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Abstract On the domain of cooperative games with transferable utility, we in-

troduce path monotonicity, a property closely related to fairness (van den Brink,

2001). The principle of fairness states that if a game changes by adding another

game in which two players are symmetric, then their payoffs change by the same

amount. Under efficiency, path monotonicity is a relaxation of fairness that guar-

antees that when the worth of the grand coalition varies, the players’ payoffs

change according to some monotone path. In this paper, together with the stan-

dard properties of projection consistency (Funaki, 1998) and covariance, we show

that path monotonicity characterizes the weighted surplus division solutions. In-

terestingly, replacing projection consistency by either self consistency (Hart and

Mas-Colell, 1989) or max consistency (Davis and Maschler, 1965) we obtain new

axiomatic characterizations of the weighted Shapley values and the prenucleolus,

respectively. Finally, by the duality approach we provide a new axiomatization of

the weighted egalitarian non-separable contribution solutions using complement

consistency (Moulin, 1985).
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1 Introduction

A cooperative game with transferable utility (hereafter game) describes a situation

in which a society or community can profit from joint efforts. It consists of a finite

set of players and a real-valued function defined on the set of coalitions of players.

Assuming that the grand coalition will form, the question is how to allocate the

gains from cooperation among the players. A single-valued solution (or rule) is

a mapping that assigns to each game a feasible payoff vector, being one of the

objectives of the axiomatic method to identify a solution by a set of appealing

properties.

Probably, the most relevant single-valued solution is the Shapley value (Shap-

ley, 1953b) which considers that players should be paid only according to their

marginal contributions to all coalitions. In front of this marginality principle, the

equal surplus division solution (Driessen and Funaki, 1991)1 relies on egalitarian

considerations: it assigns to every player what they can achieve for themselves

alone, and distributes equally what is left of the gains of cooperation. Both so-

lutions satisfy equal treatment of equals. This property states that if two players

have equal contributions to all coalitions, they must receive the same payoff. Nev-

ertheless, in many applications, and because of external features of the players, the

assumption that every player has the same abilities may not be appropriated. The

weighted Shapley values (Shapley, 1953a) and the weighted surplus division solu-

tions (Calleja and Llerena, 2016) take care of this aspect by assigning exogenously

each player to a strictly positive weight, representing such abilities. A different

prominent rule is the prenucleolus (Schmeidler, 1969) that takes specially care of

minimizing complaints of coalitions to a particular allocation.

In this paper, we consider the problem of axiomatizing the weighted surplus

division solution on the domain of all games. Despite the equal surplus division

solution has recently been characterized,2 as far as we know, there is no proper

axiomatic characterization of its non-symmetric generalization. Interestingly, our

results show that, although the definitions of the weighted surplus division solu-

tions, the weighted Shapley values and the prenucleolus differ completely, from an

axiomatic approach the difference can be pointed out to one axiom: consistency,

an outstanding relational property in the axiomatic method.3

Together with projection consistency (Funaki, 1998), Theorem 1 (i) charac-

terizes the family of the weighted surplus division solutions by means of the

well established property of covariance and path monotonicity, a sort of aggregate

monotonicity (Megiddo, 1974) that distributes any variation in the worth of the

grand coalition following a fixed pattern reflecting some exogenous circumstances

or priorities among players that are not captured by the characteristic function of

the game. From a different angle, and under efficiency, path monotonicity can be

1 This solution is also known as the center-of-gravity of the imputation set.
2 See, for instance, van den Brink (2007), Chun and Park (2012), Casajus and Huettner

(2014), Béal at al. (2015), Calleja and Llerena (2016) or van den Brink et al. (2016).
3 See Thomson (2011) and Thomson (2012) for essays on the consistency principle.
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viewed as a relaxation of two equivalent properties (on the full domain of games):

fairness, due to van den Brink (2001) and inspired in the notion of fairness as

introduced in Myerson (1977), and differential marginality (Casajus, 2011). Fair-

ness (marginality) guarantees that if we add a game to another game in which

two players are symmetric then, since their marginal contributions to coalitions

containing neither of them coincide in both games, the players’ payoffs change by

the same amount. Not surprisingly, fairness, together with the standard property

of efficiency, imply path monotonicity. Outstandingly, replacing projection consis-

tency in Theorem 1 (i) by either self consistency (Hart and Mas-Colell, 1989) or by

max consistency (Davis and Maschler, 1965) and considering path monotonicity for

two-person games only, we obtain new axiomatic characterizations of the family

of weighted Shapley values (Theorem 1 (ii)) and the prenucleolus (Theorem 2).

All these characterization results are collected in Section 3.

In Section 4 we observe that substituting path monotonicity in Theorem 1 by

fairness allows to get new axiomatic characterizations of the equal surplus division

solution (Theorem 3 (i)) and the Shapley value (Theorem 3 (ii)). Furthermore, the

notion of duality in coalitional games (see, for instance, Oishi et al., 2016) leads

to a new axiomatic characterization of the egalitarian non-separable contribution

solution (Moulin, 1985) (Theorem 3 (iii)).4 Finally, replacing path monotonicity

by fairness (for two-person games) in Theorem 2, we obtain a new characterization

of the prenucleolus (Theorem 4).

The remainder of the paper is organized as follows. In Section 2 we introduce

some preliminaries on games. In Section 5 we introduce the dual property of path

monotonicity in order to provide, together with complement consistency (Moulin,

1985) and covariance, an axiomatic characterization of the family of weighted

egalitarian non-separable contribution solutions (Theorem 7). We conclude with

some remarks for future research and comparing our results with the character-

izations provided in Sobolev (1975), Hart and Mas-Colell (1989), Orshan (1993)

and Driessen and Funaki (1997). The Appendix contains the independence of the

properties in the characterization results.

2 Preliminaries

The set of natural numbers N denotes the universe of potential players. A coalition

is a non-empty finite subset of N and let N denote the set of all coalitions of N.

Given S, T ∈ N , we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T and

S 6= T . By |S| we denote the cardinality of the coalition S ∈ N . A transferable

utility coalitional game is a pair (N, v) where N ∈ N is the set of players and v :

2N −→ R is the characteristic function that assigns to each coalition S ⊆ N a real

number v(S), representing what S can achieve by agreeing to cooperate, with the

convention that v(∅) = 0. Given a game (N, v), the dual game (N, vd) is defined

4 Previous axiomatic characterizations of the egalitarian non-separable contribution solution

can be found in Moulin (1985), Driessen and Funaki (1997) and Hwang (2006).
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by setting for all S ⊆ N , vd(S) = v(N)− v(N \S). For simplicity of notation, and

if no confusion arises, we write v(i), v(ij), . . . instead of v({i}), v({i, j}), . . .. By Γ

we denote the class of all games.

Given N ∈ N and ∅ 6= N ′ ⊆ N , the unanimity game (N,uN ′) associated to

N ′ is defined as uN ′(S) = 1 if N ′ ⊆ S and uN ′(S) = 0 otherwise. Given a game

(N, v) and ∅ 6= N ′ ⊂ N , the subgame (N ′, v|N ′) is defined as v|N ′(S) = v(S) for

all S ⊆ N ′. For any two games (N, v), (N,w), α ∈ R and d ∈ RN , we define the

game (N, v +w) as (v +w)(S) = v(S) +w(S), the game (N,α · v) as (α · v)(S) =

α · v(S) and the game (N, v + d) as (v + d)(S) = v(S) +
∑
i∈S di, for all S ⊆ N .

