtain unsupervised
food segmentation, in a unique approach, using a deep convolutional model, the
W-net (Xia and Kulis, 2017). In addition, we compare this architecture with a super-
vised deep concolutional model, the U-net (Ronneberger, Fischer, and Brox, 2015),
and with the supervised version of the W-net.

2.3 W-net

The model we are studying (Xia and Kulis, 2017) is a deep convolutional W-shaped
architecture such that by taking an image as input it reconstructs the original input
image and also predicts a segmentation map without any labeling information. This
model is a modification of a supervised deep convolutional U-shaped architecture
consisting of a contracting path to capture context and a symmetric expanding path
that enables precise localization.

In this project, following the works of (Xia and Kulis, 2017), we design an encoder
such that the input is mapped to a dense pixel-wise segmentation layer with the
same spatial size rather than a low-dimensional space. The decoder then performs
a reconstruction from the dense prediction layer. We compare the results with a
supervised architecture such as U-net (Ronneberger, Fischer, and Brox, 2015).

5

Chapter 3

Methodology

In this chapter, we contain the main ideas of the networks we develop and test.
First of all, we take a look at the works of (Ronneberger, Fischer, and Brox, 2015)
for the U-net. Following this, we explore the main ideas of the W-net architecture
presented in (Xia and Kulis, 2017). Finally, after looking into the main concepts for
the "soft" normalized cut loss function proposed in the W-net paper, we propose a
faster alternative based on clustering which we call Centroid Loss function.

3.1 U-net

The W-net ties two fully convolutional network architectures together into a single
autoencoder. This two architectures are based on the U-net, which is a well known
fully convolutional network (Ronneberger, Fischer, and Brox, 2015). It was presented
in 2015 for Biomedical Image Segmentation on the ISBI challenge. The main idea
of this network is to supplement a usual contracting network by successive layers,
where pooling operators are replaced by upsampling operators. Hence, these layers
increase the resolution of the output. In order to localize, high resolution features
from the contracting path are combined with the upsampled output. A successive
convolution layer can then learn to assemble a more precise output based on this
information.

One important modification in this architecture is that the upsampling part has a
large number of features channels, which allows the network to propagate context
information to higher resolution layers. As a consequence, the expansive path is
more or less symmetric to the contracting path, and yields a U-shaped architecture.

3.1.1 Architecture

The network architecture is illustrated in Figure 3.1. It consists of a contracting path
and an expansive path. The contracting path follows the typical architecture of a
convolutional network. It repeatedly applies two 3x3 convolutions, each followed
by a rectifier linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for
downsampling. At each downsampling step we double the number of feature chan-
nels. Every step in the expansive path consists of an upsampling of the feature map
followed by a 2x2 convolution that halves the number of feature channels, a concate-
nation with the correspondingly cropped feature map from the contracting path, and
two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to
the loss of border pixels in every convolution. At the final layer, a 1x1 convolution is
used to map each 64-component feature vector to the desired number of classes. In
total, the network has 23 convolutional layers.

6 Chapter 3. Methodology

FIGURE 3.1: U-net architecture. Each blue box corresponds to a multi-
channel feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different

operations.

3.1.2 U-net performance

In (Ronneberger, Fischer, and Brox, 2015), they apply the U-net to different segmen-
tation tasks. The first task is the segmentation of neuronal structures in electron
microscopic recordings. They used a set of 30 images for training, and achieved a
warping error of 0.0003529 and a rand-error of 0.0382, which outperformed the other
methods used for this problem by a large margin.
They also applied the U-net to a cell segmentation task in light microscopic images.
The first data set "PhC-U373" contains 35 partially annotated training images. They
achieved an IoU of 92%, which is significantly better that the second best algorithm
with 83%. The second dataset "DIC-HeLa" to which they applied the U-net consists
of 20 partially annotated training images. They obtained an average IoU of 77.5%,
which again outperformed the second best algorithm with 46%.

3.2 W-net

In this project, our main goal is the unsupervised segmentation by deep learning. To
this aim, we proceed with exploring in depth and attempting to improve the idea
of the W-net (Xia and Kulis, 2017) as one of the most recent unsupervised segmen-
tation techniques using convolutional neural networks. This idea was borrowed
by the supervised segmentation methods of the paper (Ronneberger, Fischer, and
Brox, 2015). To be more precise, the W-net achieves unsupervised segmentation by
concatenating two fully convolutional networks (each similar to the U-net architec-
ture) together into an autoencoder — one for encoding and one for decoding. The
first fully convolutional networks encodes an input image, using fully convolutional
layers, into a K-way soft segmentation. The second fully convolutional networks re-
verse this process, going from the segmentation layer back to a reconstructed image.

3.2. W-net 7

Both reconstruction error of the autoencoder as well as the error produced by the
encoder are jointly minimized during training.

After obtaining an initial segmentation from the encoder, the authors performed
two postprocessing steps, namely Conditional Random Fields (CRF) smoothing and
hierarchical merging, in order to obtain the final result.

3.2.1 Architecture

The network architecture is illustrated in Figure 3.2. It is divided into an UEnc (left
side) and a corresponding UDec (right side). As we already mentioned, the authors
modified and extended the typical U-shaped architecture of a U-Net network (Ron-
neberger, Fischer, and Brox, 2015). The symmetry observed between the encoder
and the decoder creates a W-shaped architecture. This architecture reconstructs the
original input images as well as predicts the segmentation maps without any label-
ing information. The W-Net architecture of the paper has 46 convolutional layers
which are structured into 18 modules marked with the red rectangles. Each mod-
ule consists of two 3 x 3 convolutional layers, each followed by a rectifier linear
unit (ReLU) non-linearity and batch normalization. The first nine modules form the
dense prediction base of the network and the second 9 correspond to the reconstruc-
tion decoder.

The UEnc consists of a contracting path (the first half) to capture context and a corre-
sponding expansive path (the second half) that enables precise localization, as in the
original U-Net architecture. The contracting path starts with an initial module which
performs convolution on input images. In Figure 3.2, the output sizes are reported
for an example input image with resolution of 224 x 224. Modules are connected via
2 x 2 max-pooling layers, the feature channels are doubled at each downsampling
step and halved at each upsampling step. In the expansive path, modules are con-
nected via transposed 2D convolution layers. The final convolutional layer of the
UEnc is a 1 x 1 convolution followed by a softmax layer. The 1x1 convolution maps
each 64-component feature vector to the desired number of classes K, and then the
softmax layer rescales them so that the elements of the K-dimensional output lie in
the range (0,1) and sum to 1. The architecture of the UDec is similar to the UDec except
it reads the output of the UEnc which has the size of 224 x 224 x K. The final convo-
lutional layer of the UDec is a 1 x 1 convolution to map 64-component feature vector
back to a reconstruction of original input.

One important modification in the W-net architecture compared to the U-net is that
all of the modules use the depthwise separable convolution layers except mod-
ules 1, 9, 10, and 18. A depthwise separable convolution operation consists of a
depthwise convolution and a pointwise convolution. The idea behind such an op-
eration is to examine spatial correlations and cross-channel correlations indepen-
dently—a depthwise convolution performs spatial convolutions independently over
each channel and then a pointwise convolution projects the feature channels by the
depthwise convolution onto a new channel space. As a consequence, the network
gains performance more efficiently with the same number of parameters. In Figure
3.2, blue arrows represent convolution layers and red arrows indicate depth-wise
separable convolutions.

8 Chapter 3. Methodology

FIGURE 3.2: W-Net architecture: it consists of an UEnc (left side) and a
corresponding UDec (right side). It has 46 convolutional layers which
are structured into 18 modules marked with the red rectangles. Each
module consists of two 3x3 convolutional layers. The first nine mod-
ules form the dense prediction base of the network and the second 9

correspond to the reconstruction decoder.

3.2.2 W-net performance

In (Xia and Kulis, 2017), the W-net is tested in two Segmentation Datasets from
Berkeley University, BSDS300 and BSDS500. The authors evaluated the performance
on three different metrics: Variation of Information (VI), Probabilistic Rand Index
(PRI), and Segmentation Covering (SC). For SC and PRI, higher scores are better;
for VI, a lower score is better. In addition, they reported human performance on
this data sets. The model outperforms a number of existing classical and recent un-
supervised segmentation techniques, achieving performance near human level by
some metrics.

