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Atherosclerosis is the main process causing most Cardio Vascular (CV) diseases. The
measurement of Intima Media Thickness (IMT) in artery ultrasound images can be
used to detect the presence of atherosclerotic plaques, which may appear in several
territories of the artery. Moreover, it is well known that disruption of atherosclerotic
plaque plays a crucial role in the pathogenesis of CV events.

Several works have tried to automatize the detection of the IMT and the classification
of the plaque by its composition. Traditionally, the methods used in the literature are
semi-automatic. Furthermore, very little work has been done using Deep Learning
approaches in order to solve this problems.

In this thesis, we explore the effectiveness of Deep Learning techniques in attempt-
ing to automatize and improve the diagnosis of atheroma plaques. To achieve so we
tackle the following problems: ultrasound image segmentation and plaque tissue
classification.

The techniques applied in this work are the following. For the segmentation of the
common carotid artery IMT we replicate a state of the art Fully Convolutional Net-
work approach and explore the implementation of a trained network to another
dataset. Regarding the plaque classification problem, we explore the performance
of Convolutional Neural Networks as well with two baseline methods.

These techniques are applied on two datasets: REGICOR and NEFRONA. These
datasets are provided by two research groups of IMIM and IRBLleida in collabora-
tion in a larger project with the UB. A data exploration analysis is also presented on
the patient’s data of NEFRONA to justify the importance of detecting the atheroscle-
rotic plaques and thus the techniques we explore.
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Chapter 1

Introduction

1.1 Problem Statement

Cardiovascular Diseases (CVDs) are a group of diseases which involve heart or
blood vessel. Currently, they are the leading cause of death in developed countries
(L. Paiva and Goncalves, 2015). An important part of CVDs are related to atheroscle-
rosis.

Atherosclerosis is a chronic inflammatory process characterized by the thickening
of the innermost layer of the artery. It usually appears with arterial wall alterations
that precede cardiovascular clinical events. Early and accurate prediction of indi-
viduals with atherosclerosis would allow to apply preventive measures before the
aforementioned life threatening events take place.

The intima media region (IMR) is the region that yields between the lumen-intima
and media-adventia interfaces and the intima media thickness (IMT) is defined as
the distance between these two interfaces, commonly computed in the far wall of
the artery (see Fig. 1.1). Moreover, a threshold in the IMT measurement determines
the presence of plaque in an artery. In particular, the Mannheim Consensus defines
the following criterion for plaque detection: plaques are structures into the arterial
lumen showing IMT≥ 1.5mm (Touboul et al., 2012).

FIGURE 1.1: Different parts of a common carotid artery. Source: Im-
age provided by Maria del Mar Vila.

Atherosclerotic thickening and plaque presence may occur in different territories of
the arteries. In this thesis we work on carotid and femoral arteries. Carotid arterial
wall assessment may include the common, internal or bulb territories of the carotid
artery (See Fig. 1.2). On the other hand, the femoral artery include two different
regions: superior and common.
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FIGURE 1.2: Location of the common, interior and bulb regions of a
carotid artery. Source: Wikipedia

Ultrasound artery images are used to detect the burden of atherosclerosis since they
provide the possibility to measure the IMT and identify the presence of atherosclero-
sis plaques (Fig. 1.3). Due to its low cost, wide availability and non-invasion nature
ultrasound has the potential to become the modality of choice for plaque detection
in clinical practice.

FIGURE 1.3: Common Carotid artery ultrasound. Red lines show the
presence of an atherosclerosis plaque and the green lines show the

IMT measurement.

Despite its advantages, ultrasound images have typically low image quality and
contain significant noise, shadows and reverberation. Plaque presence is common
at the bifurcation of the carotid artery (CA) and at the origin of the Internal Carotid
Artery (ICA), but occurs only occasionally in the Common Carotid Artery (CCA).
However, it is well known that the noise of the ultrasound images is more promi-
nent in internal areas such as bulb or ICA compared to the CCA. Therefore, most of
previous studies on plaque detection and IMT measurement are focused in the CCA.

Under these conditions, the detection and characterization of the plaques becomes
tedious and inconsistent, even for an expert clinician. There is high variability among
the expert judgments for the location and delimitation of the plaque region. That is

https://en.wikipedia.org/wiki/Common_carotid_artery
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the reason why, automatic segmentation of the IMR of an artery becomes a relevant
problem.

This thesis is framed within a larger UB project in collaboration with UDETMNA
1 research group and the cardiovascular genetics IMIM 2. UDETMA is a research
group of the IRBLleida 3 that studies the detection, treatment and prevention of car-
diovascular diseases. These organizations provided us the data that made possible
our experiments, two ultrasound images datasets: REGICOR and NEFRONA.

We have exposed the importance of plaque detection from ultrasound images. How-
ever, the presence of plaque does not always translate into a high risk to develop
cardiovascular events. Due this fact, plaques can be classified into symptomatic and
asymptomatic depending on whether they are likely to cause a cardiovascular event.
In order to avoid unnecessary surgeries in asymptomatic patients, the development
of techniques that effectively differentiate symptomatic and asymptomatic plaques
is a current topic of interest.(Mughal et al., 2011)

Moreover, there is interest in classifying atheroma plaques by their tissue composi-
tion. More precisely by the amount of lipid core, fibrous and calcified tissue. Previ-
ous works have shown a relation between the composition of the plaque and the risk
of suffering a cardiovascular event. Specifically, plaques with large lipid cores and
thin fibrous caps are more "dangerous", while plaques that contain calcified tissue
tend to be more "stable" (Moreno, 2010). In addition to that histology-based studies
have shown the viability of ultrasound images as a tool for the distinction between
lipid, fibrous, and calcified tissues of the CCA (Lal et al., 2002).

The objective of this thesis is to explore the effectiveness of Machine Learning and
Deep Learning techniques in attempting to automatize and improve the diagnosis
of atheroma plaques. To achieve so we tackle the following problems: ultrasound
image segmentation and plaque tissue classification.

Segmentation of an ultrasound image consists in designing an algorithm able to as-
sign a region label to each pixel of the given ultrasound image. There are up to six
different region classes (See Fig.1.4) but we are specially interested in the delimi-
tation of the IMR. Note that once the IMR segmentation is obtained it is trivial to
compute the IMT and hence determine the existence of atheroma plaque using the
Manheim consensum described above.

1http://www.udetma.com
2https://www.imim.es/programesrecerca/epidemiologia/epicardiovascular.html
3Institut de Recerca Biomèdica de Lleida

http://www.udetma.com
https://www.imim.es/programesrecerca/epidemiologia/epicardiovascular.html
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FIGURE 1.4: CCA and bulb ultrasounds with the delimitation of their
regions.

The second problem we face consists in the classification of plaque ultrasound im-
ages by their plaque tissue composition. The considered classes are: uniform hypoe-
choic, predominantly hypoechoic, predominantly hyperechoic, uniformly hypere-
choic and calcified as defined in the literature. For a non-expert clinician the classes
are practically indistinguishable, see Fig. 1.5. Furthermore, there is a high inter-
observer variability among clinical experts. This is the reason why the automation
of this task becomes relevant and difficult.

(A) Uniform hypoechoic (B) Predominant hypoechoic (C) Predominant hypercoic

(D) Uniformly hypercoic (E) Calcified

FIGURE 1.5: CCA samples of different tissue plaque classes. (delin-
eated in dashed green and blue lines and classified by a clinician ex-

pert).
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1.2 Structure of the Thesis

The organization of this thesis is as follows.

In Chapter 2, we briefly review the state of the art related to CA segmentation and
plaque classification problems. In addition to that, we discuss the most interesting
automatic approaches to solve the aforementioned problems.

Then, in Chapter 3, we expose the fundamentals of the algorithms selected to solve
the problems by introducing the Deep Learning foundations and presenting the
methods and configurations used in our experiments.

In Chapter 4, we present the different datasets used in our experiments and we de-
scribe the performed data cleaning and preprocessing for the ground truth genera-
tion.

In Chapter 5, we present the first approach to the data performed by data explo-
ration.

Finally, in Chapter 6, we describe the performed experiments and expose the ob-
tained results and in Chapter 7 we expose our final conclusions.
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Chapter 2

State of the Art

In this section we first review some of the studies regarding the factors related to
Cardiovascular Events (CV) and how the presence of plaques has an impact on the
apparition of cardiovascular events.

In the second part of this section we expose a variety of automatic methods that deal
with the problem of carotid ultrasound image segmentation. Most of these methods
have been designed to detect either the presence of a plaque or the IMT through
segmentation of the image.

Finally, in the third part of this section, we review previous work on plaque tissue
classification problem. The methods reviewed follow two main approaches, either
grey-value statistics or frequency approaches.

2.1 Factors Related to Cardiovascular Events

It is reported that the main cause of death in chronic kidney disease (CKD) patients
is CVDs. The causes of this high cardiovascular mortality rate is currently a subject
of research interest as they are not defined in its plenitude, and the search of risk
predictive factors are needed. Some recent works have studied potential predictive
factors and important advances in the knowledge of specific cardiovascular risk fac-
tors have been made. At the same time some of the traditionally considered factors,
or other emerging biomarkers have been found to not increase the predictive power
of death by CV event (Stenvinkel et al., 2008).

In (Daniel H. O Leary and Wolfson, 1999) the carotid IMT and the prevalence of
plaque formation are studied as predictive factors for CV.

Observatorio Nacional de Aterosclerosis en Nefrologia (NEFRONA1) is a project to
study the factors of cardiovascular disease on CKD patients. Some of their studies
had lead to interesting results: In (Betriu et al., 2014) the prevalence of atheromatous
plaques in CKD population is studied and compared to non-CKD population. In
this study the presence of plaque is considered a risk factor for CV event and thus
factors associated with presence of plaque are studied. Results on this study shows
that some factors associated with presence of plaque may affect differently for each
stage of CKD, however others such as age or gender are independent on the CKD
stage.