The null game (N,0) is defined by 0(S) = 0 for all S ⊆ N .

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,

x = (xi)i∈N , and for all S ⊆ N , x(S) =
∑
i∈S xi, with the convention x(∅) = 0. For

each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT .

Given two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all i ∈ N , while x > y if xi > yi,

for all i ∈ N .

The set of feasible payoff vectors of (N, v) is defined by X∗(N, v) := {x ∈
RN |x(N) ≤ v(N)}, while the preimputation set contains the efficient payoff

vectors, that is, X(N, v) := {x ∈ RN |x(N) = v(N)}.

A solution on a class of games Γ ′ ⊆ Γ is a correspondence σ that associates

with each game (N, v) ∈ Γ ′ a subset σ(N, v) of X∗(N, v). Given a solution σ on

Γ ′ ⊆ Γ such that (N, v), (N, vd) ∈ Γ ′, the dual of σ, denoted by σd, is defined

by setting for all (N, v) ∈ Γ ′, σd(N, v) = σ(N, vd). A solution σ on Γ ′ ⊆ Γ

is said to be single-valued if |σ(N, v)| = 1 for all (N, v) ∈ Γ ′. In this case,

σ(N, v) is treated as the unique element of this singleton set. Notice that a single-

valued solution is always non-empty but not necessarily an efficient allocation.

We say that a single-valued solution σ on Γ ′ ⊆ Γ satisfies efficiency (E) if all

the gains from cooperation are shared among the players, that is, for all N ∈ N
and all (N, v) ∈ Γ ′, it holds

∑
i∈N σi(N, v) = v(N). Apart from efficiency, a

classical invariant requirement w.r.t. changes in scale that are comparable with

positive affine transformations is covariance. A single-valued solution σ on Γ ′ ⊆ Γ
satisfies covariance (CO) if for all N ∈ N , all (N, v) ∈ Γ ′, all α > 0 and

all d ∈ RN , if (N,α · v + d) ∈ Γ ′ then σ(N,α · v + d) = α · σ(N, v) + d. Two

players i and j are symmetric in a game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \{i, j}. A single-valued solution σ on Γ ′ ⊆ Γ satisfies equal treatment of

equals (ETE) if for all N ∈ N , all (N, v) ∈ Γ ′ and all symmetric players i, j ∈ N ,

then σi(N, v) = σj(N, v).

On the dual of games Γ ′ ⊆ Γ that is closed under the duality operator, two

properties are dual to each other if whenever a solution σ satisfies one of them,

the dual solution σd satisfies the other. A property is self dual if it is dual to

itself. It is not difficult to check that efficiency, covariance and equal treatment of

equals are self dual.

For our purposes, we introduce some well-known efficient single-valued solu-

tions defined on Γ . Let N ∈ N and (N, v) ∈ Γ . The Shapley value, Sh, is defined
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by

Shi(N, v) :=
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) for all i ∈ N.

Let αT =
∑
S⊆T (−1)|T |−|S|v(S) for all ∅ 6= T ⊆ N . Then, we can express the game

(N, v) by a linear combination of the unanimity games as v =
∑
∅6=T⊆N αTuT . The

weighted Shapley value relative to a list of positive weights w = (wi)i∈N ∈ RN
++,

Shw, is defined by

Shw(N, v) :=
∑
∅6=T⊆N

αT · Shw(N,uT ),

where

Shwi (N,uT ) :=

{
wi∑
j∈T wj

if i ∈ T
0 if i ∈ N\T

.

Notice that when wi = wj for all i, j ∈ N, then Shw(N, v) = Sh(N, v).

Let N ∈ N and (N, v) ∈ Γ . The equal surplus division solution, ES, is

defined by

ESi(N, v) := v(i) +
1

|N |

v(N)−
∑
j∈N

v(j)

 for all i ∈ N.

The weighted surplus division solution relative to a list of positive weights

w = (wi)i∈N ∈ RN
++, ESw, is defined by

ESwi (N, v) := v(i) +
wi∑
j∈N wj

v(N)−
∑
j∈N

v(j)

 for all i ∈ N.

Given a list of positive weights w, ESw can be interpreted as a two-stage rule:

after assigning to every player what they can achieve for themselves alone, it

distributes what is left of the gains of cooperation proportionally according to w,

representing some exogenous abilities or bargaining power of the players. Notice

that when wi = wj for all i, j ∈ N, then ESw(N, v) = ES(N, v).

The dual solutions of ES and ESw are, respectively, the egalitarian non-

separable contribution solution, ENSC, and the weighted egalitarian non-

separable contribution solution, ENSCw. Let N ∈ N and (N, v) ∈ Γ . The

ENSC is defined by setting, for all i ∈ N ,

ENSCi(N, v) := Mi(v) +
1

|N |

v(N)−
∑
j∈N

Mj(v)

 ,

where Mj(v) = v(N) − v(N \ {j}), for all j ∈ N . The ENSCw relative a list of

positive weights w = (wi)i∈N ∈ RN
++ is given, for all i ∈ N , by

ENSCwi (N, v) := Mi(v) +
wi∑
j∈N wj

v(N)−
∑
j∈N

Mj(v)

 .



6 Pedro Calleja, Francesc Llerena

Let N ∈ N and (N, v) ∈ Γ . With any preimputation x ∈ X(N, v) we associate

the vector of all excesses e(S, x) = v(S) − x(S), ∅ 6= S ⊂ N , the components of

which are non-increasingly ordered. The prenucleolus, ν∗, is the preimputation

that minimizes with respect to the lexicographic order5 the vector of excesses over

the set of preimputations.

For the two-agent case, the weighted standard solution relative to a list

of positive weights w = (wi)i∈N ∈ RN
++, STw, is defined as follows: for all N =

{i, j} ∈ N and all (N, v) ∈ Γ ,

STwi (N, v) := v(i) +
wi

wi + wj
(v(N)− v(i)− v(j)) ,

STwj (N, v) := v(j) +
wj

wi + wj
(v(N)− v(i)− v(j)) .

Many solutions in the literature coincide with the standard solution that

show up when all the players have the same weight.

Given a list of positive weights w ∈ RN
++, we say that a single-valued solution

σ on Γ ′ ⊆ Γ satisfies w−proportionality (w−P) if for all N = {i, j} ∈ N and

all (N, v) ∈ Γ ′, it holds σ(N, v) = STw(N, v). If all weights are identical, we say

that σ satisfies standardness (ST).

3 Consistency and path monotonicity

The main concern of this section is to characterize the weighted surplus division

solution by means of consistency together with monotonicity and covariance. Inter-

estingly, our characterization result shows that, from an axiomatic point of view,

the consistency principle distinguishes the weighted surplus division solution, the

weighted Shapley value and the prenucleolus.

Consistency is a sort of internal stability requirement that relates the solution of

a game to the solution of a reduced game that results when some agents leave. The

different ways in which the agents that remain evaluate the possible coalitions give

rise to different notions of reduced game. Here we deal with four ways of reducing

a game: the self reduced game (Hart and Mas-Colell, 1989), the projection

reduced game (Funaki, 1998), the complement reduced game (Moulin, 1985)

and the max reduced game (Davis and Maschler, 1965). The terminology is

taken from Thomson (2003).

Definition 1 Let σ be a single-valued solution, N ∈ N , (N, v) ∈ Γ , and ∅ 6=
N ′ ⊂ N . The self reduced game relative to N ′ at σ is the game

(
N ′, rN

′

S,σ(v)
)

defined by

rN
′

S,σ(v)(R) :=


0 if R = ∅,
v(R ∪N \N ′)−

∑
i∈N\N ′

σi(R ∪N \N ′, v|R∪N\N ′ ) if ∅ 6= R ⊆ N ′.