3.3 Loss Functions of the Network

3.3.1 Soft Normalized Cut Loss

Introduction

We wish to segment the image into regions in a way that respects the structure of the
image. For this we define a graph in which pixels are nodes, and weights w(u, v) of
the edges account for the similarity between the pixels they connect: it is a product
of negative exponentials of both: the color distance

d2
c(u, v) = ||RGB(u)− RGB(v)||2

and the spatial distance

dg(u, v)2 = ||(i, j)u − (i, j)v||2

3.3. Loss Functions of the Network 9

between the pixel pairs (u, v):

w(u, v) = e−d2
c /σ2

c e−d2
g/σ2

g

scaled respectively by color and geometrical factors σc, σg

The idea behind the N-cut (not to be confused with Graph Min Cut) is to minimize,
for each class, the ratio between:

• the similarities between pixels within the same class, and

• the similarities between pixels of the class and the other classes.

For this, let us define, for two disjoint sets of pixels A, B, A∩ B = ∅, the cut between
them:

cut(A, B) = ∑
u∈A,v∈B

w(u, v),

that is, the sum of weights of connections between them. The associativity is the
same concept, only that it applies for a subset A of V, A ⊂ V:

assoc(A, V) = ∑
u∈A,v∈V

w(u, v),

that is, the connections from region A to the rest of pixels (including itself).
We first derive the loss function for the Binary N-Cut problem and later we will
generalize it.

Binary N-cut problem

In (Shi and Malik, 2000), they realized that simply minimizing the cut between dif-
ferent regions produces very small regions.
For this reason and according to the notions we gave above, we define the normal-
ized N-cut loss function of a partition of all the pixels in the image, V, into two
subsets A, B as:

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(B, A)

assoc(B, V)
,

which accounts for the separation between pairs of pixels of different classes, or
disassociativity, normalized.
Instead, for measuring the normalized associativity, that is, the similarity of pixels
between the same class, the authors define:

Nassoc(A, B) =
assoc(A, A)

assoc(A, V)
+

assoc(B, B)
assoc(B, V)

Lemma 3.3.1. For the binary problem, we have the following equivalence:

Ncut(A, B) = 2− Nassoc(A, B)

Proof. First note that since B = V − A, the following is valid:

cut(A, B) = assoc(A, V)− assoc(A, A)

Applying this to the Ncut definition, we get:

10 Chapter 3. Methodology

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(B, A)

assoc(B, V)

=
assoc(A, V)− assoc(A, A)

assoc(A, V)
+

assoc(B, V)− assoc(B, B)
assoc(B, V)

= 2− assoc(A, A)

assoc(A, V)
− assoc(B, B)

assoc(B, V)

= 2− Nassoc(A, B).

N-cut loss for the non binary problem

For a segmentation of an image into K > 2 classes, we can generalize the above
observation and define the Normalized N-cut Loss:

Ncut(A1, . . . , AK) =
K

∑
k=1

cut(Ak, V − Ak)

assoc(Ak, V)
= K−

K

∑
k=1

assoc(Ak, Ak)

assoc(Ak, V)
.

However, this definition only applies for a "hard" segmentation, that is, the assign-
ment of a class to each pixel. This does not yield a differentiable function, which is
what we need for our optimization problem.

Soft N-cut loss

In (Xia and Kulis, 2017), the authors devise a solution: assign a membership vector to
each pixel with as many components as classes we have, indicating the probabilities
of belonging to each class.
By replacing the hard constraints of belonging to a class inside the sums across the
pixels by a probability weighting each term, they obtain the formula for the Soft
N-cut Loss:

L(A1, . . . , AK) = K−
K

∑
k=1

∑
u,v

p(u ∈ Ak)p(v ∈ Ak)w(u, v)

∑
u,v

p(u ∈ Ak)w(u, v)
,

where in the denominator we directly omit the term p(v ∈ V) = 1.
The image segmentation should now look like a 3D box with depth K, and at each
depth level k we should find the image of the probabilities of each pixel belonging
to class k, taking continuous values between 0 and 1.

Technical Optimization for the Soft N-cut loss

The above formula would involve a lot of unnecessary computational cost as the
number of pairs of pixels grows as (m × n)2 with the width m and height n of the
picture.

1. Neighbours only:

In the W-net, only connections between neighbour pixels are considered to
have non-zero similarity (non infinite distance). It is achieved by thresholding
the similarity between pixels to radius r = 5 with a factor:

3.3. Loss Functions of the Network 11

wr(u, v) = e−d2
c /σ2

c e−d2
g/σ2

g ·
{

1, if dg(u, v) ≤ r
0, otherwise

2. Vectorizing:

For speeding up calculations and also compactness of the formula, we ob-
served that the former can be expressed as matrix and vector products.

• Let pk = (p(u1 ∈ Ak), . . . , p(uN ∈ Ak)) be the vector of probabilities of
each pixel 1, . . . , N = n ·m belonging to class k

• Let (W)u,v = w(u, v) be the matrix of weights

• Let 1 be a vector of ones with N dimension

then the loss function can be simply thought as

L(A1, . . . , An) = K−
K

∑
k=1

pk
TWpk

pk
TW1

This observation reveals W as the metrics matrix of the space of segmentation.
By restricting only to neighbouring pixels, we obtain a somewhat banded-
diagonal sparse W matrix (not exactly tri-diagonal because neighbouring pix-
els in the original image are not always neighbors after reshaping it into a
vector).

3. Storing the weights:

Another step to reduce the computational effort of such a loss function in our
implementation of Keras using TensorFlow as backend was to store the weights
of the similarity matrix, which only depends on the original image and not
on the current state of the segmentation being optimized inside the training
process.

Since the current interface of Keras allows for custom defined loss functions
for the Neural Network as long as they take two arguments, ground truth and
prediction and return a loss value, we needed to pack the values of the weights
into a tensor that matched in shape the dimension of images. For that, we took
the approach of attaching into the images, on top of the 3 layers corresponding
to R,G and B values, one layer for each pixel in the connectivity pattern.

For example, we store the similarity between every pixel of the image and the
pixel to its right in the first added layer, and so on for all the neighbours below
radius 5. This way we do not waste any extra space, and at loss evaluation
time, we unwrap it to get the sparse W matrix.

3.3.2 Fast alternatives inspired on clustering

Centroid loss

Despite the efforts put on optimizing the Soft N-cut Loss implementation, it takes a lot
of time for TensorFlow to compile, and only finishes for very small images (32× 32).
For this reason, we propose a loss function that involves less pixel-to-pixel compar-
isons, but preserving the common idea of minimizing the intra-class variance and
maximizing the inter-class variance (usually minimizing the ratio of the former and
the latter). In our case, where we only have the notion of similarity, we propose to

12 Chapter 3. Methodology

maximize intra-class similarity and to minimize inter-class similarity.
We can rethink the segmentation problem as a classification problem on a pixel level.
We want to assign to each pixel:

• a class label for the "hard" segmentation problem y(x) ∈ {1, . . . , K}

• or at least a membership vector along all classes for the "soft" segmentation
problem y(x) = (y1, . . . , yK) = (p(x ∈ A1), . . . , p(x ∈ AK)) ,

based on the 5 available features:

• RGB color, and

• (i, j) pixel coordinates.

So pixels are points on a 5− dimensional feature space to which we can apply some
classical clustering approach to obtain a differentiable measure of the goodness of a
classification into K classes.
We arrange data in the typical form of (X|y) one row per sample and one column
per feature or label:

(R(x), G(x), B(x), I(x), J(x)|p1(x), . . . , pk(x)).

There are two very basic descriptors within a classification process. For each class k,
we can compute very fast:

• The centroid of class k, i.e. the mean of points classified as k

µk(X, y) = µ(Ak) = ∑
x∈Ak

x
nk

for nk = #Ak 6= 0 the cardinal of Ak = {x|y(x) = k} in case it is non-zero.

For the case of a soft segmentation

µk(X, y) =
∑
x

p(x ∈ Ak)x

∑
x

p(x ∈ Ak)
=

pk
TX

pk
T1

.

Again, each class needs to have a non-zero accumulated probability along pix-
els in order for the centroid to be defined.

Note that according to the strict definition of centroid of a set of points in a
non-necessarily Euclidean space, that is, the point that minimizes the sum of
distances to each point of the set, the mean does not necessarily coincide with
it. But since in our space, the distance is only affected by a scaling of the
color component by σc and the geometrical component by σg, we can make
it Euclidean after rescaling the coordinates. If we apply the "neighbours only"
thresholding to the distance, this is not true for non-neighbour pixels.

With this already, we can get a loss function from the sum of similarities be-
tween centroids, but we can go further.

• The variance of class k, i.e. the mean of the squared distance of points classified
as k to the class centroid:

3.3. Loss Functions of the Network 13

σ2
k(X, y) = σ2(Ak) = ∑

x∈Ak

(x− µk)
2

nk
.

Again, for the soft segmentation, we replace the belonging condition by weights:

σ2
k(X, y) =

∑
x

p(x ∈ Ak)(x− µk)
2

∑
x

p(x ∈ Ak)
=

pk
T(X− µk)

2

pk
T1

,

where the 2 operator denotes self element-wise product.

