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Objectives

@ Application of Machine Learning (ML) techniques for the
identification of patterns in a Public Goods Game.

@ Evaluation of Unsupervised and Supervised learning
algorithms using experimental game theoretical data.

@ In more general terms, contribute to the debate about
Collective Risk Dilemmas.

@ Questions we want to answer:

e Which kind of ML tools are potentially good?
o Why?
e And what for?
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Game Theoretical approach

@ "Theory of Games and Economic Behavior” of John von
Newmann & Oskar Morgenstern in 1944,

@ Progression: 50 articles published annually at 1982 to 200 at
1998.

@ Game Theory structure: agents, actions & payoff function.

o Keystone concepts: Equilibrium & Generalizability.
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Public Goods Game

@ Reference: John O. Ledyard - Public Goods: A Survey of
Experimental Research (1995).

@ Game-Theoretical prediction & Sociologic-Psycologic
prediction.

@ 40% of the endowment invested to public goods.

o Traditional strategies: Free-Riding, Conditional Cooperation
or Altruistic.
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Collective Risk Dilemma

@ A collective has to solve a risk achieving certain goal
cooperating among them.

@ Individuals do not know a priori which could be better to have
the maximum profit.

@ This schema fits very well in the analysis of the political
relations to paliate climate change.

@ Treatment groups: Homogeneity, Endowment Heterogeneity,
Loss Heterogeneity.

@ Open Question: Which context benefits cooperation and the
success rate in these games.
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Sample size

Table: Total number of participants in related literature

Publication # of participants
Milinski et al. 2008 180
Milinski et al. 2011 342

Burton-Chellew et al. 2013 192
Brown & Kroll 2017 378
Waichman et al. 2018 510
Current work 612
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@ Three experiments: DAU (324 participants), STREET (108
participants) & VIL (180 participants).

@ Contributions at each round and socio-demographic
information.

@ Average age: between 25 and 35 years old.

@ Academic background: vocational school (30-50%).

@ Two treatment groups: Homogeneous & Endowment
Heterogeneity.
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Experimental design

e "Lab in Field” experimentation (Sagarra et al. 2016)
@ General audiences participates in the generation of data.

@ The objective of this experimental procedure is to avoid the
problems of generality and bias of the sample.
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Normalization

Table: Normalized contributions per round according selection

Initial Endowment 0 2 4
20 0 1.00 2.00
30 0 0.67 1.33
40 0 0.50 1.00
50 0 0.40 0.80
60 0 0.33 0.67
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Principal Component Analysis
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Figure: Scatter plot of the two first principal components for both
treatments (the left for heterogeneous games and the right for
homogeneous ones
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Optimal number of clusters

Table: The optimal number of clusters for each criteria

Dataset NbClust GAP Cal & Hara Krz & Lai Hartigan  Silhouette
Heterogeneous 3 2(-0.68) 2(58.87) 6(11.86) 3(19.62) 2(0.22)
Homogeneous 3 2 ( 2 ( ) 4 (7.16) 3(15.51) 2(0.13)

Het DAU 3 2 ( 2(38.17) 3(1471) 3(8.40) 2(0.23)

STREET 3 2(-004) 2(2234) 8(485) 3(7.41) 3(0.18)

Hom DAU 4 2 ( 2 ( ) 4(16.46) 4 (11.04) 2(0.15)
VIL 3 2 ( 2(28.02) 10(3.90) 3(14.71) 2(0.12)
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© Exploratory Analysis - Game Theoretical Results
@ Average Contribution per Round

Accumulated Average Contribution per Round

Total Contribution Ratio

Contribution according the endowment

Composition of groups

Inequality - Gini Coefficient
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Figure: The normalized average contribution per group of 6 with the
standard error. Dotted line represents the fair average contribution.(Left)
Treatment level. (Right) Dataset level.

Ferran Espafiol Casanovas Identifying patterns of human behavior:



Average Contribution per Round
Accumulated Average Contribution per Round
Total Contribution Ratio

Exploratory Analysis - Game Theoretical Results

@ Without intermediate climate target

—+—6 poor
2| —+—3poor &3 rich
—=—6 rich

1 2 3 a 5 6 7 8 9 10

18 b with intermediate climate target

€ invested per group of 6 subjects to protect “climate”

4 —+—6 poor
2 —*—3poor &3 rich

*—6 rich
o
1 2 3 4 5 6 7 8 9 10
Round of the climate game
erran Espafiol Casanovas Identifying patterns of human behavio



Average Contribution per Round
Accumulated Average Contribution per Round
Total Contribution Ratio