5 Given two vectors x, y ∈ RN , we say that x ≤lex y if either x = y, or x1 < y1 or there

exists k ∈ {2, . . . , |N |} such that xi = yi for all 1 ≤ i ≤ k − 1 and xk < yk.
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Definition 2 Let N ∈ N , (N, v) ∈ Γ , x ∈ RN and ∅ 6= N ′ ⊂ N. The projection

reduced game relative to N ′ at x is the game
(
N ′, rN

′

P,x(v)
)

defined by

rN
′

P,x(v)(R) :=

{
v(R) if R ⊂ N ′,
v(N)− x(N \N ′) if R = N ′.

Definition 3 Let N ∈ N , (N, v) ∈ Γ , x ∈ RN and ∅ 6= N ′ ⊂ N. The com-

plement reduced game relative to N ′ at x is the game
(
N ′, rN

′

C,x(v)
)

defined

by

rN
′

C,x(v)(R) :=

{
0 if R = ∅,
v(R ∪N \N ′)− x(N \N ′) if ∅ 6= R ⊆ N ′.

Definition 4 Let N ∈ N , (N, v) ∈ Γ , x ∈ RN and ∅ 6= N ′ ⊂ N . The max

reduced game relative to N ′ at x is the game
(
N ′, rN

′

M,x(v)
)

defined by

rN
′

M,x(v)(R) :=


0 if R = ∅,

max
Q⊆N\N ′

{v(R ∪Q)− x(Q)} if ∅ 6= R ⊂ N ′,

v(N)− x(N \N ′) if R = N ′.

In the self reduced game (relative to N ′ at σ), the worth of a coalition R ⊆ N ′

is determined under the assumption that R joins all members of N \N ′, provided

they are paid according to σ in the subgame associated to R ∪ (N \ N ′). In the

projection reduced game (relative to N ′ at x), when players in N \ N ′ leave the

game, for a proper subcoalition R ⊂ N ′ cooperation is no longer possible with

them. By contrast, in the complement reduced game (relative to N ′ at x) each

coalition R ⊆ N ′ is required to join all the members of N \N ′, provided that they

are paid according to x. Finally, in the max reduced game (relative to N ′ at x),

the worth of a coalition R ⊂ N ′ is determined under the assumption that R can

choose the best partners in N \N ′, provided that they are paid according to x.

The following notions of consistency rely on the above definitions of reduced

game.

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

– Self consistency (SC): if for all N ∈ N , all (N, v) ∈ Γ ′, all ∅ 6= N ′ ⊂ N and

x = σ(N, v), then
(
N ′, rN

′

S,σ(v)
)
∈ Γ ′ and x|N ′ = σ

(
N ′, rN

′

S,σ(v)
)
.

– Projection consistency (PC): if for all N ∈ N , all (N, v) ∈ Γ ′, all ∅ 6= N ′ ⊂
N and x = σ(N, v), then

(
N ′, rN

′

P,x(v)
)
∈ Γ ′ and x|N ′ = σ

(
N ′, rN

′

P,x(v)
)
.

– Complement consistency (CC): if for all N ∈ N , all (N, v) ∈ Γ ′, all ∅ 6=
N ′ ⊂ N and x = σ(N, v), then

(
N ′, rN

′

C,x(v)
)
∈ Γ ′ and x|N ′ = σ

(
N ′, rN

′

C,x(v)
)
.

– Max consistency (MC): if for all N ∈ N , all (N, v) ∈ Γ ′, all ∅ 6= N ′ ⊂ N,

and x = σ(N, v), then
(
N ′, rN

′

M,x(v)
)
∈ Γ ′ and x|N ′ = σ

(
N ′, rN

′

M,x(v)
)
.

The consistency principle states that in the corresponding reduced game the

original agreement should be confirmed. Funaki (1998) shows that projection con-

sistency and complement consistency are dual properties.
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The next result links consistency with covariance (for two-person games) and

efficiency.

Proposition 1 Let σ be a single-valued solution on Γ that satisfies either pro-

jection consistency, complement consistency, self consistency or max consistency

and, for two-person games, covariance. Then, σ satisfies efficiency.

Proof Let σ be a single-valued solution on Γ that satisfies CO for two-person

games and PC. Let ({i, j},0) be the null game. Then, by CO (for two-person

games) we have σ({i, j},0) = σ({i, j}, 2 · 0) = 2 · σ({i, j},0) and, consequently,

σ({i, j},0) = (0, 0). Let ({i, j}, v) be a game such that v(ij) = v(i) + v(j). Then,

by CO (for two-person games) we have

σ({i, j}, v) = σ({i, j}, 1 ·0+(v(i), v(j)) = 1 ·σ({i, j},0)+(v(i), v(j)) = (v(i), v(j)).

(1)

Now, let ({i}, v) be a one-person game and, for some j ∈ N\{i}, consider the

game ({i, j}, v′) defined by v′(i) = v′(ij) = v(i) and v′(j) = 0. Since v′(ij) =

v′(i) + v′(j), from (1) it comes that σi({i, j}, v′) = v(i) and σj({i, j}, v′) = 0. It

is easy to check that ({i}, v) =
(
{i}, r{i}P,x(v′)

)
being x = σ({i, j}, v′). By PC,

σ({i}, v) = v(i) which implies efficiency for one-person games. Let N ∈ N with

|N | ≥ 2, (N, v) ∈ Γ and i ∈ N . Then, efficiency for one-person games implies

σi
(
{i}, r{i}P,x(v)

)
= r
{i}
P,x(v)(i) = v(N)−

∑
j∈N\{i} σj(N, v), where x = σ(N, v). By

PC, σi(N, v) = σi
(
{i}, r{i}P,x(v)

)
and thus σi(N, v) = v(N)−

∑
j∈N\{i} σj(N, v),

which proves E.

The same arguments hold replacing PC by either CC, SC or MC. ut
Several notions of monotonicity have played a role in characterizing solutions

on different frameworks.6 In this section, we introduce a variant of aggregate mono-

tonicity (Megiddo, 1974), which states that nobody is worse off whenever the worth

of the grand coalition increases, while the worth of every other coalition remains

unchanged. By imposing some regularity in the way players share the extra profits

(loses) if only the worth of the grand coalition increases (decreases), we introduce

path monotonicity.

Definition 5 A monotone path is a function f : N × R →
⋃
N∈N RN satisfying

the following conditions: for all N ∈ N and all t ∈ R,

1. f(N, 0) = (0, . . . , 0) ∈ RN ,

2. f(N, t) ∈ RN and
∑
i∈N fi(N, t) = t,

3. if t′ ∈ R is such that t′ > t, then fi(N, t
′) > fi(N, t) for all i ∈ N .

Notice that a monotone path assigns positive (negative) vectors to positive (neg-

ative) real numbers. Let Fmon denote the class of monotone paths.

A monotone path f specifies a complete list of monotonic agreements. We

assume that whenever a set of players N ∈ N reaches an agreement (which can be

6 See, for instance, Kalai and Smorodinsky (1975), Kalai (1977), Kalai and Samet (1985),

Young (1985) or Thomson (1987).



Axiomatizations of the weighted surplus division solution 9

different for different sets) on how to distribute monotonically an amount t ∈ R,

representing the difference of the worth of the grand coalitions between two games,

they will respect this agreement by following the same principle, regardless of the

games they eventually play.