Note that σ2
k(X, y) is a vector of the variance of each feature across samples,

weighted by the class probability. To get a scalar value, we can take the sum,
weighted by the corresponding color and position weights σc, σg.

From the centroids and the variances, we can build an equivalent definition of the
N-cut Loss or its soft version, but with much less pixel comparisons.

• Replace the sum of similarities between pixels of the same class:

∑
Ak

e−d(u,v)2

by the negative exponential of the variance scalar value

σ2
k = RGB(σ2

k)/σ2
c + I J(σ2

k)/σ2
g

, that is, by
e−σ2

k = w(σk, 0).

The order of summing and exponentiating affects the result, but the scale should
be the same since the variance is the mean of the squared distance to the cen-
troid, and the concept being penalized is the same.

We have seen that the negative exponential of the magnitude of the variance
can be rewritten as the pixel similarity between the standard deviation vector
and the zero vector for simplicity.

• Replace the sum of similarities between pixels of two different classes, k1, k2 by
the negative exponential of the squared distance between its centroids, that is,
just the pixel similarity between the centroids:

e−d(µk1
,µk2

)2
= w(µk1

, µk2
)

That is, instead of taking the mean, or sum, of the negative exponential of the
distances, we take the negative exponential of the distance of the class means,
so we only compare two points.

The formula for the loss function following this approach is:

Lcentroids(A1, . . . , AK) = K−
K

∑
k=1

w(σk, 0)
∑
i,j

w(µk1
, µk2

)
.

14 Chapter 3. Methodology

We can think of this approach as building the similarity matrix only on the centroid
points, and replacing the diagonals (self similarity) with the (negative exponential
of the) variances.
However, in the Soft N-cut Formula, we can see that similarities between pixels of the
same class also appear in the denominator, so we finally add the term accounting for
intra-class similarities from the numerator into the denominator:

Lcentroids(A1, . . . , AK) = K−
K

∑
k=1

w(σk, 0)
w(σk, 0) + ∑

i,j
w(µk1

, µk2
)

.

This also makes the fractions bounded in [0, 1] so the loss function is positive.

Regularizing the segmentation by Penalizing bad shapes

Although the algorithm is unsupervised, we can give it some bias towards some
good shapes for the regions it converges to. This fast alternative produces clouds of
points around the class centroids, but sometimes it is not possible to get a good split
and smooth boundary in the position coordinates given the high variation of colour
at pixel scale from shapes, illumination, etc.
For this reason, we will add a term to the loss function that accounts for the perime-
ter of the shapes in (I, J) of the regions that correspond to a segmentation.
Let P be an image of the same width and height as the original image and the prob-
abilities of belonging to each class as channels, or layers.
We take the convolution of the layer P[:, :, k] by a gradient filter like:

C =

 −1 −2 −1
−2 12 −2
−1 −2 −1

 .

The result is an image with high values where the regions defined by that class have
edges in either direction. We take the sum of all values of the layer convolution,
normalizing by the sum of values Pk = P[:, :, k] so that layers with small regions
contribute the same. We finally sum up across layers. So in brief, the perimeter loss
is

K

∑
k=1

∑i,j(Pk ~ C)ij

∑i,j Pk
ij

.

3.3.3 Reconstruction Loss

As in any classical encoder-decoder architecture, we also train the W-Net to min-
imize the reconstruction loss to enforce the encoded representation to contains as
much information of the original inputs as possible. By minimizing the reconstruc-
tion loss, we can make the segmentation prediction align better with the input im-
ages. To achieve this, we tested two different loss functions:

• Mean Squared Error,

• Binary Cross-entropy.

3.4. Post-processing and Coloring 15

From this two losses Binary Cross-entropy performs better for our models.

3.4 Post-processing and Coloring

To better visualize a segmentation, especially in the unsupervised scenario, we as-
sign to each class the mean color of the pixels belonging to it. We will refer to this
as the hard mean color. We will also plot separately for each class, the pixels that get
assigned the class label, in binary black and white format, and we refer to them as
winners of the class.
For the case of a soft, or k-way segmentation, the mean can be weighted by the class
probability of the pixels, to which we will refer as the soft mean color. We will also
plot separately for each class the probabilities of membership to the class as gray-
scale images.
The soft mean color visualization is more faithful to the centroid loss neural network,
since it reflects the true color of the centroids being optimized. However, it has the
drawback that probabilities of a pixel to be in a class that are non-zero but are not the
maximum for the pixel, will make the mean color ”dirty” for very wide classes that
mix heterogeneous pixels. Also, the reconstruction loss gets information from these
non-zero, but non-maximum probabilities to reconstruct the image, so these will not
fully disappear in the W-net. Hence, we observe somewhat indistinguishable colors
for adjacent classes.
If instead we convert the soft segmentation into a hard segmentation by taking the
maximum to be 1 and zero-ing out the rest of the classes of a pixel, we can get a hard
mean coloring, with much more vivid colors.
Finally, in our context of food, we do not wish classes to have more than one con-
nected component, something that we observe frequently, and is against the assump-
tion that the menus do not contain repeated dishes.
For this, we apply a very simple step of post-processing that consists on splitting
each class obtained from a hard segmentation into its connected components, al-
ways discarding the background as a class. From this extended segmentation, we
will again compute the hard mean color of each new class. We expect this to exhibit
much more clearly defined colors.
Pay attention though on the initial state of training, where this visualization can look
misleadingly good if the initial classes have hundreds of connected components. In
this case, the resulting new regions will be very small, each one with a very similar
color to the original image.

17

Chapter 4

Validation and Results

4.1 Datasets

For testing the models implemented in our project, we use the UNIMIB2016 Food
Database (Ciocca, Napoletano, and Schettini, 2017). This database was originally
designed for automatic dietary monitoring of canteen customers based on robust
computer vision techniques. It consists of 1027 tray images with multiple foods and
containing 73 food categories. You can see an example of an image from this dataset
in Figure 4.1 and look at all food classes in Figure 4.2. The dataset contains segmen-
tation masks for each image and it provides a split to use for train and testing with
650 images for training and 360 images for testing.

The different classes appear in different frequencies in the train and test set. For
example, the most frequent class in the train set is "pain". It appears with a fre-
quency of 40.77% in the train set and 43.06% on the test set.
On another hand, the least frequent classes in the training set are "pasta e ceci" and
"torta crema". "Pasta e ceci" appears with a frequency of 0.46% in the train set and
0.56% on the test set, and "torta crema" appears with a frequency of 0.31% in the train
set and 0.83% in the test set. As we can see by this statistics, the different classes are
very unbalanced in the UNIMIB dataset.

FIGURE 4.1: Example of an image from the UNIMIB2016 Dataset

4.1.1 Preprocessing

The ground truth for this dataset is given in a Matlab map structure, with the fol-
lowing format. Each entry in the map corresponds to the annotation of an image
and each entry contains cell tuples as annotated food. A tuple is composed of 8 cells
with the annotated:

• Item category (food for all tuples)

18 Chapter 4. Validation and Results

FIGURE 4.2: Food classes from the UNIMIB2016 Dataset

• Item class (e.g. pasta, patate, ...)

• Item name

• Boundary type (polygonal for all tuples)

• Item’s boundary points [x1, y1, x2, y2, ..., xn, yn]

• Item’s bounding box [x1, y1, x2, y2, x3, y3, x4, y4].

In order to be able to use the ground truth in our project, we transform this map
structure into matrices with the corresponding segmentation. As we want to make
different tests with the ground truth, we create two different types of ground truth.
We create binary ground truth with only two classes corresponding to the pixel be-
longing to food or to background. We also generated matrices for every class in
order to be able to train the model with the different 73 classes. We stored this ma-
trices as .png images. You can see an example for the ground truth in Figure 4.3

4.1.2 Data augmentation

To improve the results for the segmentation architecture, we perform some data aug-
mentation to have more images for training.