1http://www.nefrona.es

http://www.nefrona.es
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In (David Arroyo and Fernandez, 2017) ankle-brachial index value is explored as
a predictive factor for CV event for CKD patients. The relation between this low
value of this index (<0.9) with other explored factors (such us age, gender, presence
of plaque, high IMT) in CKD is also explored.

Finally in (Valdivielso et al., 2017), the predictive power of the analysis of atheroma
extent as a novel factor (i.e. the number of territories that have plaques) is compared
to the analysis of presence/absence of plaque for a given territory as a factor to pre-
dict CV events. Both kind of analyses are only possible using arterial ultrasound
imaging in order to detect presence of plaque. The conclusion of this work is that
effectively atheroma extent influences for a CV event and that its detection can im-
prove the prediction of events. At the same time the result justifies the importance
of detection of plaque trough ultrasound imaging.

For this reason automatic segmentation on arterial ultrasound images becomes in-
teresting in order to automatize plaque detection.

2.2 Ultrasound Carotid Image Segmentation

The works reviewed in the previous sections justify the interest of segmentation
techniques applied to arterial ultrasound images in order to detect atheromatic plaques
as an important factor for evaluation of CV events and disease.

In recent years several works have appeared proposing segmentation techniques
most commonly, on the CCA territory. These works include ultrasound image seg-
mentation of the intima-media region (IMR), in order to measure IMT or the lu-
men. These methods present a wide range of approaches, from classical ones such
as edge-detection based techniques (Touboul et al., 1992), local statistics (Delsanto
et al., 2007) or Hough transformations (Xu et al., 2012) to more recent approaches,
thanks to the advent of Deep Learning, using Convolutional Neural Networks (Shin
et al., 2017).

A good review on segmentation techniques applied to ultrasound CCA image is
found in (Loizou, 2014). According to this paper, segmentation techniques can be di-
vided in two groups : segmentation of IMT images and segmentation of atheroscle-
rotic plaque.

For IMT segmentation the first technique is found in (Pignoli et al., 1987). This seg-
mentation method was based on pixel intensity differences from the center of the
lumen to the wall borders. In (Touboul et al., 1992) as a novelty, a edge-detection
based method is proposed. Some time after, in (Delsanto et al., 2007), a method
based on a combined approach of local statistics and active contours (a.k.a. snakes)
is proposed. In all these approaches the presence of ultrasound artifacts (speckle
noise and acoustic shadowing) are problems to deal with, prior the application of
the method. In (Xu et al., 2012) Hough Transformation and dual active contours are
applied for IMR segmentation, robustness against ultrasound artifacts are achieved.

For atherosclerotic carotid plaque segmentation the first approaches applied image
processing techniques to extract features. For example in (Hamou and El-Sakka,
2004) histogram equalization plus Canny edge detectors were used to segment plaque
regions, and in (Abdel-Dayem and Ei-Sakka, 2004) morphological operations with
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speckle filtering were used. Other approaches were similar to those for IMT seg-
mentation and used active contours segmentation methods with some preprocess-
ing steps such as image normalization and despeckle filtering (Loizou et al., 2007).
Kalman filtering techniques to extract plaque boundaries were proposed (Abolmae-
sumi, Sirouspour, and Salcudean, 2000).

More recently the use of Machine Learning and Neural Networks (NN) for segmen-
tation in carotid ultrasound images has been explored. One of the drawbacks on
such approaches is that they usually need a big amount of data to achieve good re-
sults. In (Qian and Yang, 2018) four methods based on Support Vector Machines are
explored and in (Shin et al., 2017) a patch-based Convolutional Neural Networks
(CNN) are used for IMT estimation. This last work is the only approach using Deep
Learning.

2.3 Ultrasound Carotid Image Plaque Classification

Much less previous work has been published regarding plaque classification prob-
lems compared to IMT segmentation. Here we need to distinguish between the
plaque classification into symptomatic or asymptomatic and the plaque tissue char-
acterization.

In the symptomatic classification problem, the solutions published in the literature
are hand-crafted feature extraction based methods. Depending on the extracted fea-
tures one can distinguish between methods based on the image grey-value statistics
and the ones based on frequency approaches.

In this line of work, (J. Stoitsis and Nikita., 2006) performs a frequency-based texture
analysis method based on the Fourier Power Spectrum and the Wavelet Transform
of the images.

As alternatives to these techniques, we highlight (U.Rajendra Acharya e and Suri,
2013), (Acharya et al., 2010) and (Kyriacou et al., 2009) that use Support Vector Ma-
chines (SVM) and Probabilistic Neural Networks on grey scale value statistics of the
image. These methods seem to achieve better results that the frequency approaches.
However, it is hard to assert that, because the latter works use more data.

We are not aware of any work that use a Deep Learning approach without using
hand-crafted features to this problem. However, (Mougiakakou et al., 2007) uses
neural networks on previously extracted first order statistical features that charac-
terize the image texture.

Regarding to tissue classification problem, most of the literature correspond to works
presenting pixel distribution modeling based approaches. In (Craiem et al., 2009),
each pixel of the plaque is classified into 3 possible tissues classes using its value
and the distance to the surface of the IMR.

Lately, (Tsiaparas et al., 2011) attempted a frequency approach for this problem that
uses wavelet and Gabor transforms to extract features of the images and support
vector machines and probabilistic NN to classify. In this thesis we replicate part of
this method as a baseline, see section 6.3.1.
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Chapter 3

Techniques

This chapter has the objective to introduce the methods we apply in this thesis. We
begin introducing the foundations of Deep Learning and Neural Networks (NN)
to quickly get into details of Convolutional Neural Networks (CNN) as they are
the base of the techniques we explore. At the end of the chapter we concrete the
proposed techniques for the particular segmentation and classification problems we
face against.

3.1 A Brief Introduction to Deep Learning

Given a set {xi}i∈N with associated target values {yi}i∈N , a common task in the field
of data science is to design algorithms able to automatically define model functions
f that map the input data xi to its target value yi for all i ∈ N.

The model function f (x, ω) depends on the input data x and a set of parameters ω.
In order to automatically "learn" the function one needs to find the optimal values
of the parameters ω. The way to optimize the parameters is by minimizing the
dissimilarity between the output of the model function ŷ := f (x, ω) and the true
value of the targets y. This measure is given by a loss function L(y, ŷ) that takes
values on R. Hence, the problem can be stated as

minω L( f (x, ω), y)

Generally, the different approaches to define the model function f (x, ω) define the
different techniques. In the field of Deep Learning, the model function is defined
by composing a potentially large number of simple functions with know deriva-
tives. The structures, typically called architectures, that define these compositions
are called neural networks.

3.2 Neural Networks

Back-propagation based Neural Networks (NN) were first introduced in the 1970s,
but not until the recent exponential increment of available data and computational
power have they become a viable technique in real world problems. In 1986 a fa-
mous paper (Rumelhart, Hinton, and Williams, 1986) showed their full potential
(Schmidhuber, 2015).
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NN are processing devices inspired in the neuronal structure of the brain that define
a function by connecting a large number of simple functions organized in layers.
A particular network is defined by the concatenation of several specific layers, as
shown in Figure 3.1 example.

The optimization methods used in Machine Learning are gradient descent-like meth-
ods. This is, methods that recursively approach to the minimal solution by updating
the optimal point using the direction of the gradient. Hence, one needs an efficient
method to compute local derivatives of the model function.

The great advantage of NN is that its structure takes advantage of automatic differ-
entiation (Griewank and Walther, 2008). A method based on the chain rule to au-
tomatically compute local derivatives of functions in machine precision. The use of
this method enables the successfully optimization of the complex functions defined
by NN and it also offers a friendly work-frame for the exploitation of the parallel
computations using GPUs.

However, NN also have their drawbacks. The main issue is that the proper opti-
mization of networks requires a large amount of data compared to other machine
learning methods. In addition to this, NN are seen as a black box. This means that,
generally, there is no interpretability of the learned model function.

Even though there is a wide variety of useful layers that are more or less appro-
priate depending on each problem, it has been shown that in order to successfully
model complex functions it is convenient to intercalate linear and non-linear func-
tions. Here, we just introduce the most common linear and non-linear functions.

Given an input x ∈ Rn, a dense layer d(x, ω) and the rectifier function ReLu(x) are
defined as

d(x, ω) =
n

∑
i

ωixi + ωn+1 ReLu(x) = max(0, x)

where ω ∈ Rn+1.

It is a common practice to refer to the NN non-linear functions as activation func-
tions due to their nature of returning a non-zero value (i.e activate) under a certain
threshold.

FIGURE 3.1: Representation of a Neural Network composed by 3
dense layers. The inputs x are represented by dots and the weights ω

by arrows. Source: neuralnetworksanddeeplearning.com

http://neuralnetworksanddeeplearning.com/chap1.html
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The last layer and its activation function deserve an special mention. Since its output
will be the predicted class ŷ for a given input x, the output of the layer must have the
same dimensions than the target y. A common choice of the last layer is a dense layer
with the target y dimension. However, in this project we will also work architectures
that do not use dense layers: fully convolutional networks. (3.4)

On the other side, the last activation function must be congruent with the domain
characteristics of the target. In our case, the target y will be a probability vector. A
good activation function choice for this purpose is the softmax function:

so f tmax(x) :=
ex

∑i exi

which output is a probability vector.

Once the network is defined, one needs to select the loss function L(y, ŷ) and a opti-
mization method.

3.2.1 Loss Functions

Since the loss function must encode the dissimilarity between the predicted targets
by the model and its true value, it must be appropriately selected for each task. The
different loss function used in our methods are defined below.

Given an input x, the output of the network is a vector of probabilities ŷ ∈ Rk where
k is the number of different classes (for k > 2) and each component i is the probability
of x to be labeled with class i. The target distribution y gives probability one to be
labeled with the correct class (i.e. y has a one in the component i and 0’s in the rest
of components). Next, we present three possible classification losses.