The family Fmon is very rich. Possibly, the simplest monotone path is to con-

sider that all players should be treated equally: for all N ∈ N , all t ∈ R and all

i ∈ N ,

f̄i(N, t) =
t

|N | . (2)

However, path monotonicity allows for treating players differently to reflect some

individual abilities or exogenous circumstances among them (like income or health

status) that are not captured by the mathematical description of the game. For

instance, given a list of exogenous weights w ∈ RN
++, define, for all N ∈ N , all

t ∈ R and all i ∈ N ,

fwi (N, t) =
wi∑
j∈N wj

· t. (3)

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

– Path monotonicity (P-MO): if there exists a monotone path f ∈ Fmon
such that, for all N ∈ N and all (N, v), (N, v′) ∈ Γ ′ with v(S) = v′(S) for all

S ⊂ N , it holds σ(N, v′)− σ(N, v) = f(N, v′(N)− v(N)).

Obviously, path monotonicity implies aggregate monotonicity, but the next ex-

ample shows that the reverse implication is not true.

Example 1 Define the single-valued solution ρ by setting, for all N ∈ N , all

(N, v) ∈ Γ and all i ∈ N ,

ρi(v) := v(i) +
|{j ∈ N | v(i) ≥ v(j)}|∑

k∈N

|{j ∈ N | v(k) ≥ v(j)}|
·

v(N)−
∑
j∈N

v(j)

 .

Clearly, ρ satisfies aggregate monotonicity. Assume that ρ also satisfies path mono-

tonicity w.r.t. f ∈ Fmon, and consider two games (N, v1) and (N, v2) with player

set N = {1, 2} and characteristic functions: v1(1) = v2(2) = 1, v1(2) = v2(1) = 0

and v1(N) = v2(N) = 2. Now define the associated games (N, (v1)′) and (N, (v2)′)

by (v1)′ = v1−uN and (v2)′ = v2−uN , respectively. Notice that, (a) ρ1(N, v1) =
5
3 , ρ1(N, (v1)′) = 1 and (b) ρ1(N, v2) = 1

3 , ρ1(N, (v2)′) = 0. Then, from (a),

f1(N, 1) = 2
3 and, from (b), f1(N, 1) = 1

3 , resulting in a contradiction. Hence, ρ is

not path monotonic.

The Shapley value, the equal surplus division solution and the egalitarian non-

separable contribution solution satisfy path monotonicity (w.r.t. f̄). For any list

of positive weights w ∈ RN
++, the weighted Shapley value and the weighted sur-

plus division solution also meet path monotonicity (w.r.t. fw). However, not all

weighted egalitarian non-separable contribution solution satisfies aggregate mono-

tonicity, and so path monotonicity. Let us provide an example to check this point.
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Example 2 Consider two games (N, v) and (N, v′) with set of players N = {1, 2, 3}
and characteristic functions as follow: v(S) = v′(S) for all S ⊂ N , v(i) = 0 for all

i ∈ N , v(12) = v(13) = 1, v(23) = 0, v(N) = 1 and v′(N) = 2. Let w ∈ RN
++ be

a list of positive weights such that w1 = 3 and w2 = w3 = 1. A routine calculus

shows that ENSCw(v) = (1, 0, 0) and ENSCw(v′) =
(
4
5 ,

3
5 ,

3
5

)
. Hence, ENSCw

is not aggregate monotonic (and neither path monotonic).

Notice that, since ESw and ENSCw are dual to each other and ESw satisfies

path monotonicity, from Example 2 we may conclude that path monotonicity is

not self dual.

The next remark highlights that path monotonicity yields some structure on

the associated monotonic function f ∈ Fmon.

Remark 1 Interestingly, if σ is a single-valued solution on Γ satisfying path mono-

tonicity w.r.t f ∈ Fmon, then f is additive. That is, for all N ∈ N and all t, t′ ∈ R,

f(N, t + t′) = f(N, t) + f(N, t′). To show it, consider three games (N, v), (N, v′)

and (N, v′′) such that v(S) = v′(S) = v′′(S) for all S ⊂ N , v(N)− v′(N) = t and

v′(N)− v′′(N) = t′. By path monotonicity, we have

f(N, t+ t′) = f(N, v(N)− v′′(N)) = σ(N, v)− σ(N, v′′)

= σ(N, v)− σ(N, v′) + σ(N, v′)− σ(N, v′′)

= f(N, v(N)− v′(N)) + f(N, v′(N)− v′′(N))

= f(N, t) + f(N, t′).

Moreover, if an additive function g : R → R is monotonic, then there exists a

constant k ∈ R such that g(x) = k · x for all x ∈ R (see, for instance, Theorem 2.1

in Jung, 2011). Hence, there exist k1, . . . , kn ∈ R such that, for all N ∈ N and all

α, t ∈ R, f(N,α · t) = (k1 · α · t, . . . , kn · α · t) = α · (k1 · t, . . . , kn · t) = α · f(N, t).

Consequently, f ∈ Fmon is homogeneous.

The next two lemmas are important to prove an intermediate result showing

that imposing, for two-person games, covariance and path monotonicity, consis-

tency enables us to generate endogenously a collection of positive weights.

Lemma 1 Let σ be a single-valued solution on Γ that satisfies, for two-person

games, covariance and path monotonicity. Then, for all {i, j} ∈ N it holds

(i) σ({i, j}, u{i,j}) > (0, 0).

(ii) σ({i, j}, u{i,j}) = −σ({i, j},−u{i,j}).

Proof Let σ be a single-valued solution on Γ that satisfies CO and P-MO for two-

person games. Let N = {i, j} and consider the associated unanimity game (N,uN ).

By P-MO (for two-person games), there exists a monotone path f ∈ Fmon such

that σ(N,uN ) = σ(N,0) + f(N, 1). Similarly, σ(N,−uN ) = σ(N,0) + f(N,−1).

By CO (for two-person games), σ(N,0) = (0, 0) (see expression (1) in Proposition

1) and thus σ(N,uN ) = f(N, 1) and σ(N,−uN ) = f(N,−1). Hence, σ(N,uN ) >

(0, 0) which proves (i). Moreover, since f is homogeneous (see Remark 1) we have

σ(N,uN ) + σ(N,−uN ) = f(N, 1) + f(N,−1) = (0, 0), which proves (ii). ut



Axiomatizations of the weighted surplus division solution 11

Lemma 2 Let σ be a single-valued solution on Γ that satisfies, for two-person

games, covariance and path monotonicity. Let N ∈ N with |N | = 3. Then, for all

k, s ∈ N ,

(i) if σ satisfies either projection consistency or self consistency, it holds

σk(N,uN )

σs(N,uN )
=
σk
(
{k, s}, u{k,s}

)
σs
(
{k, s}, u{k,s}

) . (4)

(ii) if σ satisfies max consistency, it holds

σk(N,uN )− r{k,s}M,x (uN )(k)

σs(N,uN )− r{k,s}M,x (uN )(s)
=
σk
(
{k, s}, u{k,s}

)
σs
(
{k, s}, u{k,s}

) , (5)

where x = σ(N,uN ).

Proof Let σ be a single-valued solution on Γ that satisfies, for two-person games,

CO and P-MO.

(i) If σ satisfies PC, let N ∈ N with |N | = 3 and denote x = σ (N,uN ).

For all pairs of agents k, s ∈ N , by PC it holds that

σ|{k,s}(N,uN ) = σ
(
{k, s}, r{k,s}P,x (uN )

)
.