4.2. Implementation details 19

(A) Original (B) Binary

(C) Pasta mare e
monti

(D) Patate pure

FIGURE 4.3: Ground truth for the UNIMIB2016 Dataset

The first form of data augmentation we use, consists of generating horizontal re-
flections. The second form of data augmentation consists of altering the intensities
of the RGB channels performing PCA on the set of RGB pixel values throughout
the training set. To each training image, we add multiples of the found principal
components, with magnitudes proportional to the corresponding eigenvalues times
a random variable drawn from a Gaussian with mean zero and standard deviation
0.1. Therefore, to each RGB image pixel Ixy = [IR

xy, IG
xy, IB

xy], we add the following
quantity:

[~p1,~p2,~p3][α1λ1, α2λ2, α3λ3]
T,

where ~pi and λi are the i-th eigenvector and eigenvalue of the 3×3 covariance ma-
trix of RGB pixel values, respectively, and αi is the aforementioned random variable.
This form of data augmentation captures an important property of natural images,
that object identification is invariant to changes in the intensity and color of the illu-
mination. We can see an example of the PCA data augmentation for our dataset in
Figure 4.4

4.2 Implementation details

We run all the experiments using Google Colaboratory. This tool gives up to 12
hours of uninterrupted execution with available Tesla K80 GPU and 12GB of RAM.
As some of our architectures needed great computational power in order to run, this
tool provides a comfortable environment for developing. We developed our models
using Keras with Tensorflow as backend.

20 Chapter 4. Validation and Results

(A) Original (B) After applying
PCA

FIGURE 4.4: Example of UNIMIB2016 image after applying PCA

4.3 Metrics

In order to evaluate the different models, we made two types of evaluation. First, we
compute the mean Intersection over Union (IoU) for the test set and then we make a
visual evaluation of the results.

4.3.1 Intersection over union

The intersection over union of a pair of regions measures the ratio between intersect-
ing area and union area. It is useful for assessing how similar are the region of pixels
that are known to correspond to a class and the region of pixels that are predicted to
be in that class.
We compute this metric in two different ways for the supervised and unsupervised
architectures. On the one hand, for the supervised setting, for each image, we just
computed the mean across different classes of IoU between ground truth regions and
predicted regions. Then, we computed the mean of these values across the whole test
split.
On the other hand, for the unsupervised architecture, since the predicted class re-
gions may not appear in the same order as the ground truth class regions, for each
image, we computed the IoU between each class region from the ground truth and
each class region given by the segmentation. We kept the best result for each class
appearing in the ground truth and computed the mean between these values. Fi-
nally, we computed the mean for all test images as in the supervised setting.

4.3.2 Visual evaluation

We want to have a perception of the goodness of the segmentation, so we com-
puted different visualizations. First of all, for the unsupervised setting, we make a
plot with different features. We show the original image, the segmentation obtained
painted with the mean color for each class, the segmentation obtained painted with
the mean color after post-processing and the reconstruction image. We also show
the probabilities for each class in the form of a grey scale image and the hard seg-
mentation for each class with a black and white image, where the black pixels are

4.3. Metrics 21

the ones inside the class. An example of this visualization is available in Figure 4.5.
Then, for both supervised and unsupervised results, we computed the contours of
each class and compared them with the contours of the ground truth. An example
of this visualization is available in Figure 4.6.

FIGURE 4.5: Example of unsupervised visualization

FIGURE 4.6: Example of contour visualization

22 Chapter 4. Validation and Results

4.4 U-net architecture

In order to make some comparison between supervised and unsupervised segmen-
tation, we explore an architecture for the U-net. We take an already developed ar-
chitecture from the DATA-SCIENCE-BOWL-2018 competition on kaggle (https:
//github.com/kamalkraj/DATA-SCIENCE-BOWL-2018) and we adapt it for
our data.

The network has 9 modules and starts with 16 feature channels in the first convolu-
tion. We used 0.1 dropout in the first and the last 2 modules and 0.2 dropout on the
rest of the modules. Also, this model had Adam as an optimizer and He normal as a
kernel initialization. The network has 1.9 million parameters.
We test the network in two ways. The first one is using binary ground truth, i.e., we
use only two classes for the pixels belonging to food or background. On the other
hand, we test the network with the 73 food classes.

4.4.1 Binary U-net

We test different optimizers for this architecture and find that the one that gives the
best results is the Adamax optimizer (see Table 4.1 for all the results).

Optimizer IoU
Adam 0.85
SGD 0.62
Adagrad 0.14
Adadelta 0.79
Adamax 0.87
Nadam 0.14

TABLE 4.1: Results for the U-net with different optimizers

We compute the contour plots for the results coming from Adam in Figure 4.7. As we
can see, the results are quite good, although the segmentation misses to give a good
result for the "yogurt" class. The other classes are well segmented, and we can see it
fails on recognizing pointy shapes, as ecidenced with the class "carotte" in the first
image.

https://github.com/kamalkraj/DATA-SCIENCE-BOWL-2018
https://github.com/kamalkraj/DATA-SCIENCE-BOWL-2018

4.4. U-net architecture 23

FIGURE 4.7: Results for the U-net with binary segmentation

4.4.2 Multiclass U-net

We test this architecture with the Adamax optimizer (which gives the best results for
the binary problem). The result of the IoU for this architecture with Adamax is 0.65.
We see that these are much worse results than the binary problem, although it is
expected, as here we have 73 classes. The visualization for these results is available
in Figure 4.8. As you can see, in this case the network misses some classes like the
"yogurt" and the "cotoletta" class.

24 Chapter 4. Validation and Results

FIGURE 4.8: Results for the U-net with multiclass segmentation

4.5 Classical N-cut

For the Classical N-cut, we use the scikit-learn segmentation module to build the sim-
ilarity graph, see (Shi and Malik, 2000), not from pixels directly, but from clustered
regions of similar position and color.
The similarity matrix is only built on a few hundred nodes after having merged pix-
els into regions.
The results in 4.9 are pretty good, except that perhaps they do not merge sub-regions
of the same food class due to color variations.
The evaluation of the N-cut loss on the N-cut segmentation (around 0.005) is much
smaller than evaluating theN-cut loss on the ground truth (around 0.3), since the
N-cut segmentation minimizes the N-cut loss.
This tells us that the N-cut loss does not exactly correspond to the semantic loss.

4.6. Embedding architecture 25

FIGURE 4.9: Results for the Classical N-cut

4.6 Embedding architecture

Before plugging the loss functions, that we have iteratively improved, directly on
the W-net, we follow the following approach.
We take only one image, and a very simple neural network consisting of an Embed-
ding layer from Keras.
An embedding layer takes a list of integer id’s and maps a vector to each. The com-
ponents of the vectors are the parameters of the layer.
So we will pass it as input a vector of id’s (0, ..., nrows · ncols − 1) representing all the
pixels, and the network will output (predict) a vector of membership probabilities
for each one. Since there is no ground truth, we will pass the original image to the
loss function so that it can compute a value from both original image and predicted
probabilities.
The loss function (unsupervised) will propagate directly from the original image into
the probabilities of the k-way segmentation, so this approach will get rid of the ef-
fect of the convolutional layers having to transmit information between the original
image and the segmentation.
In the results, see Figure 4.10, where we use the Centroid Loss, we don’t observe as
much the effect that we see in the W-net that some classes tend to disappear very
often, but rather the opposite, small shapes tend to stay too much along training
and oversegment the image. Looking at the mean colors gives an intuition about the
effect of the Centroid Loss function isolated from the convolutional layers and
the reconstruction loss.
The IoU of the images we choose for evaluating is 0.4 for the pizza image, 0.45 for
the carrots image (shown here) and 0.66 for the beans image, so in average it is 0.5
IoU.

26 Chapter 4. Validation and Results

FIGURE 4.10: Results for the Embedding; 0.45 IoU

4.7 W-net architecture

In order to achieve the best segmentation possible, we create and compare four dif-
ferent architectures by which we get their names depending on the number of mod-
ules and the number of feature channels the image maps in the first convolution:

• W-net 18-64,

• W-net 18-32,

• W-net 14-64,

• W-net 10-64.

The three last architectures are modifications of W-net 18-64 which is the model used
in (Xia and Kulis, 2017). The modifications made are concerning the number of
modules and the number of feature channels at each convolution.
First, we use Adam as the optimizer for these architectures and He normal as a
kernel initializer which were both used for the U-net implementation. Once we have
obtained which of these to get the best results, we test the best network with different
optimizers and initializers in order to confirm the best results.

4.7.1 W-net 18-64

This architecture was already analyzed in depth in Section 3.2.1. This model has
12,225,542 parameters and the dropout used for training is 0.65.

4.7. W-net architecture 27

The mean IoU for this architecture is 0.29. If we look at the results for the visual-
ization 4.11, we can see that the segmentation is poor and this was one of the main
reasons why we tried different architectures. Looking at both the results after post-
processing and the contour, we can see that all three food classes are not well seg-
mented. Even the detection of the class "carote" which can be considered the easiest
food of this image, since it has a standard colour, was segmented very inaccurately.

FIGURE 4.11: Results for the W-net 18-64

4.7.2 W-net 18-32

The first modification we make of the W-net 18-64, is decreasing the number of fea-
ture maps for each convolution. By decreasing the number of feature maps at each
convolution by half, we obtain 3,085,830 parameters. In addition, the dropout used
for this architecture is decreased from 0.65 to 0.2.