Contribution according the endowment
Composition of g

Inequality - Gini

Accumulated Average Contribution per Round

Exploratory Analysis - Game Theoretical Results

Heterogeneous games Homogeneous games

Accum mean contribution per group of &

2 4 6 8 10 2 4 6 8 10

Figure: Average accumulated contribution for each treatment, the
straight line shows the fair accumulated contribution and the shadow
represents the standard deviation. (Left) Heterogeneous games. (Right)
Homogeneous games.
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Fig. 2. Cumulative sum of money per group and round provided for the
climate account. The target sum to be achieved after 10 rounds was €£120; the
treatments differed in the probability, i.e., 90%, 50%, and 10%, with which all
subjectsin a group lost their individual savings when the group did not supply
the target sum for the climate account
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Figure: (Left) PDF and (Right) CDF of the TCR distribution according
the treatment group.
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Figure: (Left) Average endowment contributed with standard error.
(Right)Average proportional endowment contributed with the standard
error. Dots lines represent the fair average selection.
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Figure: Boxplot with the average proportion of endowment contributed
for each initial endowment per each dataset.
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Figure: This bar plot represents the number of users of each category
(free-rider, fair, altruist) according the treatment
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Figure: Evolution of the Gini coefficient for both treatments.
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@ Clustering and Classification Results

o Clustering analysis and characterization of groups
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@ Classification results
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Figure: Clustering results on the PC plane. Hierarchical Clustering results
for (Left) Heterogeneous and (Right) Homogeneous games.
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K-Means
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Figure: Clustering results on the PC plane. K-Means Clustering results
for (Left) Heterogeneous and (Right) Homogeneous games.
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Clustering results - Statistical Information

Heterogeneous:

@ Cluster 1: 51 participants (18.89%) with an average contribution of 2.24
40.56 MU (0.79 £0.17 MU).

@ Cluster 2: 152 participants (56.30%) with an average contribution of 1.90
40.75 MU (0.42 4-0.12 MU).

@ Cluster 3: 67 participants (24.81%) with an average contribution of 2.70
+0.80 MU (0.75 40.14 MU).

Homogeneous:

@ Cluster 1: 186 participants (54.39%) with an average contribution of 1.76
40.43 MU (0.44 40.11 MU).

@ Cluster 2: 156 participants (45.61%) with an average contribution of 2.66
40.40 MU (0.66 £-0.10 MU).
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Figure: Percentage barplot with the percentage of population from each
cluster and initial endowment.
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Figure: Proportional population assigned to each cluster for homogeneous
DAU and VIL datasets.
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Figure: (Left) PDF and (Right) CDF of the TCR distribution per cluster.
Heterogeneous games.
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Figure: (Left) PDF and (Right) CDF of the TCR distribution per cluster.
Homogeneous games.
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Figure: Evolution of the normalized average contribution with the SE.
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Figure: Individuals in the PC plane colored according their clusters before
and after the objective is fulfilled (heterogeneous)
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Figure: Individuals in the PC plane colored according their clusters before
before and after the objective is fulfilled (homogeneous).
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Figure: Percentage stacked bar plot of members of each cluster according
their initial endowment.
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Figure: Histograms with the TCR for each cluster (Left) before and
(Right) after the objtective is fulfilled.
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Figure: Cdf of the total contribution ratio for each cluster (Left) before
and (Right) after the objtective is fulfilled.
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Classification results

Table: Results for classifications algorithms

Dataset LogReg DecTree KNN LDA GNB SVM
Heterogeneous  0.519 0.510 0.551 0.510 0.528 0.579
Homogeneous  0.678 0.572 0.608 0.670 0.652 0.681
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Classification report

Table: Results for classifications report

Dataset Best Classifier av. Precision av. Recall fl-score
Heterogeneous SVM 0.33 0.57 0.42
Homogeneous SVM 0.48 0.70 0.57
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Confusion matrix
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Figure: Confusion matrix for SVM classifier for (Left) Heterogeneous
(Right) Homogeneous.
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Figure: Confusion matrix for (Left) Logistic Regression classifier
(Heterogeneous) and (Right) K-Nearest Neighbors classifier
(Homogeneous).
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Clustering Discussion

@ We conclude that ML techniques are useful to study
experimental data on CRD.

@ Unsupervised Learning has identified consistent groups based
only on the contributions of the participants.

@ Still, we have a little amount of data to work properly with
Supervised Learning techniques.
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Game Theoretical Discussion

@ We have not found significant differences between both
treatments in terms of succes rate (100% in our case) or the
total contribution ratio.

@ We detected imbalances in the heterogeneous groups.
Contrary to Milinski et al. 2008 and Waichmann et al. 2018
in our case individuals with high initial endowment contributes
proportionally less than the participants with low initial
endowment.
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Thank You
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