Let α = r
{k,s}
P,x (uN )(ks). By the definition of projection reduced game,

r
{k,s}
P,x (uN ) = α · u{k,s}.

If α > 0, by CO (for two-person games) it follows

σ
(
{k, s}, r{k,s}P,x (uN )

)
= α · σ

(
{k, s}, u{k,s}

)
.

If α = 0, as in the proof of Proposition 1 we have

σ
(
{k, s}, r{k,s}P,x (uN )

)
= (0, 0).

If α < 0, notice first that α · u{k,s} = −α ·
(
−u{k,s}

)
. Then,

σ
(
{k, s}, r{k,s}P,x (uN )

)
= σ

(
{k, s},−α ·

(
−u{k,s}

))
= −α · σ

(
{k, s},−u{k,s}

)
= α · σ

(
{k, s}, u{k,s}

)
,

where the second equality holds by CO (for two-person games) and the last

one by Lemma 1 (ii). Thus,

σ|{k,s}(N,uN ) = σ
(
{k, s}, r{k,s}P,x (uN )

)
=
(
r
{k,s}
P,x (uN )(ks)

)
· σ
(
{k, s}, u{k,s}

)
.

(6)

By Lemma 1 (i), σ
(
{k, s}, u{k,s}

)
> (0, 0), which implies that σk(N,uN )

and σs(N,uN ) have the same sign. By Proposition 1, σ satisfies E, then∑
i∈N σi (N,uN ) = 1 and thus σi (N,uN ) > 0 for all i ∈ N . Finally, from

(6) it follows (4).

The same arguments hold replacing PC by SC.
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(ii) If σ satisfies MC, let N ∈ N with |N | = 3 and denote x = σ (N,uN ).

For all pairs of agents k, s ∈ N , by MC it holds that

σ|{k,s}(N,uN ) = σ
(
{k, s}, r{k,s}M,x (uN )

)
.

Let α = r
{k,s}
M,x (uN )(ks) − r{k,s}M,x (uN )(k) − r{k,s}M,x (uN )(s). By the definition of

max reduced game,

r
{k,s}
M,x (uN ) = α · u{k,s} +

(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
.

If α > 0, by CO (for two-person games) it follows

σ
(
{k, s}, r{k,s}M,x (uN )

)
= α ·σ

(
{k, s}, u{k,s}

)
+
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
.

If α = 0, as in the proof of Proposition 1 we have

σ
(
{k, s}, r{k,s}M,x (uN )

)
=
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
.

If α < 0, notice first that α · u{k,s} = −α ·
(
−u{k,s}

)
. Then,

σ
(
{k, s}, r{k,s}M,x (uN )

)
= σ

(
{k, s},−α ·

(
−u{k,s}

)
+
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

))
= −α · σ

(
{k, s},−u{k,s}

)
+
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
= α · σ

(
{k, s}, u{k,s}

)
+
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
,

where the second equality holds by CO (for two-person games) and the last

one by Lemma 1 (ii). Thus,

σ|{k,s}(N,uN ) = σ
(
{k, s}, r{k,s}M,x (uN )

)
=
(
r
{k,s}
M,x (uN )(ks)− r{k,s}M,x (uN )(k)− r{k,s}M,x (uN )(s)

)
· σ
(
{k, s}, u{k,s}

)
+
(
r
{k,s}
M,x (uN )(k), r

{k,s}
M,x (uN )(s)

)
.

(7)

By Lemma 1 (i), σ
(
{k, s}, u{k,s}

)
> (0, 0), which implies

Sign
(
σk(N,uN )− r{k,s}M,x (uN )(k)

)
= Sign

(
σs(N,uN )− r{k,s}M,x (uN )(s)

)
.

(8)

We claim that

σk(N,uN )− r{k,s}M,x (uN )(k) 6= 0. (9)

Suppose, on the contrary, σk(N,uN ) − r{k,s}M,x (uN )(k) = 0. Then, by equality

(8), σs(N,uN )− r{k,s}M,x (uN )(s) = 0. Consequently,

σk(N,uN ) = r
{k,s}
M,x (uN )(k) = max{0, 0− σl (N,uN )} ≥ 0,

σs(N,uN ) = r
{k,s}
M,x (uN )(s) = max{0, 0− σl (N,uN )} ≥ 0,

(10)

being l ∈ N \ {k, s}. Thus,

σk(N,uN ) = σs(N,uN ) ≥ 0. (11)
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Now consider the max reduced game
(
{k, l}, r{k,l}M,x (uN )

)
relative to {k, l} at

x = σ (N,uN ). From (11) it follows that

r
{k,l}
M,x (uN )(k) = r

{k,l}
M,x (uN )(l) = 0 and r

{k,l}
M,x (uN )(kl) = 1− σs (N,uN ) .

By MC and, for two-person games, P-MO and CO (from which it follows

expression (1) in the proof of Proposition 1), there is a monotone path f ∈
Fmon such that

σ|{k,l}(N,uN ) = σ
(
{k, l}, r{k,l}M,x (uN )

)
= σ ({k, l},0) + f ({k, l}, 1− σs (N,uN ))

= f ({k, l}, 1− σs (N,uN )) .

(12)

Since f ∈ Fmon and, by (11), σk(N,uN ) ≥ 0, we have 1 − σs (N,uN ) ≥ 0.

Consequently, σl(N,uN ) = fl ({k, l}, 1− σs (N,uN )) ≥ 0. By expression (10),

this means that σk(N,uN ) = σs(N,uN ) = 0 and by E (see Proposition 1),

σl(N,uN ) = 1. Then, σl(N,uN )− r{k,l}M,x (uN )(l) = 1− 0 = 1. Since expression

(8) holds for any pair of agents, we have σk(N,uN ) − r{k,l}M,x (uN )(k) > 0, in

contradiction with σk(N,uN ) = 0. This proves the claim, that is, inequality

(9). But then, from (7) it follows (5). ut

Next, we connect consistency, covariance and path monotonicity with w−pro-

portionality.

Proposition 2 Let σ be a single-valued solution on Γ that satisfies either projec-

tion consistency, self consistency or max consistency and, for two-person games,

covariance and path monotonicity. Then, σ satisfies w-proportionality.

Proof Let σ be a single-valued solution on Γ that satisfies PC and, for two-person

games, CO and P-MO. By Proposition 1, σ satisfies E. Next we see that σ satisfies

w−P w.r.t. the following collection of weights: fix a player l ∈ N and define

wk =


1 if k = l

σk({k, l}, u{k,l})
σl({k, l}, u{k,l})

otherwise

By Lemma 1 (i), w is well defined.

Let (N, v) be a game. If N = {i}, by E we have σ({i}, v) = v(i) + wi
wi

(v(i) −
v(i)) = ESw({i}, v). If |N | = 2 we distinguish two cases:

1. Case 1: N = {l, i}.
Let us denote α = v(N)− v(l)− v(i).

If α = 0, then by CO (for two-person games) (see expression (1) in the proof

of Proposition 1) we have σ(N, v) = (v(l), v(i)) = STw(N, v).
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If α > 0, then for all k ∈ N , we have

σk(N, v) = σk(N,α · uN + (v(l), v(i)))

= α · σk (N,uN ) + v(k)

= α · σk (N,uN )

σl (N,uN ) + σi (N,uN )
+ v(k)

= α ·
σk(N,uN )
σl(N,uN )

1 + σi(N,uN )
σl(N,uN )

+ v(k)

= α · wk
wl + wi

+ v(k)

= STwk (N, v)

where the second and the third equalities follow by CO (for two-person games)

and E, respectively.