The mean IoU for this architecture is 0.52. Looking at the results obtained with vi-
sualization, see Figure 4.12, we can see that we obtain 4 different hard segmentation
classes, but that the food is mainly in the first class. After postprocessing, we obtain
a quite good segmentation for all the food, except for the "patate/puré" class, which
has gotten mixed with the background, and as we can see in the contour plot, this
class does not have a good segmentation.
This model obtains the best results when it comes to the unsupervised W-net with
Centroid loss as the loss computed from the encoder and binary cross-entropy used
as reconstruction loss.

28 Chapter 4. Validation and Results

FIGURE 4.12: Results for the W-net 18-32

4.7.3 W-net 14-64

In this architecture, we decrease the number of modules from 18 to 14 and we make
starting 3x3 convolutions which map the image into 64 feature channels (as in the
W-net 18-64). This network has 12,256,134 parameters.

The mean IoU obtained for this architecture is 0.37. When looking at the visual-
ization, available in Figure 4.13, we can see that in this case we only obtain 2 classes
for the hard segmentation, and the food is mainly contained in class 3. As happened
before, we obtain good results after postprocessing for all the food except for the
class "patate/puré", which in this case is not detected as a class, as we can see in the
contour plot.

4.7. W-net architecture 29

FIGURE 4.13: Results for the W-net 14-64

4.7.4 W-net 10-64

Finally, we decrease again the number of modules from 14 to 10 and start with 64
feature channels in the first module to obtain the W-net 10-64. The number of pa-
rameters in this model is 2,942,982.

The mean IoU for this architecture is 0.43. Looking at the visualization, Figure 4.14,
we can see that this segmentation looks a little better than the one obtained from the
W-net 14-64. In this case, the class "cotoletta" gets fully recovered, when in the seg-
mentation from the W-net 14-64, we only have some part of it. In this case, we obtain
3 classes, and the food is mainly contained in class 3. We can see that as happened
before, in this case we also do not detect the "patate/puré" class, which again gets
lost with the background as we can see in the contour plot.

To sum up, we have tested the different architectures, and we can see that we have
the best results (see Table 4.2) using the W-net 18-32. If we look at the evolution of the
sum of the segmentation and reconstruction losses in Figure 4.17, we can see that the
loss from the W-net 18-32, decreases in a smoother way than the other architectures.
In the end, we choose the W-net 18-32, which has 18 modules and starts with 32
feature channels instead of 64. We use this architecture with 0.2 dropout. From now
on, we test with different optimizers and kernel initilalizers using this architecture.

30 Chapter 4. Validation and Results

FIGURE 4.14: Results for the W-net 10-64

Architecture IoU
W-net 18-64 0.29
W-net 18-32 0.52
W-net 14-64 0.37
W-net 10-64 0.43

TABLE 4.2: Results for the different W-net architectures

4.7. W-net architecture 31

FIGURE 4.15: Evolution of the loss function for every architecture

32 Chapter 4. Validation and Results

4.8 Optimizers and Kernel Initializers

4.8.1 Optimizers

In order to obtain the best segmentation possible, we check different optimizers for
the best architecture mentioned above. We start checking Stochastic Gradient Descent
which is the optimizer used in (Xia and Kulis, 2017). We continue by testing Adam,
Adamax, Nadam, Adagrad with different learning rates and decay.

For Stochastic Gradient Descent, we obtain an IoU of 0.25, which is a much worse
result than the one obtained for Adam, which gets an IoU of 0.52.
If we compare the image visualizations obtained using both optimizers, see Figure
4.16 and Figure 4.12 (above), we see that using SGD we obtain regions which are
not smooth, and this way the regions are not well defined as we can see in the con-
tour plot. On the contrary, the results using Adam as an optimizer show smooth
regions, from which it is easy to obtain the different classes. In addition, there is no
reconstruction of the image.

FIGURE 4.16: Results for the W-net 18-32 using SGD optimizer

If we compute the results for the other optimizers, we see that we obtain similar
results than using Adam, although the best result is obtained using Adam. See Table
4.3 to see the mean IoU for every optimizer.
Looking at the evolution of the loss function (sum of segmentation and reconstruc-
tion loss), we can see that the Adam and Adamax losses decrease in a smooth way,
opposite to Adagrad and Nadam, which have a lot of peaks, and the SGD, which does
not seem to improve much. It is also important to mention that Adamax has also a
high IoU value (0.48). However, it is not higher than Adam.

4.8. Optimizers and Kernel Initializers 33

From this information, we conclude that the best architecture is the W-net 18-32 us-
ing Adam as optimizer.

Optimizer IoU
SGD 0.25
Adam 0.52
Adamax 0.48
Nadam 0.20
Adagrad 0.19

TABLE 4.3: Results of the W-net 18-32 using different optimizers

FIGURE 4.17: Evaluation of the loss function for W-net 18-32 with
every optimizer

4.8.2 Kernel Initializers

When it comes to Kernel Initialization, the best choice is He normal. He normal draws
samples from a truncated normal distribution centered on 0 with stddev =

√
2

f an−in ,
where f an − in is the number of input units in the weight tensor and makes the
model perform the best possible (He et al., 2015). He Uniform, Uniform and Random
Normal with different standard deviation values are also tested, however the perfor-
mance is lower.

34 Chapter 4. Validation and Results

He Uniform

Using He Normal as a kernel initializer in our best current architecture, we obtain
good results after postprocessing which can be seen in Figure 4.18. The only class
that can not be detected is the "patate/puré". The IoU value of this model is 0.44,
which is a relatively high value, but still not higher than the 52 we obtain by using
the He Normal.

FIGURE 4.18: Results for the W-net with He Uniform Kernel initial-
izer

Random Normal

Using Random Normal with mean 0 and 0.5, we obtain an IoU value of 0.14. This
value is the worst value of segmentation we obtained in our test. In Figure 4.19, we
can visualize the results of this model. Looking at the reconstruction, we can under-
stand that this initialization is not the best choice for out model and even with many
epochs the model does not reconstruct the image. At the same time the segmenta-
tion is not good even if the model detects the food. This can be definitely visualized
in the contour where looking at the class "carote" the model creates small regions
that make them not well defined.

4.8. Optimizers and Kernel Initializers 35

FIGURE 4.19: Results for the W-net with Random Normal Kernel ini-
tializer

4.8.3 W-net without Centroid Loss

Since we obtain the best results of the W-net using the Centroid Loss we will now
compare these results with the results of the output of the final softmax layer in
UEnc without adding the Centroid Loss. In Figure 4.20 we can see that by not using
the Centroid Loss we obtain a really good reconstruction however the segmentation
is not satisfying. To be more precise, the regions are not smooth and consequently
not well defined. The IoU of this segmentation equals to 0.20 which is much lower
than 0.52 which is the IoU value of the same architecture adding the Centroid Loss.
Also, looking at the contour we can also interpret that the segmentation is poor. For
example, looking at the plate with the class "carote" we can see that there is no region
created around it.

4.8.4 3D Visualization of pixel classification of our final model

Our most accurate model is the W-net 18-32 with Adam as an optimizer and He Nor-
mal as a kernel initializer. The results of this model, as it has been mentioned before,
obtain a mean IoU of 0.52. In Figure 4.21 we can visualize the performance of this
model on the same image we are testing all the unsupervised W-net models into a
3D plot. To be more precise, we define our three dimensional space as x=R, y=G,
z=B. The colour of each point for the first plot is the colour of the pixels in the origi-
nal image, for the second the colour of the centroid where this pixel belongs and for
the third plot the colour of the pixels obtained after postprocessing.

36 Chapter 4. Validation and Results

FIGURE 4.20: Results for the W-net without Centroid Loss

FIGURE 4.21: 3D pixel Visualization

4.9. Supervised W-net 37

4.9 Supervised W-net

Once we have decided which is the best architecture for the W-net, we try to test
the architecture using the ground truth for the segmentation loss. The idea behind
this is to train the supervised W-net and then train images unseen for the training
or from different datasets with the Centroid Loss and see if our network is capable of
predicting new classes of food.

First of all we train the W-net 18-32 with the ground truth, and we obtain an IoU
of 0.65. We compute the visualization with this network, see Figure 4.22. As ex-
pected, we can see that the segmented image gets rid of the background in this case.
We also observe that the algorithm cannot reconstruct the segmented parts detected.
In the contour plot we can see that the segmentation is quite good, although some
classes in the same plate have been blended together.