• Categorical Cross-Entropy. It increases as the predicted probability diverges
from the actual label ( Fig.3.2).

H(y, ŷ) = −
k

∑
i=0

yi · log(ŷi)

FIGURE 3.2: Range of possible 2 classes cross-entropy values given a
true observation
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• Weighted Binary Cross-Entropy: a slightly modification of the previously de-
fined loss by adding weights in its summands. In this way one can penalize
a certain type of misclassification. Note that in medical problems this may be
very relevant: misclassifying a symptomatic plaque as asymptomatic should
be penalized harder than the opposite.

BW(y, ŷ) = −w0y · log(ŷ) + w1(1− y) · log(1− ŷ)

where w0, w1 > 0.

3.2.2 Good Practices

In order to obtain a proper optimization of the model function there are several
techniques that may improve the optimization process. In this section, we quickly
review them.

In first place, splitting data into train, validation and test subsets. The train set is
used to learn the model, the validation set to choose the best parameters of the model
and the test set to check the performance of the selected model in unseen data. In
this way one can be aware of overfitting, the phenomena produced when the learned
model only performs properly for the inputs belonging to the training set.

Other important common practices are:

• Adding dropout, which consists in randomly setting a proportion (around
0.25) of the layer weights to 0. It has been shown that this practice helps to
prevent overfitting.

• Data preprocessing by reshaping or normalizing the original data.

• Data augmentation, which consists in generating new input data from the
training set. For example, in images it is usual to flip or crop them.

• Using a good optimization method and tunning its parameters. In our exper-
iments we consider subgradient descent, Adam and RMSprop. (Ruder, 2016).
Their most important parameters are:

– Learning Rate: quantifies the variation of the variables we optimize in
each iteration.

– Mini-batch: models the amount of data used to compute the gradient in
each iteration.

– Weights initialization: usually they are randomly chosen following a cer-
tain distribution (i.e. uniform, gaussian). However, they can also be ob-
tained from pre-training the model using another dataset performing a
similar task. This practice is named Learning Transfer.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of neural network archi-
tecture. A network is considered to be a CNN if it contains at least one convolutional
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layer. A convolutional layer is a layer which encodes spatial dimensional relation-
ships of the data by using locally connected neurons that share weights spatially.

More precisely, the weights of such a layer define a kernel K ∈ RM×N that does a
convolution I ⊗ k with the input data I. The output of a convolution is given by

(I ⊗ K)(x, y) =
M−1

∑
m=0

N−1

∑
n=1

K(m, n)I(x− n, y−m)

Observe that we are applying the given kernel to each neighborhood of the input
(Fig 3.3).

FIGURE 3.3: Representation a convolution I ∗ K between an input I
and a kernel K. Source: cambridespark.com

Observe that when training the model we optimize the weights of the network
which in this case define the kernel. One can think of it as if training a convolu-
tional layer consists in finding the kernel values that transform the input data into
the best new features to perform our objective task. The output vector will have as
many as feature maps (or channels) as the number of kernels in the convolutional
layer.

Convolutional layers have several advantages over dense layers, specially for tasks
which input is an image:

• Fewer number of parameters than dense layers, which makes them feasible to
be optimized.

• Can be applied to inputs of different size.

• The local spatial connections are able to extract useful features from the input
images.

In 2012, one of the most influential papers in the field of Deep Learning (Krizhevsky,
Sutskever, and Hinton, 2012) showed the effectiveness of CNNs after achieving ex-
cellent results in the ImageNet challenge, which consists in a natural images classi-
fication problem at large scale competition (Deng et al., 2009).

In the last decades, several works have tried to find the CNNs configurations that
perform best. In general terms, CNN architectures are combinations of convolu-
tional layers, activation functions and dense layers at the top of the network with an
adequate last activation function for the task.

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
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Convolutional networks usually also contain pooling layers, which combine the out-
puts of neuron clusters at one layer into a single neuron in the next layer. In this way
the input representation data is down-sampled (see Fig. 3.4). The most common
pooling layer is the max pooling which uses the maximum value from each of a
cluster of neurons at the prior layer.

FIGURE 3.4: On the left, representation of the (2,2) stride Max-Pooling
application one single channel. On the right, general representation

of the down-sampling effect. Source: computersciencewiki.org

3.4 Fully Convolutional Networks

Recent works (Long, Shelhamer, and Darrell, 2014) introduce the fully convolutional
(FC) as an extension of CNNs to tackle the problem of per pixel predictions such as
image segmentation.

The main idea is that FC layers can also be viewed as convolutions where the kernel
cover all the input region. As we go deep in a CNN, spatial resolution is lost due
to down-sampling ( convolution stride or max pooling layers) and in some prob-
lems of segmentation, there is a need to up-sample and recover the initial spatial
dimensions. Long, Shelhamer, and Darrell, 2014 proposed to use fractionally strided
convolution (also called in literature as deconvolution (Fu et al., 2017) or transposed
convolutions (Jégou et al., 2016)(Lim and Keles, 2018) ). The name of fractionally
strided convolutions is due to up-sampling a factor f it can be seen as a convolu-
tional with a fractional input stride of 1/ f .

For the semantic segmentation problem we consider a model based on Tiramisu
(Jégou et al., 2016). Tiramisu is an extension of Dense Nets architecture (Huang
et al., 2016) to Fully Connected Networks (FCN) obtaining a dense structure, a re-
cover of the spatial resolution on the output and avoiding feature explosion on the
up-sampling path. Fully Convolutional DenseNets structures are build form blocks
included in a down-sampling path and up-samplig path. Skip connections help to
recover the fine-grained information from the down-samplig path. Let us define
next the three types of blocks:

• Dense Blocks

• Transition down

• Transition up

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
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Dense Blocks

These blocks contain most of the convolutional layers. Each layer is composed by
a Batch Normalization (BN), a ReLU, a 2D 3× 3 convolutional layer and drop out.
Then the output of a layer is concatenated with their input to be the new input of
the next layer. The structure of a Dense Block is showed in Fig.3.5. The growth rate
k is defined as the map feature length of the each layer. The output of a Dense Block
is the concatenation of all the convolutional layers outputs. In this way the output
map features increase linearly with the number of layers, so the output of a l-layers
dense block will be a l × k map feature.

FIGURE 3.5: Structure of a 4-layer dense block. The output of a layer
is concatenated with their input (black arrows) to be passed as the
input of the next layer. After the last convolutional layer, all the pre-
vious outputs are concatenated to generate the output of the Dense

Block. Source: (Jégou et al., 2016).

Transition down

Transition down block is introduced to reduce the spatial dimensionality. It is com-
posed by a BN, 1× 1 convolution (without reducing the number of feature maps),
drop out and a max pooling 2× 2 operator. At the end of the transition down path
and before start the transition up path,there is the bottle neck which is the name that
receives the layer with smaller spatial resolution.

Transition up

After the bottle neck layer, there is a need to increase the spatial resolution up to the
original image size. This is achieved through transposed convolutions with stride 2
(compensate the 2× 2 max-pooling in transition down) that up-sample the previous
features map. This up-sampled vector is then concatenated to the vector coming
from the downsampling path via skip connector.
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FIGURE 3.6: Tiramisu structure: Red (convolutional layer), green
(dense blocks), yellow (concatenation operator), blue (transition
down), purple (transition up). The grey arrows represent the skip

connections. Source: (Jégou et al., 2016)

Observe that in the transition up path the spatial resolution of feature maps is in-
creased. Keeping increasing the number of features maps linearly with the number
of layers would be too memory expensive. To avoid that, the input of a dense block
is not concatenated with its output. In this way the transition up are applied only to
outputs of dense blocks, not to all the features maps learned before. Moreover in or-
der to recover the fine grained information, the features of the upsampling path are
concatenated by skip connections with features of the downsampling path. Reusing
this higher resolution features helps the NN to recover spatially detailed information
on the upsampling path.

3.5 Architecture Setups

In this section we detail the architectures of the networks we use in our experiments.

Segmentation

For the segmentation problem we use two different configurations of Tiramisu1. We
call them Tiramisu56 and Tiramisu67, where the number denotes the number of
layers.

1https://github.com/beareme/keras_semantic_segmentation

https://github.com/beareme/keras_semantic_segmentation
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The Tiramisu67 (Table 3.1) layers are distributed in the following way: 5 dense
blocks followed by a transition down (which has an extra convolutional layer 1× 1) a
bottle neck dense block with 5 more layers and the transition path containing 5 tran-
sition up (with a transpose convolutional layer each one) followed by dense blocks.
This sums up to 65 layers and one should add an initial conv2D and the final layer.

The Tiramisu56 is analogous to Tiramisu67 with the difference that each dense block
has 4 layers instead of 5.

TIRAMISU 67
Input layer
3× 3 convolutional 2D
DB (5 layers) + TD
DB (5 layers) + TD
DB (5 layers) + TD
DB (5 layers) + TD
DB (5 layers) + TD
DB (5 bottle neck layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
1× 1 convolutional 2D
softmax

TABLE 3.1: Architecture of the Tiramisu67. Dense block (DB), Tran-
sition down (TD) and Transition up (TU). The final 1× 1 convolution
has as many feature maps as the number of classes to be segmented.

Classification

For the classification problem we consider several architectures. In one side, we
consider some well known CNN architectures that have proven success in image
classification problems: VGG16 (Simonyan and Zisserman, 2014) and InceptionV3
(Szegedy et al., 2015).