If α < 0, notice first that v = −α · (−uN )+(v(l), v(i)). By CO (for two-person

games) and Lemma 1 (ii), σ(N, v) = α ·σ (N,uN )+(v(l), v(i)). Now, following

the reasoning above we obtain σk(N, v) = STwk (N, v), for all k ∈ N .

2. Case 2: N = {i, j} and l /∈ N .

By the definition of w, Lemma 2 (i) and E, it follows that

wi
wi + wj

=
1

1 +
wj
wi

=
1

1 +
σj({j,l},u{j,l})
σl({j,l},u{j,l})

· σl({i,l},u{i,l})
σi({i,l},u{i,l})

=
1

1 +
σj({i,j,l},u{i,j,l})
σl({i,j,l},u{i,j,l})

· σl({i,j,l},u{i,j,l})
σi({i,j,l},u{i,j,l})

=
1

1 +
σj({i,j,l},u{i,j,l})
σi({i,j,l},u{i,j,l})

=
1

1 +
σj({i,j},u{i,j})
σi({i,j},u{i,j})

=
σi
(
{i, j}, u{i,j}

)
σi
(
{i, j}, u{i,j}

)
+ σj

(
{i, j}, u{i,j}

)
= σi

(
{i, j}, u{i,j}

)
.

(13)

Similarly,
wj

wi + wj
= σj({i, j}, u{i,j}). (14)

Let us denote α = v(N)− v(i)− v(j).

If α > 0, then CO (for two-person games) together with (13) imply

σi(N, v) = σi(N,α · uN + (v(i), v(j)))

= α · σi(N,uN ) + v(i)

= α · wi
wi + wj

+ v(i)

= STwi (N, v).
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In a similar way, CO (for two-person games) together with (14) imply

σj(N, v) = STwj (N, v).

If α ≤ 0, the reasoning used in Case 1 applies in this case. Consequently, σ

satisfies w−P.

The same arguments hold replacing PC by SC or PC by MC and taking into

account Lemma 2 (ii). ut
From Proposition 2 it turns out that the weighted surplus division solution and

the family of weighted Shapley values can be compared by means of consistency

together with covariance and path monotonicity.

Theorem 1 Let σ be a single-valued solution on Γ that satisfies covariance and

path monotonicity. Then,

(i) σ satisfies projection consistency if and only if there exists a list of positive

weights w ∈ RN
++ such that σ = ESw.

(ii) σ satisfies self consistency if and only if there exists a list of positive weights

w ∈ RN
++ such that σ = Shw.

Proof

(i) Let w ∈ RN
++ be a list of positive weights. Clearly, ESw satisfies CO and P-

MO (w.r.t. the monotone path fw as defined in (3)). Moreover, Calleja and

Llerena (2016) show that it also satisfies PC.

To prove uniqueness, suppose there is a single-valued solution σ on Γ satisfying

these three properties. By Propositions 1 and 2, σ satisfies E and w−P (w.r.t

a list of positive weights w ∈ RN
++). Let (N, v) be a game. If |N | = 1, by E we

have σ(N, v) = ESw(N, v). If |N | = 2, by w−P we have σ(N, v) = ESw(N, v).

Finally, if |N | ≥ 3, fix i ∈ N and take an arbitrary j ∈ N\{i}. Let N ′ =

{i, j} ⊂ N , then,

σi(N, v) = σi
(
N ′, rN

′

P,x(v)
)

= v(i) +
wi

wi + wj

(
rN

′

P,x(v)(N ′)− v(i)− v(j)
)

= v(i) +
wi

wi + wj
(σi(N, v) + σj(N, v)− v(i)− v(j)) ,

where the first equality follows by PC, the second one by w−P and the def-

inition of projection reduced game, and the last one by E. Reordering terms,

we obtain

σi(N, v)

(
1− wi

wi + wj

)
= v(i) +

wi
wi + wj

(σj(N, v)− v(i)− v(j))

= v(i)

(
1− wi

wi + wj

)
+

wi
wi + wj

(σj(N, v)− v(j)) ,

or, equivalently,

(σi(N, v)− v(i))wj = (σj(N, v)− v(j))wi.
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Notice that this equality holds for all j ∈ N\{i}. Adding up,

(σi(N, v)− v(i))
∑

j∈N\{i}

wj = wi
∑

j∈N\{i}

(σj(N, v)− v(j)) ,

and summing up (σi(N, v)− v(i))wi to both sides of the equality we obtain,

(σi(N, v)− v(i))
∑
j∈N

wj = wi
∑
j∈N

(σj(N, v)− v(j))

= wi

v(N)−
∑
j∈N

v(j)

 ,

where the last equality follows from E. Hence,

σi(N, v) = v(i) +
wi∑
j∈N wj

(
v(N)−

∑
i∈N

v(i)

)
= ESwi (N, v).

(ii) Let w ∈ RN
++ be a list of positive weights. It is well known that Shw satisfies SC

and CO. In addition, it also satisfies P-MO (w.r.t. the monotone path fw as

defined in (3)). Uniqueness comes from Hart and Mas-Colell (1989) (Theorem

C) taking into account that P-MO implies monotonicity (by condition (3) in

Definition 5) and CO together with SC imply E (by Proposition 1).7 ut

It is well known that the prenucleolus does not satisfy aggregate monotonic-

ity8 (and thus path monotonicity). However, imposing this property for two-person

games only, we obtain a new characterization of the prenucleolus using max con-

sistency.

Theorem 2 The prenucleolus is the unique single-valued solution on Γ that sat-

isfies max consistency, covariance and, for two-person games, path monotonicity.

Proof It is well-known that ν∗ satisfies MC, CO and ST, which implies P-MO

(w.r.t. the monotone path f̄ as defined in (2)) for two-person games.

To prove uniqueness, suppose there is a single-valued solution σ on Γ satisfying

these three properties. By propositions 1 and 2, σ satisfies E and w−P. From

Hokari (2005) (Proposition 1), E, w−P and MC jointly imply ST. Finally, since

MC and ST imply ETE, by Orshan (1993) (Theorem 3.2) it follows that σ

coincides with ν∗. ut

Remark 2 The characterizations (and the independence of the properties) stated

in Theorem 1 hold if we impose path monotonicity and covariance for two-person

games only. Thus, Theorem 1 and Theorem 2 allow for a comparison of the family

of weighted Shapley values, the family of weighted surplus division solutions and

7 In Hart and Mas-Colell (1989) monotonicity means that everybody is strictly better off

whenever the worth of the grand coalition increases and the worth of every other coalition

remains unchanged. Notice that monotonicity is a strong version of aggregate monotonicity

and weaker that path monotonicity.
8 See, for instance, Hokari (2000).
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the prenucleolus by means of consistency. Notice that, although with projection

consistency or self consistency together with covariance and path monotonicity

(for two-person games) a large family of solutions is characterized, when working

with max consistency we obtain only the prenucleolus (not the family of weighted

prenucleoli).9 The key result is provided by Hokari (2005), who shows that ef-

ficiency, w-proportionality and max consistency enforce indeed standardness and

thus equal treatment of equals.

Formally, axiomatizations that require some properties for two-person games

only are more compelling than those that impose the properties meet for games

with an arbitrary number of players. However, axiomatizations that do not force

any initial condition for two-person games reflect more accurately the normative

behaviour of the solutions. In fact, sometimes we get impossibility results when the

properties are required over the full domain of games (see Theorem 5 in Section

4).