FIGURE 4.22: Results for the supervised W-net 18-32

Once we have the supervised W-net, we try to train images which have classes un-
seen in training using the Centroid Loss. In Figure 4.23 we can see that in this case
we do not get a good segmentation. In fact the mean IoU for this results is 0.06. It
is evident in Figure 4.23 that the network can not obtain unseen classes, as it only
predicts one class which is in the training set. We can also see that the segmentation
that is found is not very good. In the end we discard this method due to the poor
results obtained, although we think it is a very interesting path to study in future
work for this network.

38 Chapter 4. Validation and Results

FIGURE 4.23: Results for the W-net 18-32 with weights from the su-
pervised W-net

4.10 Result comparison

In order to give a good sense of the main difference with the main architectures de-
veloped in the project, we put all the results together. In Table 4.4 we can see the
comparison with the main architectures developed. As we can see, for the super-
vised networks, the binary U-net gives very high results. As for the unsupervised
architectures, we can see that the best result we obtain is for the W-net 18-34. It
doesn’t have a very high IoU value, but for unsupervised segmentation, the results
are quite remarkable. Also they are slightly higher than the embedding results, so
using convolutions and reconstruction helps.
We can also see a comparison of the visualization for these models in Figure 4.24,
Figure 4.25 and Figure 4.26.

4.10. Result comparison 39

Architecture IoU
Binary U-net 0.87
Multiclass U-net 0.65
Supervised W-net 0.65
Embedding 0.45
W-net 18-34 0.52
Crossdomain W-net 0.06

TABLE 4.4: Results for the different networks reviewed in the project

40 Chapter 4. Validation and Results

FIGURE 4.24: Comparison of the Binary U-net, Multiclass U-net, su-
pervised W-net, embedding with the Centroid loss, W-net 18-34 and

crossdomain W-net

4.10. Result comparison 41

FIGURE 4.25: Comparison of the Binary U-net, Multiclass U-net, su-
pervised W-net, embedding with the Centroid Loss, W-net 18-34 and

crossdomain W-net

42 Chapter 4. Validation and Results

FIGURE 4.26: Comparison of the Binary U-net, Multiclass U-net, su-
pervised W-net, embedding with the Centroid Loss, W-net 18-34 and

crossdomain W-net

43

Chapter 5

Conclusions

In this project, we have undertaken the task of studying the possibility of success-
fully using unsupervised Convolutional Neural Networks for segmentation applied
to food analysis.

First of all, we have reviewed the most relevant works on segmentation, focusing
on unsupervised segmentation and convolutional neural networks. Then we have
given a detailed review of the two networks that we focus most on this project, the
W-net and the U-net. We have given the details of the architectures as well as the
results obtained for these networks regarding segmentation.
Following this, we have provided a full explanation of the "soft" normalized cut loss
function, used in the W-net for minimizing the error of the segmentation. As this
loss function has revealed infeasible to compute for reasonably sized images, we
have proposed an alternative loss function for the segmentation in the W-net, which
we have called Centroid Loss. It has proven computationally viable while preserving
the essence of the original, and with relatively good results.

Regarding the experimental part of the project, we have used the UNIMIB2016 Food
Database in order to compute results for the developed architectures. We have
adapted the U-net architecture to fit our dataset and tested it with binary ground
truth and multiclass ground truth with 73 classes. Both architectures have given
good results.
We have developed the W-net from scratch with our Centroid Loss function and have
tested it with different number of modules, feature channels, optimizers and kernel
initializations. After making many experiments we have concluded that the best ar-
chitecture for the W-net and for our dataset is the W-net 18-34, which has 38 modules
just as the original W-net, but with 34 features channels in the first convolution. We
have also tried the W-net 18-34 with the supervised loss, minimizing the difference
with the ground truth and we have obtained similar results as for the multiclass U-
net. Finally, we have tried to train the W-net 18-34 with the Centroid Loss initializing
it with the weights from the supervised W-net in order to be able to predict classes
not contained in the ground truth, but we have not obtained good results on this
approach.

To sum up, we have been able to develop an unsupervised segmentation network
using a new loss function that has different properties from the point of view of ef-
ficiency and compactness, after finding that the N-cut loss is not efficient or easy to
apply to the network. We have also applied a much simpler postprocessing than
the one used on the W-net original paper, and we have obtained good results for
segmentation. Finally, we have been able to successfully apply our network to food
images, which can help in the process of food analysis.

44 Chapter 5. Conclusions

5.0.1 Limitations and difficulties

We have had to overcome the following challenges:

• N-cut loss: its implementation took surprisingly long to compute in tensorflow
even for small images, which brings us to the next point

• Limited resources: in the absence of a server we have resorted to Google Co-
laboratory, a free service for running notebooks inside Google Drive with 12h
of uninterrupted execution with available Tesla K80 GPU and 23Gb of RAM.
This service is great, but suffers from spontaneous runtime death and addi-
tional difficulty to store data.

• Complex images: unsupervised semantic segmentation should not be intended
for images with complex backgrounds, which already contain semantic con-
tent apart from our target, the food.

• No implementation was given in the W-net paper, and authors did not answer
any message for clarification.

5.0.2 Next steps

Next steps are to explore:

• Transfer learning: We were unsuccessful to apply transfer learning, for our
case, using the weights obtained from training the supervised W-net as initial-
ization for the unsupervised W-net. The model evolved into a flat segmenta-
tion. We should explore why the semantic-optimal solution is not a stable min-
imum with respect to our unsupervised loss function. Is this to be expected?
Could we fix it with a better architecture or a more refined loss function?

• More postprocessing: We kept the postprocessing very simple, just splitting
classes into connected components. This is good because it doesn’t introduce
much bias about how solutions should look like, but there’s still work to do on
other common strategies, such as Conditional Random Fields.

• Testing on other datasets: it would be nice to see how it performs on other food
images (or more diverse images).

45

Appendix A

Contribution of each team member

In this appendix we give a detailed summary of the work realized by each team
member.

• Montserrat Brufau Vidal

1. Preprocessing of the UNIMIB2016 dataset with Matlab.

2. Development of the U-net architecture and tests with the UNIMIB2016
dataset.

3. Development of the supervised W-net and tests with the UNIMIB2016
dataset.

4. Tests for the crossdomain problem.

5. IoU metric implementation.

6. Contour visualization.

7. Project report.

• Àlex Ferrer Campo

1. Soft N-cut loss

2. Optimizations on the Soft N-cut loss implementation: sum vectorization

3. Design of the Centroid Loss and edge-penalty loss

4. Testing them in the embedding network

5. Mean color visualizations

6. Postprocessing

7. Project report

• Markos Gavalas

1. N-cut loss

2. W-net architecture development and plugging losses

3. W-net tests with the N-cut loss

4. W-net tests with the Centroid loss

5. Results for the Unsupervised W-net

6. 3D Pixel Visualization

7. Project report

47

Bibliography

AA, Aly, Deris SB, and Zaki N (2011). “Research review for digital image segmen-
tation techniques”. In: pp. 1302–1317. URL: http://airccse.org/journal/
jcsit/1011csit09.pdf.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla (2015). “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation”. In: CoRR
abs/1511.00561. arXiv: 1511.00561. URL: http://arxiv.org/abs/1511.
00561.

Chaurasia, Abhishek and Eugenio Culurciello (2017). “LinkNet: Exploiting Encoder
Representations for Efficient Semantic Segmentation”. In: CoRR abs/1707.03718.
arXiv: 1707.03718. URL: http://arxiv.org/abs/1707.03718.

Chen, Hsin-Chen et al. (2015). “Saliency-aware food image segmentation for per-
sonal dietary assessment using a wearable computer”. In: Measurement Science
and Technology 26.2, p. 025702. URL: http://stacks.iop.org/0957-0233/
26/i=2/a=025702.

Ciocca, Gianluigi, Paolo Napoletano, and Raimondo Schettini (2017). “Food recog-
nition: a new dataset, experiments and results”. In: IEEE Journal of Biomedical and
Health Informatics 21.3, pp. 588–598. DOI: 10.1109/JBHI.2016.2636441.

Comaniciu, Dorin and Peter Meer (2002). “Mean shift: A robust approach toward
feature space analysis”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 24, pp. 603–619.

Cour, Timothee, Florence Benezit, and Jianbo Shi (2005). “Spectral Segmentation
with Multiscale Graph Decomposition”. In: Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05) -
Volume 2 - Volume 02. CVPR ’05. Washington, DC, USA: IEEE Computer Soci-
ety, pp. 1124–1131. ISBN: 0-7695-2372-2. DOI: 10.1109/CVPR.2005.332. URL:
http://dx.doi.org/10.1109/CVPR.2005.332.

D, Weinland, Ronfard R, and Boyer E (2011). “A survey of vision-based methods
for action representation, segmentation and recognition”. In: Computer Vision and
Image Understanding, 224–241. ISSN: 1945-7871. DOI: 10.1016/j.cviu.2010.
10.002. URL: https://www.sciencedirect.com/science/article/
pii/S1077314210002171.