On the other side, we also design our own CNN architecture. Our design is a VGG
inspired architecture with less layers that the original VGG and a higher dropout, in
order to avoid overfitting. The idea of VGG consists in concatenating several blocks
formed by a few convolutional layers and a max-pooling layer and dropout at the
top. In addition to that, the number of channels of the convolutions is increased as
the networks gets deeper. The details of our settings are showed in the Table 3.2.
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Input layer
Conv2D (32) + ReLu
Dropout(0.1)
Conv2D (32) + ReLu
Max-Polling
Dropout(0.25)
Conv2D (32) + ReLu
Dropout(0.1)
Conv2D (32) + ReLu
Max-Polling
Dropout(0.25)
Conv2D (64) + ReLu
Dropout(0.1)
Conv2D (64) + ReLu
Max-Polling
Dropout(0.35)
Conv2D (64) + ReLu
Dropout(0.1)
Conv2D (64) + ReLu
Max-Polling
Dropout(0.35)
Flatten
Dense(256) + ReLu
Dropout(0.35)
Dense(256) + ReLu
Dropout(0.5)
Dense(512)
Dropout(0.5)
Dense(dim(target)) +softmax

TABLE 3.2: Architecture of the proposed CNN. All Conv2D have a
(3 × 3) kernel. All Max-Pooling layers have a (2 × 2) stride. The

number inside the parantesis denote the number of channels.
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Chapter 4

Data preprocessing

In this chapter we describe the datasets used in the experiments. First we describe
the original data (ultrasound images and patients data) that the collaboratos have
provided us. In the second part we describe the image preprocessing steps we have
performed on the images in order to be used on the different experiments.

4.1 Data Sets

For this project we have used two datasets from IMIM and IRBLleida respectively :
REGICOR dataset and NEFRONA dataset. While REGICOR dataset only contains
the set of images together with the IMT information, NEFRONA dataset contain clin-
ical information and biomarkers of the patients that participated in the NEFRONA
study.

4.1.1 REGICOR

The Registre Gironí del Cor (REGICOR1) dataset has an amount of 4751 images of
the CCA. From these images only 159 (51 with plaque and 108 without plaque )
were manually delineated by using 6 labels (near wall, lumen bulb, CCA lumen,
IMR bulb, IMR CCA and far wall as shown in Fig. 4.1b). The training set contain 141
images and the test set 18 images all segmented by the same expert. An example of
the GT segmentation in 6 labels of a REGICOR image is showed in 4.1b, the 2 labels
GT is the same segmentation but putting the same label to all the regions that are
not IMR.

For the segmentation task we use the set of 159 delineated CCA images. The heart
register images were collected between 2007 and 2010 from 2379 subjects aged be-
tween 35 and 84. The scans used by sonographers were two Acuson XP128 US sys-
tem equipped with L75-10 MHz transducer and a computer program extended fre-
quency (Siemens-Acuson). The images were obtained from left and right carotid
artery in B-mode with resolution 23.5 pixels/mm.

1https://www.regicor.org

https://www.regicor.org
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(A) Original Image (B) Ground Truth

FIGURE 4.1: Example of REGICOR dataset, left the ultrasound image
(equalized), right the ground truth (Dark blue: near wall, blue: bulb
lumen, light blue: CCA lumen, green: Bulb IMR, yellow: CCA IMR,

orange: far wall)

FIGURE 4.2: Example of NEFRONA images (grey level zone) . From
left to right: non marked image, IMR image, plaque image (from a

different patient)

4.1.2 NEFRONA

The second dataset we dispose of is NEFRONA. It consists in a collection of B-Mode
ultrasound of the carotid and femoral arteries obtained by a Vivid BT09 device (from
General Electric), with a 6-13 MHz band.

For each subject of the study, up to 10 territories images were captured : left and
right side internal, bulb and common carotids and left and right side common and
superficial femoral arteries. On these images an analysis of presence of atheroma-
tous plaque is performed by an expert, without knowledge on the subject clinical
record. If a plaque is detected the expert marks the boundaries of the plaque on the
image. If no plaque is detected, a portion of the intima-media wall is marked (in
order to calculate the IMT).

At the end this labeling process image set is composed of a pair of images for each
territory for each patient; an original image and a GT.
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NEFRONA Database

Along with the NEFRONA images, we have been given the patients database that
contains clinical information and biomarkers retrieved from the patients of the NE-
FRONA study during 48 months tracing. Some of these information include age,
gender, alcohol consumption, tobacco consumption, diabetes, dyslipidemia, hiperten-
sion, measured IMT for several territories, number of plaques, type of plaques, car-
diovascular events episodes, death date and cause among other information.

In section 5 we explore the influence of the following variables over CV event. In the
following lines we give some information of them:

• Gender: Categorical variable with values Male/Female

• Diabetes: Categorical variable with values Diabetic/No Diabetic

• Dyslipidemia: Abnormal amount of lipids in the blood. It is categorical, with
values Dyslipemic/Non Dyslipemic

• Hypertension: Categorical variable with values Hypertens/Non Hypertens.

Table 4.1 summarizes the number of patients of these variables in the dataset.

Other important variables are the ones related to plaques:

• Territories of plaques: For each one of the 10 territories, the presence of plaque
is annotated with value 1 and the absence with value equal to 0

• Number of plaques: Is the sum of the annotated plaques. There is a variable
that only takes into account plaques in carotids and another variable that only
takes into account the plaques in femoral arteries.

• IMT: The IMT is measured by territories and there is also the variable mean
IMT that takes the mean of measure IMT. If a territory has a plaque the mea-
sured IMT for that territory is truncated to 1.5 mm. This value comes from the
Mannheim consensus (Touboul et al., 2012).

• Lipids percentage: If plaque is detected in a given region, the percentage of
lipid tissue in the plaque is annotated.

• Fibrosis percentage : If plaque is detected in a given region, the percentage of
fibrosis tissue in the plaque is annotated.

• Calcium percentage : If plaque is detected in a given region, the percentage of
calcium tissue in the plaque is annotated.

• Plaque class : For each plaque in each territory, a class is assigned, depending
on the percentages of lipids, fibrosis and calcium. There are 5 possible classes
. Type 1 : uniform hypoechoic (all lipids), Type 2 : predominantly hypoechoic
(lipids predominance), Type 3 : predominantly hyperechoic (fibrosis predom-
inance), Type 4 : uniformly hyperechoic (all fibrosis) and Type 5 : anechoic
(calcified) A tissue is hypoechoic when it does not produce a lot of echo, like
lipidic tissue. The opposite is hyperechoic, which is the case of fibrosis tissue.

The lipids, fibrosis and calcium percentage in a plaque is retrieved from the ultra-
sound image. This is achieved by classifying each pixel of the plaque in the im-
age in three possible classes: calcium, fibrosis and lipid. This pixel classification is
performed by a software, called HEMODYNE. This software is based in a method
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(Craiem et al., 2009) that has the following steps:first it divides the plaque by sev-
eral layers, being the most superficial the layer in contact with the Lumen and the
most profound layer in contact with the Adventitia (i.e. a grey value on a pixel in
a superficial layer is not of the same class of a pixel in the deep layer having the
same grey-value). Then for each layer it computes the median grey-value and it
maps the obtained value to a class in function of some preset thresholds (that differs
depending on the layer).

Event CV NO CV Event YES CV Event

Female 1132 66
Male 1656 150
No Diabetes 2199 124
Yes Diabetes 589 92
No Hypertens 564 15
Yes Hypertens 2224 201
No dyslipemic 1134 59
Yes dyslipemic 1654 157

TABLE 4.1: Some of the potential risk factors in NEFRONA data base,
with the number of patients for each variable

4.2 Data Cleaning and Ground Truth Generation

Next, we detail the process we follow to perform data cleaning and GT generation.

4.2.1 Data Cleaning

All the images of NEFRONA dataset were provided in a DICOM format that include
some information (less than we expected) about them in the metadata. We take the
patient ID and the territory the image belongs to reading in the metadata in the
dicom, and classified all the images by the region they pertain and saved them as
png. In the CCA, we have a set of images like the set in Fig.4.3 but not all the patients
have all the images, and sometimes some other different images.

At this point, all the information we have regarding the images is the one that can
be read on the images itself (see yellow letters in Fig. 4.4). Doppler images are
discarded based on the presences of red and blue, all the original image have the
same size, the marked ones (4.3b,4.3c,4.3d and also 4.3b are a bit smaller) and to
distinguish between them, our procedure look at the top left corner the word "IMT"
or "cm2".

The next step is to crop the image to keep only the grey level area, that we will pass to
our image-based algorithm (NN). Actually the original and the marked images does
not have the same size so we looked for a cropping in the marked image that fits
as good as possible to the cropped original and then reshape it. Once cropped and
when both have the same size, the images are paired in two sets original-marked_IMT
and original-marked_plaque imposing that the two images should be very similar
(it exist the possibility that a patient had more than one original image). The final
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(A) Original (with less modifications) image (B) Part of the Intima Media delimited

(C) characteristics of the lumen (D) Image with the plaque delimited

(E) Doppler image showing the blood flow (F) Image that is like the original but smaller

FIGURE 4.3: Set of images that could have one patient in one region.
Most of the cases they don’t have all the images. From all of these
images we only will keep for the preprocessing part the ones that

correspond to 4.3a,4.3b,4.3d
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(A) Original IMT pair (B) Marked IMT pair

(C) Original PL pair (D) Marked PL pair

FIGURE 4.4: Final pairs after the preprocessing of the images: the
original ones (left) and the ones that will be used to create the GT

(right)

result of the pairs are showed in Fig. 4.4, in the original images the yellow letters
are hidden while the marked images not because they will be processed again to
generate the GT.

4.2.2 Ground Truth Generation

One of the objectives of this work is to explore automatic segmentation on ultra-
sound carotid images. In order to do so, we need to prepare a training set to train
our segmentation system. This training set will be composed of pairs of images: the
original unmarked image (the extraction has been explained in section 4.2.1), and an
image in which each pixel is labeled having two possible values, either background
or object of interest (that at the same time can be either plaque or IMT). This second
image will act as Ground Truth (GT).
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In the NEFRONA images, the boarders of the plaque or IMT are marked manually
by an expert, and in order to automatically create our GT from these marked images,
we developed a simple pipeline using image processing steps.

Ground truth generation pipeline

In Figure 4.5 we show the main steps of the the proposed pipeline to generate the
GT images for two label segmentation.