4 Consistency and fairness

By using fairness, a property due to van den Brink (2001) and related to fairness

as introduced by Myerson (1977), instead of path monotonicity, we obtain a new

axiomatic comparison of the Shapley value, the equal surplus division solution,

the egalitarian non-separable contribution solution and the prenucleolus.

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

– Fairness (F): if for all (N, v), (N, v′) ∈ Γ ′ with (N, v + v′) ∈ Γ ′ and i, j ∈ N
such that i and j are symmetric in (N, v′) we have σi(N, v + v′)− σi(N, v) =

σj(N, v + v′)− σj(N, v).

Fairness means that if a game changes by adding another game in which two

players i and j are symmetric, then the payoffs of players i and j change by the

same amount. If we measure the relevance of a player in terms of marginality,

fairness is a quite natural requirement since adding such a game does not change

the marginal contributions of symmetric players. Making use of this property,

van den Brink (2001) and Casajus (2014) characterize the Shapley value. Not

surprisingly, efficiency together with fairness imply path monotonicity. It is not

difficult to check that fairness is a self dual property.

Proposition 3 Let σ be a single-valued solution on Γ that satisfies efficiency and

fairness. Then, σ satisfies path monotonicity.

Proof Let σ be a single-valued solution on Γ that satisfies E and F. Let N ∈ N ,

t ∈ R and consider two games (N, v), (N, v′) such that v(S) = v′(S) for all S ⊂ N
and v′(N)− v(N) = t. Notice that v′ = v+ t · uN . Since all players are symmetric

in the game (N, t · uN ), by F we have σi(N, v
′)− σi(N, v) = σj(N, v

′)− σj(N, v)

9 For a formal definition of weighted prenucleoli see, for instance, Derks and Haller (1999).
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for all i, j ∈ N . Finally, by E we obtain σi(N, v
′) − σi(N, v) = t

|N| for all i ∈ N .

Hence, σ satisfies P-MO (w.r.t. the monotone path f̄ as defined in (2)). ut
Proposition 3 shows that, under efficiency, path monotonicity can be viewed

as a relaxation of fairness by allowing that when the worth of the grand coalition

varies, the players’ payoffs change in the same direction, but not necessarily by the

same amount, as fairness suggests. Now, replacing path monotonicity by fairness

in Theorem 1, we obtain new axiomatic characterizations of the Shapley value

and the equal surplus division solution. Moreover, imposing complement consis-

tency we provide a new axiomatic characterization of the egalitarian non-separable

contribution solution.

Theorem 3 Let σ be a single-valued solution on Γ that satisfies covariance and

fairness. Then,

(i) σ satisfies projection consistency if and only if it coincides with the equal sur-

plus division solution.

(ii) σ satisfies self consistency if and only if it coincides with the Shapley value.

(iii) σ satisfies complement consistency if and only if it coincides with the egalitarian

non-separable contribution solution.

Proof

(i) It is clear that the equal surplus division solution satisfies PC, F and CO.

Let σ be a single-valued solution on Γ that satisfies these three properties. By

Proposition 1 and Proposition 3, σ obeys E and P-MO (w.r.t. the monotone

path f̄). Now uniqueness comes following the proof of Theorem 1 (i) taking

into account that all players have the same weight.

(ii) It is well known that the Shapley value satisfies SC, F and CO. Let σ be a

single-valued solution on Γ that satisfies these three properties. By Proposition

1 and Proposition 3, σ obeys E and P-MO (w.r.t. the monotone path f̄). It

is not difficult to check that CO, E and P-MO (w.r.t. f̄) imply ST. Now

uniqueness comes from Hart and Mas-Colell (1989) (Theorem B).

(iii) Clearly, the egalitarian non-separable contribution solution satisfies CC, F and

CO. Let σ be a single-valued solution on Γ satisfying these three properties.

The dual solution σd satisfies PC, F and CO since CC and PC are dual to

each other and CO and F are self dual properties. Thus, by statement (i),

σd = ES. In view of the fact that the egalitarian non-separable contribution

solution is dual to the equal surplus division solution, we conclude that σ =

ENSC. ut

Since the prenucleolus satisfies fairness for two-person games (because it satis-

fies standarness), from Proposition 1, Proposition 3 and Theorem 2 we obtain an

alternative characterization.

Theorem 4 The prenucleolus is the unique single-valued solution on Γ that sat-

isfies max consistency, covariance and, for two-person games, fairness.
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Remark 3 The characterizations stated in Theorem 3 hold if we impose fairness for

two-person games only. Thus, Theorem 3 and Theorem 4 allow for a comparison of

the Shapley value, the equal surplus division solution, the egalitarian non-separable

contribution solution and the prenucleolus by means of consistency.

Since the prenucleolus does not satisfy neither path monotonicity nor fairness

(see Proposition 3) for games with an arbitrary number of players, two impossi-

bility results emerge from both Theorem 2 and Theorem 4.

Theorem 5 There is no single-valued solution on Γ that satisfies

(i) max consistency, covariance and path monotonicity.

(ii) max consistency, covariance and fairness.

5 Concluding remarks

Theorem C in Hart and Mas-Colell (1989) characterizes the family of weighted

Shapley values by means of self consistency and, for two-person games, efficiency,

covariance and monotonicity. Nevertheless, from Proposition 1 it comes out that

efficiency can be dropped from their characterization result. Thus, it can be refor-

mulated as follows:

Theorem 6 A single-valued solution σ on Γ satisfies self consistency and, for

two-person games, covariance and monotonicity if and only if there exists a list of

positive weights w ∈ R++ such that σ = Shw.

This reformulation opens an interesting question: which is the set of rules

that emerges from substituting in Theorem 6 self consistency by either projection

consistency, complement consistency or max consistency? Notice that we partially

overcome this problem working with path monotonicity. Unfortunately, we have

been unsuccessful in our attempts to solve this problem using monotonicity as

defined in Hart and Mas-Colell (1989), and we leave it for future research.

It is well known that efficiency, covariance and equal treatment of equals for

two-person games are equivalent to standardness. The Shapley value, the equal

surplus division solution and the egalitarian non-separable contribution solution

satisfy these properties for any game. Moreover, covariance only for two-person

games together with either self consistency, projection consistency or complement

consistency imply efficiency (Proposition 1). Consequently, Theorem B’ in Hart

and Mas-Colell (1989) can be reformulated (dropping efficiency) in terms of co-

variance and equal treatment of equals for two-person games, together with self

consistency. Moreover, Corollary 4.4. (i) in Driessen and Funaki (1997) can be

rewritten by means of covariance and equal treatment of equals together with pro-

jection consistency, dropping efficiency too. Finally, the egalitarian non-separable

contribution solution can be characterized by means of covariance, equal treat-

ment of equals and complement consistency, which is also a refinement of Corollary
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4.4. (ii) in Driessen and Funaki (1997).10 Interestingly, Sobolev (1975) character-

izes the prenucleolus as the unique single-valued solution that satisfies covariance,

anonymity11 and max consistency. Orshan (1993) shows that anonymity can be

weakened and replaced by equal treatment of equals. Theorem 2, Theorem 3 and

Theorem 4 modify, respectively, these characterizations replacing equal treatment

of equals by path monotonicity/fairness (for two-person games). It is not difficult

to check that path monotonicity/fairness neither imply equal treatment of equals

nor they are implied by it.