Dai, Jifeng, Kaiming He, and Jian Sun (2014). “Convolutional Feature Masking for
Joint Object and Stuff Segmentation”. In: CoRR abs/1412.1283. arXiv: 1412 .
1283. URL: http://arxiv.org/abs/1412.1283.

DD, Patil and Deore SG (2013). “Medical image segmentation: a review”. In: 22–27.
ISSN: 2320–088X. URL: https : / / pdfs . semanticscholar . org / 56f7 /
0bafc5002ae723d6ee20ce9087f6eff7f81e.pdf.

DE, Ilea and Whelan PF (2011). “Image segmentation based on the integration of
colour-texture descriptors—a review”. In: 44, pp. 2479–2501. DOI: 10.1016/
j.patcog.2011.03.005. URL: https://www.sciencedirect.com/
science/article/pii/S0031320311000902.

Farabet, Clement et al. (2012). “Stochastic relaxation, Gibbs distribution, and Bayesian
restoration of images”. In: pp. 1915 –1929. ISSN: 0162-8828. DOI: 10 . 1109 /

http://airccse.org/journal/jcsit/1011csit09.pdf
http://airccse.org/journal/jcsit/1011csit09.pdf
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1707.03718
http://arxiv.org/abs/1707.03718
http://stacks.iop.org/0957-0233/26/i=2/a=025702
http://stacks.iop.org/0957-0233/26/i=2/a=025702
https://doi.org/10.1109/JBHI.2016.2636441
https://doi.org/10.1109/CVPR.2005.332
http://dx.doi.org/10.1109/CVPR.2005.332
https://doi.org/10.1016/j.cviu.2010.10.002
https://doi.org/10.1016/j.cviu.2010.10.002
https://www.sciencedirect.com/science/article/pii/S1077314210002171
https://www.sciencedirect.com/science/article/pii/S1077314210002171
http://arxiv.org/abs/1412.1283
http://arxiv.org/abs/1412.1283
http://arxiv.org/abs/1412.1283
https://pdfs.semanticscholar.org/56f7/0bafc5002ae723d6ee20ce9087f6eff7f81e.pdf
https://pdfs.semanticscholar.org/56f7/0bafc5002ae723d6ee20ce9087f6eff7f81e.pdf
https://doi.org/10.1016/j.patcog.2011.03.005
https://doi.org/10.1016/j.patcog.2011.03.005
https://www.sciencedirect.com/science/article/pii/S0031320311000902
https://www.sciencedirect.com/science/article/pii/S0031320311000902
https://doi.org/10.1109/TPAMI.2012.231
https://doi.org/10.1109/TPAMI.2012.231

48 BIBLIOGRAPHY

TPAMI.2012.231. URL: http://yann.lecun.com/exdb/publis/pdf/
farabet-pami-13.pdf.

Felzenszwalb et al. (2011). “Image Segmentation Using Local Variation and Edge-
Weighted Centroidal Voronoi Tessellations”. In: pp. 3242 –3256. DOI: 10.1109/
TIP.2011.2150237. URL: https://pdfs.semanticscholar.org/5f73/
6c61cd7b3d1019241de0de1bea7e9bae885f.pdf.

Felzenszwalb, Pedro F. et al. (2009). “Object Detection with Discriminatively Trained
Part-Based Models”. In: pp. 1627 –1645. ISSN: 0162-8828. DOI: 10.1109/TPAMI.
2009.167. URL: https://ieeexplore.ieee.org/document/5255236.

Geman, Stuart (1984). “Stochastic relaxation, Gibbs distribution, and Bayesian restora-
tion of images”. In: 721–741. ISSN: 0162-8828. DOI: 10.1109/TPAMI.1984.
4767596. URL: https://www.sciencedirect.com/science/article/
pii/S0031320311000902.

Guo, Yanming et al. (2018). “A review of semantic segmentation using deep neural
networks”. In: International Journal of Multimedia Information Retrieval 7.2, pp. 87–
93. ISSN: 2192-662X. DOI: 10.1007/s13735- 017- 0141- z. URL: https:
//doi.org/10.1007/s13735-017-0141-z.

Hariharan, Bharath et al. (2014a). “Hypercolumns for Object Segmentation and Fine-
grained Localization”. In: CoRR abs/1411.5752. arXiv: 1411.5752. URL: http:
//arxiv.org/abs/1411.5752.

Hariharan, Bharath et al. (2014b). “Simultaneous Detection and Segmentation”. In:
CoRR abs/1407.1808. arXiv: 1407.1808. URL: http://arxiv.org/abs/
1407.1808.

He, Kaiming et al. (2015). “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: CoRR abs/1502.01852. arXiv: 1502.
01852. URL: http://arxiv.org/abs/1502.01852.

He, Ye et al. (2013). “Food image analysis: Segmentation, identification and weight
estimation”. In: ISSN: 1945-7871. DOI: 10.1109/ICME.2013.6607548. URL:
https://ieeexplore.ieee.org/document/6607548.

Krähenbühl, Philipp and Vladlen Koltun (2012). “Efficient Inference in Fully Con-
nected CRFs with Gaussian Edge Potentials”. In: CoRR abs/1210.5644. arXiv:
1210.5644. URL: http://arxiv.org/abs/1210.5644.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet clas-
sification with deep convolutional neural networks”. In: pp. 1097–1105. URL:
https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

LeCun, Y. et al. (1989). “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: CoRR 1, pp. 541 –551. ISSN: 0899-7667. DOI: 10.1162/neco.1989.
1.4.541. URL: https://ieeexplore.ieee.org/document/6795724.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2014). “Fully Convolutional
Networks for Semantic Segmentation”. In: CoRR abs/1411.4038. arXiv: 1411.
4038. URL: http://arxiv.org/abs/1411.4038.

M, Sonka, Hlavac V, and Boyle R (2014). “Image processing, analysis, and machine
vision”. In: DOI: 10.1109/ICME.2013.6607548. URL: https://www.
springer.com/la/book/9780412455704.

Matsuda, Yuji, Hajime Hoashi, and Keiji Yanai (2012). “Recognition of Multiple-
Food Images by Detecting Candidate Regions”. In: 1554–1564. DOI: 10.1109/
ICME.2012.157. URL: https://www.semanticscholar.org/paper/
Recognition-of-Multiple-Food-Images-by-Detecting-Matsuda-
Hoashi/1631058c2423017735db20431cdafadffee6e738?tab=abstract.

https://doi.org/10.1109/TPAMI.2012.231
https://doi.org/10.1109/TPAMI.2012.231
http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf
http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf
https://doi.org/10.1109/TIP.2011.2150237
https://doi.org/10.1109/TIP.2011.2150237
https://pdfs.semanticscholar.org/5f73/6c61cd7b3d1019241de0de1bea7e9bae885f.pdf
https://pdfs.semanticscholar.org/5f73/6c61cd7b3d1019241de0de1bea7e9bae885f.pdf
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://ieeexplore.ieee.org/document/5255236
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://www.sciencedirect.com/science/article/pii/S0031320311000902
https://www.sciencedirect.com/science/article/pii/S0031320311000902
https://doi.org/10.1007/s13735-017-0141-z
https://doi.org/10.1007/s13735-017-0141-z
https://doi.org/10.1007/s13735-017-0141-z
http://arxiv.org/abs/1411.5752
http://arxiv.org/abs/1411.5752
http://arxiv.org/abs/1411.5752
http://arxiv.org/abs/1407.1808
http://arxiv.org/abs/1407.1808
http://arxiv.org/abs/1407.1808
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://doi.org/10.1109/ICME.2013.6607548
https://ieeexplore.ieee.org/document/6607548
http://arxiv.org/abs/1210.5644
http://arxiv.org/abs/1210.5644
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://ieeexplore.ieee.org/document/6795724
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.1109/ICME.2013.6607548
https://www.springer.com/la/book/9780412455704
https://www.springer.com/la/book/9780412455704
https://doi.org/10.1109/ICME.2012.157
https://doi.org/10.1109/ICME.2012.157
https://www.semanticscholar.org/paper/Recognition-of-Multiple-Food-Images-by-Detecting-Matsuda-Hoashi/1631058c2423017735db20431cdafadffee6e738?tab=abstract
https://www.semanticscholar.org/paper/Recognition-of-Multiple-Food-Images-by-Detecting-Matsuda-Hoashi/1631058c2423017735db20431cdafadffee6e738?tab=abstract
https://www.semanticscholar.org/paper/Recognition-of-Multiple-Food-Images-by-Detecting-Matsuda-Hoashi/1631058c2423017735db20431cdafadffee6e738?tab=abstract

BIBLIOGRAPHY 49

Mostajabi, Mohammadreza, Payman Yadollahpour, and Gregory Shakhnarovich (2014).
“Feedforward semantic segmentation with zoom-out features”. In: CoRR abs/1412.0774.
arXiv: 1412.0774. URL: http://arxiv.org/abs/1412.0774.