FIGURE 4.5: Pipeline for Ground Truth automatic generation from
manually marked ROI on ultrasound images for plaques

Binarization

The original ultrasound image is a grey-scale image, except for the color mark of
the ROI and some annotations about the territory of the image (see Figure 4.6a). It
is possible to just keep the annotations by binarizing the image through a threshold
(this value is different if the ROI’s marks are mainly greenish or blueish). This step is
executed in order to obtain a binary image to apply some morphological operations
on it. See Figure 4.6b to see an example of the result of this step.

Morphological Closing

As the boundaries of the ROI on the annotated images are discontinuous lines, in
order to create a connected component limiting the plaque, we perform a morpho-
logical closing. This will lead to the discontinuous lines bounding the plaque to
become a continuous one. See Figure 4.6c to see an example of the result of this step.

Image Inversion

This step is just a previous step necessary to fill low level values inside connected
components.

Connected Components

After inverting the image, the connected components internal region is filled, and
we invert again the pixel values, to have high values for the foreground and low
level values for the background.
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Choose Connected Component

It may happen that the image has more than one connected component. This step is
to choose the connected component that corresponds to the plaque. See Figure 4.6f
to see an example of the result of this step.

Final Morphological Operations

At the end we apply again two morphological operations (a closing and an opening)
to readjust the shape of the plaque connected component to the mark on the original
image. See Figures 4.6g and 4.6h to see an example of the result of this pipeline.

4.2.3 Classification Data Sets

For the classification tasks we join the NEFRONA images that contained plaque with
their respective classification label given in the NEFRONA database by relating the
corresponding patient ID and artery territory.

Unfortunately, the DICOM metadata of the images does not distinguish between
the bulb and side internal regions. Hence, we can not relate the images of these re-
gions with their respective classification labels without mixing them. In addition to
that, we find several cases of inconsistencies produced by ultrasound images con-
taining plaque which their patient ID’s and regions are not documented as plaque
in the database (see Table 4.2 for number of cases). This fact, raises suspicions on the
reliability of the generated dataset.

We could not use the REGICOR dataset because there is no information about the
classification of the plaques.

Region Plaque Labeled Labeled patient
Ultrasounds plaques events

Carotid common 629 565 602
Femoral superior 710 678 690
Femoral common 803 769 789

TABLE 4.2: By region, number of plaque images and the cases where
they can be labeled using the information of the database
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(A) Original Image (B) Binarized image

(C) Morphological Closing (D) Inverse Image

(E) Filled image (F) Choose of plaque

(G) Morphological operations to adjust shape (H) Ground truth over original image

FIGURE 4.6: Ground truth steps creation for a image with plaque
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Chapter 5

Data Exploration

The aim of this section is to assess the assumptions in the literature related to the
factors of CV events, revised in chapter 2. As our main focus is the segmentation
and characterization of plaques, we will focus this section on studying the effect of
plaque presence to CV events.

5.1 Methods for Data Exploration

We start by reviewing the statistical methods that we will use in this chapter.

T Test

The t test can be used to determine whether two sets of data following a distribu-
tion are significantly different from each other. In this section, this test is used to
assess the difference in means by two populations. The assumption for this test is
that samples must be randomly sampled and independent, therefore there cannot
be relationship between the two samples.

Chi Square Test

When studying the dependency between two qualitative or categorical variables (an
important part of the variables in this dataset are categorical) a chi square test is
a possible choice. The value χ2 measures the discrepancy between the frequency
distribution of an observed event and a theoretical distribution. Both quantities can
be computed through a contingency table. The χ2 measure is computed as follows

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
,

where:

Oi = the number of observations of type i.

Ei = the expected (theoretical) count of type i.

The null hypothesis of this test states that both distributions are consistent, so for
greater values of χ2 more improbable is the null hypothesis.
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Confounders

In a similar way that happens in epidemiology (where factors that causes diseases
are studied), in this study we are concerned in studying factors that leads to CV
events. In such scenarios, it is not strange to find non considered variables that af-
fects in a causal way, both the dependent variable (in our case the CV event) and the
independent variable. These "third" variables are known as confounders. As stated
in (Kamangar, 2012), a common way to identify confounders is simply by a priori
domain knowledge. In this section, we analyze some potential confounders by com-
puting the odd ratio (OR) after stratifying the results on the levels of the confounder.
The OR represents the chance that an outcome will occur given a particular variable,
compared to the chance of the outcome occurring without the effect of that variable.

5.2 Plaque Presence and Cardio Vascular Events

The research on segmentation and classification of plaques on carotid ultrasound
images is justified by the statement that the plaques presence in carotids is a risk
factor for CV events.

Event CV: NO CV Event YES CV Event
Plaque_presence

No plaque 980 21
Plaque 1808 195

TABLE 5.1: Contingency table of Plaque presence and CV events for
all patients in NEFRONA dataset

In Table 5.1 we see a contingency table using all patients on the NEFRONA dataset
grouped by presence of plaque (in any territory) and if they have suffered or not a
CV event. We can see that around 9.7% of subjects with plaque (in any territory) have
suffered a CV event, while only 2.1% of the subjects with no plaque have suffered a
CV event. Apparently, there might be a relation between subjects having a plaque
and subjects without a CV Event. In order to formalize this relation we will perform
a χ2 Pearson test.

We want to determine whether if having a CV event is dependent on having a plaque
(in any territory). We define as a null hypothesis that presence of plaque do not have
any effect on the occurrence of a CV event.

H0 : Plaque presence do not have any effect on the occurrence of a CV event.

HA : Plaque presence have effect on the occurrence of a CV event.

The obtained chi value for this contingency table is χ2 = 57.2, assuming a confidence
of 5% this value is greater than the value of the distribution for 1 degree of freedom
and p=0.05 (χ2

0.05(1) = 3.84), thus it is possible to reject the null hypothesis and to
assume that there exist a relation between the plaque presence and the CV event
happening.
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A high value of χ2 can be due to two main reasons, either we have a big size of
samples or the observations are not independent. In the case of this dataset each
observation come from different patients, thus they are independent observations,
which means that this obtained value is due to having a high number of samples.

Let us see now if some of the factors that we have seen before are actually confound-
ing factors. There is no final consensus for the criterion to see if a factor is indeed
a confounder (Kamangar, 2012). In order to detect if a variable is a confounder we
use stratification. This consists on stratifying the results on the levels of the potential
confounder so that it produces apparent paradoxical results.

In this study we take as a measure of confounder the odd ratio.

5.2.1 Study of Confounders

Diabetes

The first potential confounder is diabetes. In Table 5.2 we see the contingency table
of variable Plaque Presence with CV event, stratified with diabetes variable.

Event CV NO CV Event YES CV Event
Presence_plaque diabetes

No plaque No Diabetes 864 16
Yes Diabetes 116 5

Plaque No Diabetes 1335 108
Yes Diabetes 473 87

TABLE 5.2: Contingency table of Plaque presence and CV events,
stratified to diabetes, for all patients in the NEFRONA dataset

The odd ratios for Table 5.2 are 4.36 (No Diabetes population) and 4.26 (Diabetes
population). A similar OR means a similar effect on CV and NO CV population.

Hypertension

The second potential confounder we consider is hypertension on the patient (again
it is a qualitative variable, the patient suffers or not from hypertension). In Table 5.3
we see the contingency table of variable Plaque Presence with CV event, stratified
with hypertension variable.
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Event CV NO CV Event YES CV Event
Presence_plaque Hypertens

No plaque No Hypertens 296 3
Yes Hypertens 684 18

Plaque No Hypertens 268 12
Yes Hypertens 1540 183

TABLE 5.3: Contingency table of Plaque presence and CV events,
stratified to hypertension presence, for all patients in the NEFRONA

dataset

In this case the OR are 4.42 for population without hypertension and 4.51 for pop-
ulation with hypertension. Again, the OR is similar for both populations, thus the
effect of hypertension is equivalent for both populations and is not a confounder
factor.

Dyslipidemia

Another potential confounder factor is dyslipidemia. In Table 5.4 we can see the
contingency table of variable Plaque Presence with CV event, stratified with dyslipi-
demia variable.

Event CV NO CV Event YES CV Event
Presence_plaque Dyslipidemia

No plaque No dyslipemic 508 7
Yes dyslipemic 472 14

Plaque No dyslipemic 626 52
Yes dyslipemic 1182 143

TABLE 5.4: Contingency table of Plaque presence and CV events,
stratified to dyslipidemia, for all patients in the dataset

In this case, the OR for non dyslipemic population is 6,02 and for dyslipemic popu-
lation is 4.07. According to these values dyslipidemia is a confounder.

Gender

Finally, the last potential confounder we study is gender. In Table 5.5 we can see the
contingency table of variable Plaque Presence with CV event, stratified with gender
variable.
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Event CV NO CV Event YES CV Event
Presence_plaque Gender

No plaque Female 513 12
Male 467 9

Plaque Female 619 54
Male 1189 141

TABLE 5.5: Contingency table of Plaque presence and CV events,
stratified to gender, for all patients in the dataset

In this case, the OR for female population is 3.73 and for male population is 6.15.
In this case we clearly see that depending on gender of the subject the effect differs
greatly and the major effect is found over population with CV events. As a conse-
quence we will take gender into account as a confounder factor for the next analysis.

5.3 Atheroma Extent and Cardio Vascular Events

The atheroma extent (defined as number of territories with plaque presence) is a
novel factor that can lead to a CV event (Valdivielso et al., 2017). In this part, we
contrast the effect of the atheroma extent on the patients dataset of NEFRONA.

As we have seen before, a potential confounder is the gender of the subject, that is
why, for the further analysis we will distinguish between genders.

Figure 5.1 shows the histograms of the distribution of plaques by subject gender,
considering subjects having suffered a CV event and subjects that have not suffered
a CV event. It is normalized by the number of subjects for each gender so that the
proportions can be compared.