As underlined in Section 3, not all weighted egalitarian non-separable contribu-

tion solution, ENSCw, satisfy aggregate monotonicity (see Example 2). Therefore,

complement consistency, covariance and path monotonicity do not characterize the

family of ENSCw. However, for any list of positive weights, the ENSCw meets

path monotonicity for two-person games.12 In view of Theorem 2, one may wonder

if complement consistency, covariance and, for two-person games, path monotonic-

ity, characterize the family of ENSCw. At this point some difficulties appear.

First, as the next example shows, ENSCw does not satisfy w-proportionality. Let

(N, v) be a game with N = {1, 2}, v(1) = 1, v(2) = 0, v(N) = 2 and consider

w ∈ RN
++ such that w1 = 2 and w2 = 1. Then, ENSCw(N, v) =

(
4
3 ,

2
3

)
and

STw(N, v) =
(
5
3 ,

1
3

)
. Thus, Proposition 2 does not hold when imposing comple-

ment consistency. If we want to use the duality approach from Theorem 1(i) (and

taking into account Remark 2), a second drawback is that path monotonicity for

two-person games is neither self dual. To see it, consider the single-valued solution

% defined, for all N ∈ N and all (N, v) ∈ Γ , as follows:

%(N, v) :=

{
ES(N, v) if |N | 6= 2,(
v(i) + 1

2v(N), 12v(N)− v(i)
)

if N = {i, j}.

Notice that % satisfies path monotonicity (w.r.f. f̄ as defined in (2)).

The dual solution %d is given by setting, for all N ∈ N and all (N, v) ∈ Γ ,

%d(N, v) :=

{
ENSC(N, v) if |N | 6= 2,(
3
2v(N)− v(j), v(j)− 1

2v(N)
)

if N = {i, j}.

Let (N, v), (N, v′) be two games with set of players N = {1, 2} and characteristic

functions: v(i) = v′(i) = 0 for all i ∈ N , v(N) = 1 and v′(N) = 2. Then,

%d(N, v) =
(
3
2 ,−

1
2

)
and %d(N, v′) = (3,−1), which proves that %d is not aggregate

monotonic, and hence path monotonicity is not self dual for two-person games.

Thus, in future research it could be interesting to pay attention to this issue.

Nevertheless, a characterization of the family of weighted non-separable contri-

bution solutions can be derived introducing the dual property of path monotonicity.

10 In Driessen and Funaki (1997), efficiency is included in their definition of single-valued

solution.
11 In words, anonymity simply says that the solution is independent of the names of the

players (see Peleg and Sudhölter, 2007, for a formal definition).
12 Let w ∈ RN

++. It can be easily checked that ENSCw satisfies, for two-person games, path

monotonicity w.r.t. a monotone path gw ∈ Fmon such that, for all N = {i, j} ∈ N and all

t ∈ R, gwi (N, t) =
wj

wi+wj
· t and gwj (N, t) = wi

wi+wj
· t. Notice that gw 6= fw as defined in (3).



Axiomatizations of the weighted surplus division solution 21

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

– Constant shift path monotonicity:13 if there exists a monotone path f ∈
Fmon such that, for all N ∈ N and all (N, v), (N, v′) ∈ Γ ′ with v′(N)−v(N) =

v′(S)−v(S) for all ∅ 6= S ⊂ N , it holds σ(N, v′)−σ(N, v) = f(N, v′(N)−v(N)).

Constant shift path monotonicity says that if the impact in the game (N, v) is

such that all coalitions increase (decrease) in the same amount t and players agree

on how to distribute it, then they should respect this agreement regardless of the

initial game (N, v). It is not difficult to check that constant shift path monotonicity

and path monotonicity are dual to each other. This fact, together with Theorem 1

(i), lead to the following characterization result.

Theorem 7 A single-valued solution σ on Γ satisfies complement consistency,

covariance and constant shift path monotonicity if and only if there exists a list of

positive weights w ∈ RN
++ such that σ = ENSCw.

To finish, a quite natural question is to study the implications of considering

weakly monotonic functions rather than strictly monotonic functions in the defi-

nition of a monotone path (Definition 5). It turns out that imposing “weak” path

monotonicity in Theorem 1 (i) and (ii) provides larger classes of single-valued so-

lutions than ESw and Shw that include, for instance, any marginal contribution

solution and any fπ- surplus division solution (see Appendix for formal defini-

tions), respectively. On the other hand, the single-valued solution introduced by

Peleg and Sudhöter (2007) (see Section 6.3.2. p.118) satisfies, on the domain of

balanced games,14 covariance, max consistency and, for two-person games, “weak”

path monotonicity. Consequently, on balanced games, imposing “weak” path mono-

tonicity in Theorem 2 does not characterize the prenucleolus. This may suggest

that, on the full domain of games, Theorem 2 does not remain valid when working

with this weaker form of path monotonicity, although it is still an open question.

In our opinion, dealing with such problems may require a good understanding of

weighted solutions and properties when zero weights are allowed, in the line of

the works of Kalai and Samet (1987), Monderer, Samet and Shapley (1992) or

Nowak and Radzik (1995) for the weighted Shapley values, or Hokari (2005) for

the prenucleolus.

Appendix

This appendix contains the independence of the properties used in the charac-

terization results. To do this, let us first introduce the following single-valued

solutions:

13 We thank an anonymous referee for providing us this property.
14 A game (N, v) is said to be balanced if C(N, v) = {x ∈ X(N, v)|x(S) ≥ v(S) for all S ⊆
N} 6= ∅.
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1. The equal divison solution, denoted by ED, is defined as follows: for all

N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

EDi(N, v) :=
v(N)

n
.

2. Let π be a permutation on N, the marginal contribution solution relative

to π, denoted by mcπ, is defined as follows: for all N ∈ N , all (N, v) ∈ Γ and

all i ∈ N

mcπi (N, v) := v ({j ∈ N |π(j) ≤ π(i)})− v ({j ∈ N |π(j) < π(i)}) .

3. Let π be a permutation on N, the fπ−surplus division solution, denoted

by ESf
π

, is defined as follows: for all N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

ESf
π

i (N, v) := v(i) + fπi

(
N, v(N)−

∑
i∈N

v(i)

)
,

where fπ is defined as follows: for all t ∈ R, fπ(N, t) = t · e{j}, being j ∈ N
such that π(j) ≥ π(i) for all i ∈ N . fπ assigns all the amount t to the last

player in N according to π.

– Independence of the properties in Theorem 1, Theorem 3, Theorem 6 and

Theorem 7:

ESf
π

satisfies covariance and projection consistency but, for two-person games,

neither monotonicity (and thus path monotonicity) nor fairness. The dual so-

lution of ESf
π

satisfies covariance and complement consistency but neither

fairness nor constant shift path monotonicity. Sh satisfies covariance, path

monotonicity, constant shift path monotonicity and fairness but neither projec-

tion consistency nor complement consistency. ED satisfies path monotonicity,

constant shift path monotonicity, fairness, projection consistency, complement

consistency and self consistency but not covariance for two-person games. Ad-

ditionally, the marginal contribution solution, mcπ, satisfies covariance and self

consistency but, for two-person games, neither monotonicity nor fairness. ES

satisfies covariance, path monotonicity and fairness but not self consistency.

– Independence of the properties in Theorem 2 and Theorem 4:

ED satisfies max consistency, path monotonicity and fairness, but not covari-

ance. ES satisfies path monotonicity, fairness and covariance, but not max

consistency. Finally, to find a single-valued solution satisfying max consistency

and covariance but, for two-person games, neither path monotonicity nor fair-

ness, see Lemma 6.3.15 in Peleg and Sudhölter (2007).
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