MW, Khan (2014). “A survey: image segmentation techniques”. In: URL: http://
ijfcc.org/papers/274-B317.pdf.

Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han (2015). “Learning Decon-
volution Network for Semantic Segmentation”. In: CoRR abs/1505.04366. arXiv:
1505.04366. URL: http://arxiv.org/abs/1505.04366.

P, Arbelaez et al. (2010). “Contour Detection and Hierarchical Image Segmentation”.
In: pp. 898 –916. ISSN: 0162-8828. DOI: 10 . 1109 / TPAMI . 2010 . 161. URL:
https://ieeexplore.ieee.org/document/5557884.

P, Yu, Qin AK, and Clausi DA (2011). “Unsupervised Polarimetric SAR Image Seg-
mentation and Classification Using Region Growing With Edge Penalty”. In:
pp. 1302–1317. ISSN: 0196-2892. DOI: 10.1109/TGRS.2011.2164085. URL:
https://ieeexplore.ieee.org/document/6020785.

Paszke, Adam et al. (2016). “ENet: A Deep Neural Network Architecture for Real-
Time Semantic Segmentation”. In: CoRR abs/1606.02147. arXiv: 1606.02147.
URL: http://arxiv.org/abs/1606.02147.

R, Muthukrishnan and Radha M (2011). “Edge detection techniques for image seg-
mentation”. In: URL: http://airccse.org/journal/jcsit/1211csit20.
pdf.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: CoRR abs/1505.04597. arXiv:
1505.04597. URL: http://arxiv.org/abs/1505.04597.

Shi, Jianbo and Jitendra Malik (2000). “Normalized Cuts and Image Segmentation”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 22.8, pp. 888–905. ISSN: 0162-8828. DOI:
10.1109/34.868688. URL: https://doi.org/10.1109/34.868688.

Shimoda, Wataru and Keiji Yanai (2015). “CNN-Based Food Image Segmentation
Without Pixel-Wise Annotation”. In: New Trends in Image Analysis and Processing –
ICIAP 2015 Workshops. Ed. by Vittorio Murino et al. Cham: Springer International
Publishing, pp. 449–457. ISBN: 978-3-319-23222-5.

Simonyan, Karen and Andrew Zisserman (2014). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: CoRR abs/1409.1556. arXiv: 1409.
1556. URL: http://arxiv.org/abs/1409.1556.

SR, Vantaram and Saber E (2012). “Survey of contemporary trends in color image
segmentation”. In: pp. 1302–1317. ISSN: 0196-2892. DOI: 10.1117/1.JEI.21.
4.040901. URL: https://www.spiedigitallibrary.org/journals/
Journal-of-Electronic-Imaging/volume-21/issue-4/040901/
Survey-of-contemporary-trends-in-color-image-segmentation/
10.1117/1.JEI.21.4.040901.full?SSO=1.

T, Zuva et al. (2011). “Image segmentation, available techniques, developments and
open issues”. In: Journal of Signal and Image Processing, pp. 71–75. URL: https://
www.researchgate.net/publication/264854010_Image_Segmentation_
Available_Techniques_Developments_and_Open_Issues.

Thoma, Martin (2016). “A Survey of Semantic Segmentation”. In: CoRR abs/1602.06541.
arXiv: 1602.06541. URL: http://arxiv.org/abs/1602.06541.

Xia, Xide and Brian Kulis (2017). “W-Net: A Deep Model for Fully Unsupervised Im-
age Segmentation”. In: CoRR abs/1711.08506. arXiv: 1711.08506. URL: http:
//arxiv.org/abs/1711.08506.

http://arxiv.org/abs/1412.0774
http://arxiv.org/abs/1412.0774
http://ijfcc.org/papers/274-B317.pdf
http://ijfcc.org/papers/274-B317.pdf
http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1505.04366
https://doi.org/10.1109/TPAMI.2010.161
https://ieeexplore.ieee.org/document/5557884
https://doi.org/10.1109/TGRS.2011.2164085
https://ieeexplore.ieee.org/document/6020785
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1606.02147
http://airccse.org/journal/jcsit/1211csit20.pdf
http://airccse.org/journal/jcsit/1211csit20.pdf
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1117/1.JEI.21.4.040901
https://doi.org/10.1117/1.JEI.21.4.040901
https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-21/issue-4/040901/Survey-of-contemporary-trends-in-color-image-segmentation/10.1117/1.JEI.21.4.040901.full?SSO=1
https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-21/issue-4/040901/Survey-of-contemporary-trends-in-color-image-segmentation/10.1117/1.JEI.21.4.040901.full?SSO=1
https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-21/issue-4/040901/Survey-of-contemporary-trends-in-color-image-segmentation/10.1117/1.JEI.21.4.040901.full?SSO=1
https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-21/issue-4/040901/Survey-of-contemporary-trends-in-color-image-segmentation/10.1117/1.JEI.21.4.040901.full?SSO=1
https://www.researchgate.net/publication/264854010_Image_Segmentation_Available_Techniques_Developments_and_Open_Issues
https://www.researchgate.net/publication/264854010_Image_Segmentation_Available_Techniques_Developments_and_Open_Issues
https://www.researchgate.net/publication/264854010_Image_Segmentation_Available_Techniques_Developments_and_Open_Issues
http://arxiv.org/abs/1602.06541
http://arxiv.org/abs/1602.06541
http://arxiv.org/abs/1711.08506
http://arxiv.org/abs/1711.08506
http://arxiv.org/abs/1711.08506

50 BIBLIOGRAPHY

Zhang, Y., M. Brady, and S. Smith (2001). “Segmentation of brain MR images through
a hidden Markov random field model and the expectation-maximization algo-
rithm”. In: IEEE Transactions on Medical Imaging 20.1, pp. 45 –57. ISSN: 0162-8828.
DOI: 10 . 1109 / 42 . 906424. URL: https : / / ieeexplore . ieee . org /
document/906424.

Zhao, Bo et al. (2017). “A survey on deep learning-based fine-grained object classi-
fication and semantic segmentation”. In: International Journal of Automation and
Computing 14.2, pp. 119–135. ISSN: 1751-8520. DOI: 10.1007/s11633-017-
1053-3. URL: https://doi.org/10.1007/s11633-017-1053-3.

Zheng, Shuai et al. (2015). “Conditional Random Fields as Recurrent Neural Net-
works”. In: CoRR abs/1502.03240. arXiv: 1502.03240. URL: http://arxiv.
org/abs/1502.03240.

https://doi.org/10.1109/42.906424
https://ieeexplore.ieee.org/document/906424
https://ieeexplore.ieee.org/document/906424
https://doi.org/10.1007/s11633-017-1053-3
https://doi.org/10.1007/s11633-017-1053-3
https://doi.org/10.1007/s11633-017-1053-3
http://arxiv.org/abs/1502.03240
http://arxiv.org/abs/1502.03240
http://arxiv.org/abs/1502.03240

	Abstract
	Acknowledgements
	Introduction
	State of the art
	Segmentation
	First approaches, unsupervised segmentation
	Recent advances, supervised segmentation

	Food segmentation
	W-net

	Methodology
	U-net
	Architecture
	U-net performance

	W-net
	Architecture
	W-net performance

	Loss Functions of the Network
	Soft Normalized Cut Loss
	Introduction
	Binary N-cut problem
	N-cut loss for the non binary problem
	Soft N-cut loss
	Technical Optimization for the Soft N-cut loss

	Fast alternatives inspired on clustering
	Centroid loss
	Regularizing the segmentation by Penalizing bad shapes

	Reconstruction Loss

	Post-processing and Coloring

	Validation and Results
	Datasets
	Preprocessing
	Data augmentation

	Implementation details
	Metrics
	Intersection over union
	Visual evaluation

	U-net architecture
	Binary U-net
	Multiclass U-net

	Classical N-cut
	Embedding architecture
	W-net architecture
	W-net 18-64
	W-net 18-32
	W-net 14-64
	W-net 10-64

	Optimizers and Kernel Initializers
	Optimizers
	Kernel Initializers
	He Uniform
	Random Normal

	W-net without Centroid Loss
	3D Visualization of pixel classification of our final model

	Supervised W-net
	Result comparison

	Conclusions
	Limitations and difficulties
	Next steps

	Contribution of each team member
	Bibliography