There are two main observations concerning these plots. The first one is that for
subjects without a registered CV events, the number of territories with plaques
(atheroma extent) is concentrated at 0 territories and while increasing the number
of territories with plaque, the number of subjects decrease. In the case of the popu-
lation with CV events, this trend does not hold and the majority of atheroma extent
is concentrated to 4 regions for male patients and 2 territories for female patients.

The second observation is that the atheroma extent distribution is different for both
genders. Male patients tend to have more samples on advanced stages of extent
while female population is more concentrated in early stages of extent, for both pop-
ulations types (with and without CV events).

We proceed with a more formal analysis of the atheroma extent as a risk factor for
CV events. For this, in Tables 5.6 and 5.7 we can see the contingency tables for the
variables atheroma extent (in numbers of plaque) and the count of patients having
or not suffered a CV event. We have segregated the patients by gender.

We will perform a χ2 test to see if the variable Atheroma Extent (considered categor-
ical) is independent of having or not a CV event. In the case of female patients the
chi value for the contingency table is χ2 = 33.5 which is greater than χ2

0.05(9) = 16.9
(from the chi square distribution table for 9 degrees of freedom). We can reject the
null hypothesis of independence between both variables. In the same way, for male
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patients the obtained chi value is χ2 = 73.3 which is greater than χ2
0.05(10) = 18.30

(chi square distribution table for 10 degrees of freedom). This test only study the in-
dependence of both variables, but it does not deal with how the number of plaques
affects the probability of having a CV event.

FIGURE 5.1: Histograms (normalized) of the distribution of plaques
by subject gender, considering subjects having suffered a CV event

(left) and subjects that have not suffered a CV event.

Female population NO CV Event YES CV Event
Atheroma Extent

0 513 12
1 192 11
2 159 13
3 112 8
4 68 7
5 39 6
6 27 5
7 17 4
8 3 0
9 2 0

TABLE 5.6: Contingency table of atheroma extent and CV events for
female patients
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Male population NO CV Event YES CV Event
Atheroma Extent

0.0 467 9
1.0 264 14
2.0 242 24
3.0 198 20
4.0 163 27
5.0 113 10
6.0 77 14
7.0 65 15
8.0 40 9
9.0 20 5
10.0 7 3

TABLE 5.7: Contingency table of atheroma extent and CV events for
male patients

5.4 IMT and Cardio Vascular Events

In literature it is common to see the interest in IMT segmentation (Loizou, 2014),
because it is considered a potential risk factor for CV events. Now we want to review
this assumption through the NEFRONA dataset.

In Figure 5.2 we represent the normalized histograms (in violin chart format) of reg-
istered mean IMT by population gender (codified with the color) and by having suf-
fered or not a CV event (horizontal axis). The mean IMT is computed as the mean of
the IMT measured in all 10 territories for a each patient of the NEFRONA study. For
subjects having plaque, the mean IMT is truncated to 1.5 mm.

FIGURE 5.2: Histograms (violin charts) of Mean IMT by gender and
by having or not suffered a CV.

We note two main observations in this Figure. The first one is that mean IMT is
more concentrated on higher values for population having suffered from CV events
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for both genders. The second observation is that mean IMT measured for male pop-
ulation is concentrated on higher values compared to female population.

In order to study the apparent dependency between IMT and CV event we have
performed a t test for means difference. For male population we want to compare
the mean IMT distribution for the case with CV event and without CV event. As
the number of patients without CV event is greater we take a random sample of 167
patients so the sample size for both distributions to compare is the same. We can
consider both distributions having the same variance: σ2

noCV = 0.065 and σ2
yesCV =

0.068

For this test we state the following hypothesis :

H0 : µyesCV = µnoCV

HA : µyesCV 6= µnoCV

where µyesCV and µnoCV are the mean of the IMT values distributions of patients with
cardiovascular event and no cardiovascular event respectively.

Performing a t test we obtain a p-value of 2.8 · 10−05 . Hence there is statistical evi-
dence to reject the null hypothesis. Analogously for female population we obtain a
p-value of 5.8 · 10−8.

5.5 Discussion

In this section we have performed some data exploration on the NEFRONA dataset.
The observations can be summarized as bellow :

• The relation between plaque presence and CV event is reflected on the dataset
samples.

• The atheroma extent is also a risk factor for CV events.

• Measured IMT is generally higher on subjects with CV event.

• Gender is an important confounder variable as plaque presence, atheroma ex-
tent and IMT have different influence between genders, resulting on more reg-
istered CV events on male subjects.

These observations show the importance of plaques as CV events risk factors, which
justifies our interest on segmentation and characterization of plaques.
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Chapter 6

Experiments and Results

In this Chapter, we present our experiments on segmentation and classification and
interpret the obtained results. To do so we first define the validation metrics used to
evaluate the results.

6.1 Validation Metrics

The confusion matrix is the most extended indicator to summarize the performance
of a classification algorithm. Rows take into account instances in a real class while
each column represents the instances of a predicted class.

For example looking at Fig.6.1, an IMR pixel well predicted is counted as a True
Positive while a background pixel well predicted is counted as True Negative.

FIGURE 6.1: Definition of the confusion matrix for a binary problem.
The target you want to assert is called positive while the background

is Negative. Source: wso2.com

The six metrics that had been used to evaluate the performance in the segmentation
task are accuracy, sensitivity, specificity, precision, Jaccard index (intersection over
union) and Dice coefficient (also called F1 score).

• Accuracy: indicates the proportion of labels are well classified

• Sensitivity: shows how good is the NN detecting the positives

• Specificity: great value means low false alarm (false positive)

https://docs.wso2.com/display/ML120/Model+Evaluation+Measures
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• Precision: shows how many of the positive classified are relevant

• Jaccard: Measures the similarity between the two positive sets

• Dice Coefficient (DC), also called intersection over union: It is a combination
of precision and sensitivity

accuracy =
TP + TN

TP + FP + TN + FN
(6.1)

sensitivity =
TP

TP + FN
(6.2)

speci f icity =
TN

FP + TN
(6.3)

precision =
TP

TP + FP
(6.4)

Jaccard =
TP

TP + FP + FN
(6.5)

DC =
2TP

2TP + FP + FN
(6.6)

6.2 Segmentation Experimental Results

In this section we present the experiments and results for the segmentation problem.
We have performed two types of experiments. First we have trained and tested our
models on the same dataset (REGICOR) .On the second place with the model trained
for one dataset we have tested it on the other dataset (NEFRONA).

6.2.1 Trained and Tested on REGICOR

As commented in Chapter 4, REGICOR dataset contains a 6 labels GT, but NE-
FRONA a 2 labels GT (IMR and background). The main goal is to segment the IMR
of the CCA. For this purpose we compare trained models using 6 label images and
binary GT (IMR and background).

Recall that the employed method is Tiramisu (described in Section 3.4). Regarding
to its optimization we use the categorical cross-entropy loss function and RMSprop
as optimizer method where the learning rate is updated at every epoch with a re-
duction of 0.5% of their value. During the training phase, the model is evaluated
taking the mean value of the DC for each class.

Due to the small amount of data (141 in the training set and 18 in the test set), the
training of the network is split in two phases. On the first phase we do data aug-
mentation using random cropped images and adding Gaussian noise (1%), then the
images are introduced with a batch of 3 and the learning rate is set to 0.001. The goal
of the second phase is to do a refinement of the model learned, here we train using
the whole image, a batch of 1 and a smaller learning rate 0.0005.

Our implementation of Tiramisu uses a Keras fork with Theano as a backend. For
the segmentation experiments we have used a GeForce Titan X (Pascal) 12GB GPU.
The training time for the first phase with this machine is around 5 hours and 7.5 for

https://github.com/MarcBS/keras
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the second one. The training is early stopped when there is no improvement for 100
epochs in the first phase or 50 in the refinement training.

In Fig.6.2 we show some qualitative examples of two trained models. In Fig.6.3 we
show the results comparison of the four implemented methods using the metrics de-
fined in 6.1. Note that they are evaluated taking into account only the segmentation
of the IMR, even if the predicted image contain 6 classes. Since the IMR is a small
part of the image, accuracy and specificity has great rates due to the fact that they
take into account the well segmented background.
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(A) Original image (B) Original image

(C) 6 label ground truth (D) 2 label ground truth

(E) Prediction of T67_6Lab (F) Prediction of T67_2Lab

FIGURE 6.2: Two qualitative results examples of the segmentation
task obtained with Tiramisu67 trained with 6 label GT and 2 label GT.
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FIGURE 6.3: Segmentation of CCA images and evaluated with 2 label
ground truth (segmentation of the inter media region) in REGICOR
dataset. The name of the nets refer to the number of convolutional
layers (Tiramisu56 or Tiramisu67) and if the training is with the 2 label
(2Lab) GT or with 6 labels (6Lab). The vertical lines are the standard

deviation for the measures.

In most of the metrics, the results show that the best methods are the ones that
have been trained with 6 labels (see Fig. 6.3). Specially for those metrics that are
specifically used in segmentation problems: Jaccard and DC. In view of these re-
sults, we conclude that Tiramisu67 trained using 6 labels outperforms the rest of
models. Moreover, Tiramisu67 trained and tested with the 141 REGICOR images (6
labels) is an accurate method for the segmentation task.

However, the same method trained and tested with NEFRONA does not achieve
as good results as trained with REGICOR. This is probably due to the fact that the
images have only two labels and the GT was not directly defined by and expert
but semi-automatically produced (See Chapter 4). In addition to that, the IMR in
NEFRONA GT is usually partial since the clinical experts that select the IMR usually
delimit only a zone needed to compute the IMT.

6.2.2 Trained with REGICOR and Tested on NEFRONA

In terms of real world applications, the most common situation is that we only dis-
pose of a model trained with a single dataset. As a consequence it would be inter-
esting to see if this model can be applied to other ultrasound images of the same
territory but from a different source or dataset. Note that in this process, the images
may have different characteristics such as resolution. In the attempt of analyzing
this kind of behaviors we experiment by segmenting images from NEFRONA using
a FCN trained using the REGICOR dataset: Tiramisu67_6Lab.

In our fist attempt with this experiment we obtain poor and inconsistent results.
Hence, we consider in applying some preprocessing to the input test data in order
to transform it in a way that it has the same characteristics than the training dataset.
In the first place, we modify NEFRONA images so that they have the same reso-
lution than REGICOR. More precisely, from a resolution of 10.4 pixels/mm to 23.5
pixels/mm (corresponding to NEFRONA and REGICOR resolutions respectively).
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Then, we also modify the image grey levels to saturate the bottom 1% and the top
1% of all the pixels in the two datasets.

With these transformation the segmentation improved significantly as showed in
Fig.6.4 but they need a post processing to retrieve the true IMR because there is an
important amount of false negatives. The post processing is done in two steps. First,
we select the five maximum connected components. Then, we check whether the
90% of pixels above the selected components are segmented as lumen and the pixels
below as far wall (10 pixel width in both directions). We keep the largest connected
component that satisfies these requirement.

(A) Original image 1 (B) Original image 2

(C) Segmented image 1 (D) Segmented image 2

(E) Overlap image 1 (F) Overlap image 2

FIGURE 6.4: Segmentation of NEFRONA images using a FCN that
has been trained in REGICOR dataset. In images (E) and (F) the IMR
segmented by the NN is showed in red, in purple the hits with the

NEFRONA GT and in blue the false negatives.

We show some qualitative results of the method after the post-processing in Fig.6.5.
We empirically observe that, generally, the IMR is slightly over-segmented. In order
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to validate the results, we compute the IMT automatically from the segmentation by
taking the maximum thickness. However the obtained values do not have a good
correspondence with the IMT values of the NEFRONA database. We explain this
fact due to two main reasons: the over-segmentation of the method and corrupted
data. The database IMT values of those images that contain plaque are measured
next to the plaque region and hence those IMT values are lower than the predicted.

In addition to that, REGICOR dataset does not contemplate the presence of plaque
in the near wall, so our model does not segment plaque in this region as showed in
Fig.6.5k.
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(A) Result 1 IMR (B) Result 2 IMR (C) Result 3 IMR

(D) Result 4 IMR (E) Result 5 IMR (F) Result 6 IMR

(G) Result 1 Plaque (H) Result 2 Plaque (I) Result 3 Plaque

(J) Result 4 Plaque (K) Result 5 Plaque (L) Result 6 Plaque

FIGURE 6.5: Qualitative segmentation results. In red, delimitation of
IMR segmentation after the post processing. In purple, the IMR or
plaque GT. In images 6.5a to 6.5f one can see that sometimes the IMR
segmentation is wider in the sides, causing a wrong value of the IMT.
Plaques on the near wall that can not be detected by our trained FCN

is shown in image 6.5k.
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6.3 Classification Results

In this section we present the results we obtain for the plaque classification problem,
for the following models:

• Waveletes Packets and SVM.

• Grey-value classification (Hemodine algorithm).

• CNN-based approaches.

The two first models constitute the baseline for the classification problem. The third
model, which is based on CNNs, is the model we implement to compare the perfor-
mance with the previous models.

In Chapter 1 and 3 we already defined the plaque classes in function of their tis-
sue composition : uniform hypoechoic, predominantly hypoechoic, predominantly
hyperechoic, uniformly hyperechoic and calcified. Although there are five differ-
ent classes, these classes can be reduced into three by grouping the first and second
classes into the hypoechoic class, and grouping the third and fourth classes into the
hyperechoic class, and leaving the fifth class as it is. For the remaining of the chapter,
we will use the three class classification : Class 1 for hypoechoic plaques (lipid tis-
sue is predominant), class 2 for hyperechoic plaques (fibrosis tissue is predominant)
and class 3 for anechoic plaques (calcified tissues predominant). This classification is
justified by the tissue composition of the plaque and it is even used among medical
experts.

6.3.1 Baseline: Wavelets and Support Vector Machines

One of the baselines models we have chosen is based on Wavelets Packet Decompo-
sition. This model is described in (Tsiaparas et al., 2011).

Methods based on Wavelets Transformations are used for multiresolution image
analysis, and in few words consists in representing image details of different sizes
at different resolution scales. In particular, the implemented method uses Wavelet
Packet Decomposition to retrieve a feature vector from each image. Wavelet Packet
Decomposition is an extension of traditional Wavelet Transformation, the differ-
ence is that produces a richer space-frequency representation by recurrently ap-
plying Wavelet Transformations to decompose every subimage (i.e. the approxi-
mation subimage, the horizontal subimage, the vertical subimage and the diagonal
subimage) and not just over the approximation subimage as with traditional Wavelet
Transformations. As a consequence for a n level decomposition we will have 4n

subimages represented by it coefficients. In order to create the feature vector in
(Tsiaparas et al., 2011) the authors propose to compute the mean and the standard
deviation of each of the the coefficients of each 4n subimages, so that at the end each
image is mapped to a vector of 2× 4n features. With this representation we proceed
by training a classifier.

Wehave chooses this implementation as multiresolution analysis on diferent layers
of Wavelets Decompositions reminds what a NN is doing, by retrieving details of
different resolution levels.

Our implementation uses the PyWavelet package to compute the coefficients for a
3 layer Wavelet Packet Decomposition. Then for each image in the set, we create a
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patch on the region of the plaque and resize all the patches to have the same size. Af-
ter we compute the Wavelet Transformation coefficients, and we perform a reduction
on the dimension of the feature space (to 11 features as recommended in (Tsiaparas
et al., 2011)), and we train a Support Vector Machine (SVM) classifier with the feature
vectors as input data and its corresponding class as label.

In table 6.1 we show some of the results. The accuracy measure has been obtained by
cross validation with 5 folds. We use Coiflets family wavelets. In table 6.1 the results
of the last row corresponding "Femoral both" corresponds to experiments were we
mix both femoral territories data in the training and test set.

Territory: Number of samples Accuracy(%)

Carotid 492 54.4
Femoral superior 632 54.0
Femoral common 727 51.0
Femoral both 1359 51.6

TABLE 6.1: Best results for the accuracy in the test set for the Wavelets
Packets approach for the 3 class problem

The results we have obtained do not outperform the results obtained in (Tsiaparas
et al., 2011), with their own data. But some important differences are found to our
case. Their model were trained for a two class problem, and they stated the problem
for two different cases, carotids in systole and in diastole phases. In our dataset we
have both cases mixed and our classification is for 3 classes. Moreover, the number
of samples of their dataset is much smaller than ours.

6.3.2 Baseline: Grey-values and Support Vector Machines

As explained in section 4.1.2, the NEFRONA database contains the percentages of
plaque pixels classified by the Hemodine algorithm as calcium, fibrosis or lipids for
some of the plaque ultrasounds.

As a preliminary study, it may be interesting to analyze whether is it possible to
perform the plaque classification task from these values. In attempting to achieve
this, we apply a SVM and a dense Neural Network (DNN).

To train the SVM we use the implemented functions of the sklearn package for
python which implements the multi-class SVM using one vs one and one vs all ap-
proaches. We use a grid-search with cross-validation to optimize the parameters of
both methods.

Regarding to the DNN we design a simple architecture that combines dense layers
with ReLu activations and dropout (see Figure 6.2).



6.3. Classification Results 49

DNN
Input layer
Dense(256, activation=’relu’)
Dropout(0.15)
Dense(256, activation=’relu’)
Dropout(0.15)
Dense(512, activation=’relu’)
Dropout(0.15)
Dense(512, activation=’relu’)
Dropout(0.15)
Dense(3, activation=’softmax’)

TABLE 6.2: Architecture of DNN.

In the table 6.3 we show the obtained results.

Territory: Number of samples SVM Accuracy(%) DNN Accuracy(%)

CCA 373 60.52 52.63
Bulb 2034 68.14 66.67
ICA 970 71.13 71.13
Femoral superior 486 53.06 51.02
Femoral common 2088 55.98 55.02
Femoral both 2574 60.06 54.65
All territories 5951 56.54 57.21

TABLE 6.3: Accuracy in the test set for the 3 classes problem for the
different artery territories. In "Femoral both" we used both femoral

territories and in "All territories" we use all data territories.

Observe that SVM outperforms the DNN for all territories except for the all territo-
ries case. This may be explained by the low number of samples we dispose and the
low dimensionality of the input data and targets.

We observe a significant variation on the performance depending on the territory.
This can be explained from the distributions of the classes for each territories.

6.3.3 CNN-based Approach

Before going into the architecture and settings of the CNN one must define the input
data of the network. We discuss with medical experts about the factors they take into
account when classifying the plaque in order to design adequate transformations of
the data. More precisely, we are interested in whether the localization, size and
shape of the plaque play an important role in the classification task. The answer is
that they are not relevant factors compared to the grey-values of the plaques.

Taking this into account, we choose to use the patch of the plaque with data augmen-
tation as input data. We find the patch containing the plaque by using the ground
truth of the plaque, then we resize it into a common shape [160,90] so that all the
plaques have the same size. In addition to that, we normalize the data by diving the



50 Chapter 6. Experiments and Results

values by 255 (i.e. final input values ∈ [0, 1]). See Table 6.5 for examples of different
patches.

Besides that, we apply data augmentation. To do so we randomly flip each image
of every mini batch iteration horizontally and vertically with a 0.5 chance indepen-
dently (i.e an image may be flipped horizontally but not vertically).

We also try to input the hole image or only the plaque values by setting to 0 all values
that do not belong to the GT. However, we empirically test that using plaque patch
input and data augmentation produces a better performance of the method.

In the first approach with CNN’s we try to replicate the success of other works with
medical images that used pre-trained weights with ImageNet dataset of well-known
CNN architectures (i.e. VGG, AlexNet, GoogLeNet) to train their models (Shin et al.,
2016).

We use several architectures with random initialization and weights pre-trained by
ImagenNet data. To train them, we froze the convolutional layer weights and op-
timized the dense layers. However, in all the cases, the results produced a large
overfitting of the model (see the example of Fig. 6.6). This is, the function learned
by the model performs the task successfully only for the samples belonging to the
training set but the model function does not perform well for unseen data. Observe
that the validation loss does not decrease along the training.

FIGURE 6.6: Loss values and accuracy by epochs along the carotid
dataset training process of a pre-trained VGG16[refVGG16].

This fact, suggests that the model complexity (i.e. number of parameters) is too high
compared to the amount of data we use to train it. For this reason we implement our
own CNN architecture, which has less parameters, described in section 3.5.

We fine-tune the parameters of the network by implementing a cross-validated grid-
search over a parameter grid. We initialize the weights using the normal glorot ini-
tialization (Glorot and Bengio, 2010) and we use early-stopping to select the weights
before overfitting the model.

The parameters considered in the grid are:

• Batch size: number of samples used in each computation of the gradient.

• Optimizer method: between subgradient descent and RMSprop.

• Learning rate: initial and final learning rate values and number of epochs be-
tween a decay.
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• Weights of the categorical loss function.

Our implementation splits the data into train and test subsets with 0.1 proportion.
Then, trains the network for each combination of the aforementioned proposed pa-
rameters using cross-validation with k-folds. This is, splitting the train set into k
equally size subsets and training k times the model by using one of the folds as
validation set and the remaining k − 1 folds as training set. In our implementa-
tion we used k = 8. For each of the parameter setting the mean accuracy of the
k trainings is computed. The setting with higher mean accuracy is returned as the
selected method. Then, this parameter setting is used to train final model using the
hole training dataset. A similar approach was used to design the architecture of the
network.

The results, still present an important overfitting. However, for the 3 classes prob-
lem, the validation loss does decrease for several epochs but at some point its ten-
dency change and it increases. Hence, the model function is learning for unseen
data, then overfits. We select the model given by the weights that achieve the low-
est validation loss value. In Fig.6.7 we show examples of learning curves for the 3
and 5 classes classifications problems. Observe that for the 5 classes problem we still
overfit the model.

FIGURE 6.7: Loss values and accuracy by epochs using the CCA
patches of plaques. 3 and 5 classes classifier at the top and the bottom

respectively.
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Given the observed overfitting, one may think that the results could be improved
by taking measures against it like increasing the dropout or reducing the number of
parameters. However, if we do so, the training loss function does not decrease and
obviously neither the validation loss.

It is not trivial whether or not it is better to train the classifier for all the territories
images at the same time. On one hand, training them together provides a larger
dataset which is beneficial. On the other hand, even though it is logical to believe
in a relation between the different territories classifications, the generalization of the
classification increases the problem complexity because images of different territo-
ries are likely to have different characteristics. We trained the model separately and
joining different territories (see Table 6.4). The results show a better performance
when training each territory independently.

Territory: Number of samples Accuracy(%)

CCA 492 62.00
Femoral superior 632 63.45
Femoral common 727 64.50
Femoral both 1359 61.24
All territories 1851 60.00

TABLE 6.4: Best results for the accuracy in the test set for the CNN
approach for the 3 class problem

In general, a 60-65% accuracy for a 3 class problem is not a very impressing result.
However, one must take into account the difficulty of the task. Doctors explained us
that inter-observer variability of the problem is very hight. Unfortunately, we do not
dispose of any metric this measure. Anyway, which seems clear from the learning
curves is that the model lacks from data.

To understand better how the model is behaving we retrieve the confusion matrix of
the test set predictions. As example we show the CCA territory confusion matrix in
Fig.6.8). The other territories have a very similar behavior.
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(A) Confusion Matrix (B) Normalized Confusion Matrix

FIGURE 6.8: Confusion Matrices on the test set for the CCA territory.
Test set has 50 samples. The other territories behave analogously.

The model partially distinguishes between hypoechoic and hyperechoic classes but
miss-classifies the calcified plaques mainly as hyperechoic. This fact can be ex-
plained by the frequency distribution of the classes which is (0.37, 0.50, 0.13) for the
hole CCA dataset. We try to correct this behavior by modifying the weights of the
loss so that the a miss-classification of a calcified plaque is penalized harder without
success. When the model does predict some calcified classes it presents overfitting
and worst overall accuracy on the test set.We believe that the small amount of the
minority class data does not provide enough information to the model so that the
class can be characterized.

To end this section we retrieve some qualitative results. In table 6.5 we show differ-
ent class samples belonging to the test set and their respective predicted classes for
the different methods. We show the input resized patch before data normalization.
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True Wavelets + SVM Hemodine + SVM CNN
Input Patch class prediction prediction prediction

Unif. Hypoechoic Hypoechoic Hypoechoic Hypoechoic

Pred. Hypoechoic Hyperechoic Hyperechoic Hypoechoic

Pred.Hyperechoic Hypoechoic Hyperechoic Hyperechoic

Unif. Hyperechoic Hyperechoic Hyperechoic Hyperechoic

Calcified Hyperechoic Hyperechoic Hyperechoic

TABLE 6.5: Qualitative results of different classification methods for
different CCA plaque tissues. Correct predictions are marked in bold

.

The implementation of these experiments is publicly published in GitHub 1. To im-
plement it we use Keras with Tensorflow as a back-end and we use a GeForce FTX
1080 12GB GPU. The required computational time for training the model varies from
the amount of data of the territory and the parameters settings. With the best se-
lected parameters, training the CNN with the CCA data takes 6 minutes and with
All territories data takes around 12’5 minutes.

1https://github.com/escapa12/carotidsTFM

https://github.com/escapa12/carotidsTFM
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main purpose of this thesis was to explore the applications of Deep Learning al-
gorithms to the automation of the process of plaque segmentation and classification.

During the realization of this thesis we have covered most of steps in a Machine
Learning/Data Science oriented project (problem identification, data preparation,
algorithms implementation and results).

An important part of the thesis was related to understand the data and prepare it
for segmentation and classification (which is a time consuming part that it usually
does not have the credit it deserves). In this part we have have implemented some
methods to organize the dataset and create the GT. We also explored the dataset in
order to obtain some insights to see the importance of the detection of plaques for
CV events and relating medical variables to CV events. The importance of gender,
atheroma extent and IMT was demonstrated.

Regarding the segmentation part we have achieved two things. First we have suc-
cessfully replicated the segmentation over REGICOR images. Second, we have also
demonstrated that using a pre-trained NN with the CCA from one dataset (REGI-
COR), with the objective of segment images of another dataset (that have been taken
under different conditions, NEFRONA) is a feasible task.

Finally as for the classification of plaques by tissue, we realized that it is a more
complex task. The main component to take into account is the grey level of the
pixels and this has a high variability on ultrasound images as we seen comparing
the results between baseline methods. Applying grey-level based methods, we saw
that a SVM outperforms a dense NN. Moreover we saw that a CNN with only the
plaque as an input can achieve better results than a dense net, which means that the
spatial distribution of grey pixels could play a significant role on the classification
task.

Some of the main difficulties encountered during the project had been the following.
On one side, as stated before, the data was not directly prepared to apply the tech-
niques on them so some important time was dedicated on this aspect. On the other
side the task became difficult due to the intrinsically noise of ultrasound images,
differences of contrast and shadows, which translates to a high variable images as
opposed to images of other fields.
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Although we achieved better results with the introduction of Deep Learning algo-
rithms, we did not find the improvement to be that remarkable for a three class clas-
sification problem in ultrasound carotid images. However we consider that keeping
on working on this area to find a automatic way to classify plaque and so reduce the
high inter-observer variability of the physicians is important.

7.2 Future Work

We would like to finish this text with some possible lines of of work, that we would
have liked to explore more and that could make as a continuation of this work.

In 6.2.2 we saw that it is feasible to segment images of the same territory from a
different source than the training images. However there is still some room for im-
provement. One of the problems we had was that after applying the same grey
level transformation and scaling to the same resolution, NEFRONA images were
almost twice bigger than REGICOR, so passing images with similar size of the train-
ing dataset could improve the segmentation task. Furthermore, the proposed FCN
is only trained with images of the plaque that are in the far wall. For this reason, the
model could not detect plaques in near wall. We believe that extending the training
set with more diverse data could lead to an improvement of the results. Moreover,
making the segmentation task viable for small datasets by refining a pre-trained net-
work could facilitate real world applications. Another interesting line of study is to
incorporate extra information such as the number of plaques or the IMT value to
improve the performance of the NN.

In the problem statement (Chapter 1) we exposed the difference between symp-
tomatic and non symptomatic plaques. Symptomatic are those which are more likely
to cause a CV event. In this thesis, we tried to classify whether a given plaque be-
longs to a patient that will suffer a CV event in the following 24 months for the NE-
FRONA dataset. However, the results were not satisfactory, we believe due to the
unbalance of the data and the complexity of the problem. Moreover, in Chapter 5
we showed that there are many other factors that relate to CV events. An interesting
line of future work would be designing a network that combines the patients data
as well with its ultrasounds images in order to predict CV events. One of the diffi-
culties of this task, is the incompleteness of the data. This is because the available
ultrasound territories are significantly different for different patients.
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Appendix A

Member’s contribution

The distribution of specific task has been the following:

• Arnau Escapa : At the beginning he was in charge of the server’s set up for
running the different methods. Afterwards he was in charge of the classifica-
tion part aiding in the data exploration part.

• Jonatan Piñol : At the beginning he was in charge of generating the GT to
use to train the different methods. Afterwards he was in charge of the data
exploration part aiding with the baseline methods for the classification part.

• Enric Sarlé : At the beginning he was in charge of the data cleaning part aiding
with the server’s set up. Afterwards he was in charge of the segmentation part.

In writing the report, the contribution of each member is estimated to be equal.
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