UNIVERSITAT DE BARCELONA

FUNDAMENTALS OF DATA SCIENCE MASTER’S THESIS

Sentiment Analysis of student evaluation
of teaching

Author: Supervisor:
Indra IKAUNIECE Venelin KOVACHEV
Eloi PUERTAS

Antonia M ARTI

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamentals of Data Science

in the

Facultat de Matematiques i Informatica

July 1, 2018

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matematiques i Informatica
MSc

Sentiment Analysis of student evaluation of teaching

by Indra IKAUNIECE

After every semester in University of Barcelona all students are asked to fill a survey
about professors and subjects from the previous semester. Students provide eval-
uation by answering two different kinds of questions - quantitative (numeric), and
qualitative (open text). It would be useful for the professors, the program coordi-
nators, and for the directors of the departments to have an automatic quantitative
overview of the textual answers.

The goals of this project are twofold: 1) to create a supervised dataset for senti-
ment analysis and polarity detection of student opinions in two languages (Catalan
and Spanish); and 2) to validate the dataset empirically and propose competitive
baselines by investigating, implementing and comparing sentiment analysis algo-
rithms and methods to automatically classify student comments as positive, nega-
tive or neutral.

HTTP://WWW.UB.EDU
http://mat.ub.edu

Chapter 1

Introduction

Sentiment analysis is a fast-growing research area that focuses on extracting senti-
ment from textual documents. Common applications are sentiment extraction from
Tweets, product reviews and comments on the Internet, with a goal to make better
marketing decisions, recommendations, improve different services, as well as to ad-
vance human-computer interaction. Sentiment analysis and the sub-task of polarity
detection can be approached as a binary classification task ("positive" or "negative"),
a multi-classification task by adding a "neutral” class, or a task of estimating positiv-
ity and negativity on a scale with discrete or continuous numbers.

The approaches are supervised and unsupervised, with supervised approaches
generally performing better but also requiring a large manually annotated corpus in
the relevant language. Unsupervised approaches, on the other hand, use linguistic
knowledge and predefined linguistic rules that are applied to a text corpora. Results
on sentiment analysis are good for English, as it has many annotated datasets for
supervised learning. However in last years the focus has also been placed on other
languages, where annotated datasets have been created.

This project focuses on creating a corpus and applying supervised methods on
answers in student questionnaires from Computer Science bachelor programs in the
University of Barcelona. After every semester students fill in the surveys about sub-
jects and lectures, and comment their opinions in open questions. These answers are
important part of the teacher evaluation, and it would be useful to have a quantita-
tive evaluation of the open answers. For example, it would eventually be useful to
have a system that given all the surveys reports on how many positive and negative
comments each professor has. This project is a first step towards a more complex
system of collecting and evaluating these student answers. We focus on creating a
dataset from student surveys, developing code for processing this dataset, and ap-
plying and comparing some of the most common methods for sentiment polarity
detection.

The main goals of this project are:

1) Exploring related work that has been done for English, and other languages for
dataset creation and supervised sentiment analysis. Learning about common ap-
proaches and state-of-the-art methods.

2) Creating a dataset.

e Data extraction. Student surveys contain all the data in pdf format, so the
tirst step of this project is to extract the data.

e Data pre-processing, including, cleaning the data, anonymizing any men-
tion of professor names. This step also includes detection of language, be-
cause, while the questions of survey are in Catalan, student answers are
often Spanish and English as well.

2 Chapter 1. Introduction

"non

e Data annotation, that is, marking, each sentence as "positive", "negative"
or "neutral". After completing this step, we will have created a supervised
dataset on which models can be applied.

3) Performing experiments with different features and models. Develop code for
repeating these experiments. Comparing these experiments on original comment
language (Catalan and Spanish) and their translations to English. Answer the
following questions:

e which is the best feature setup for multi-class sentiment polarity detection
for this particular dataset;
e which model performs the best;

e does automatically translating Catalan and Spanish comments to English
improve the classification results.

Chapter 2

Background information and
theory

2.1 Related work

Sentiment analysis has been an active research topic in the past years, although most
experiments and algorithms have been developed for English, as it is the most used
language on the Internet, therefore it has the most texts for experiments (for example,
annotated datasets with movie reviews (McAuley and Leskovec, 2013) (Pang and
Lee, 2004)). More recently, interest has shifted to other languages, such as, Catalan
and Basque, for example, there has been created an annotated corpus with Basque
and Catalan hotel reviews (Barnes, Lambert, and Badia, 2018).

Spanish is also quite common on the Internet, so there have been several pub-
lications about sentiment polarity detection in Spanish which I will describe in this
chapter.

The article "Computational approaches to subjectivity and sentiment analysis"
(Balahur Dobrescu, Mihalcea, and Montoyo, 2014) presents an overview of the latest
trends and current challenges in the field of sentiment analysis, and as the first chal-
lenge they name the multilingual sentiment analysis. To tackle this problem many
researchers use translations to English, and then applying existing English lexicons.

Another paper that describes a survey on the main approaches on sentiment ex-
traction on English, other European as well as several Indian languages is the paper
called "A Survey on Sentiment Analysis and Opinion Mining Techniques" (Kaur and
Gupta, 2013). In this paper as the most popular approaches are listed the subjective
lexicon approach (each word has a score that describes it as positive, negative or neu-
tral), n-gram modeling (uni-gram, bi-gram, tri-gram models) and machine learning
(supervised learning with extracting different features from the text).

What most related papers have in common is that they all use a manually an-
notated corpus for supervised methods in the required language. Before extracting
features they perform data cleaning, text tokenization and segmentation. All the pa-
pers have the pipeline of firstly selecting and extracting features from text (that is,
converting raw text to numerical vectors), then they apply models and algorithms,
and then report obtained results.

In this chapter I will investigate features, models and evaluation that were used
in some of the publications that performed related experiments.

Features

In an experiment about language-independent movie review polarity detection, pa-
per "Language-Independent Sentiment Polarity Detection in Movie Reviews: A Case

4 Chapter 2. Background information and theory

Study of English and Spanish" (Graovac and Pavlovic-LaZetic, 2014), they used byte-
level n-grams as features. The n-gram is usually defined on a word level, but can also
be defined on a character or byte level, where the difference is that character level
n-grams doesn’t include digits, punctuation, whitespace, etc., while the byte-level
n-grams include all characters. In this publication they claim that using byte-level
n-grams leads to larger relative insensitivity to spelling errors, as well as this ap-
proach doesn’t require any linguistic knowledge and is language and topic indepen-
dent, with the only disadvantage that this leads to a large number of n-grams. For
each training category (all positive reviews are combined in one category and all
negative reviews in another) they extract n-grams (in their case for Spanish the best
results were achieved with n = 11), then for each n-gram they calculate a normal-
ized frequency, order n-grams an a descending order, and select first L n-grams (they
found that for Spanish the best results were with L = 40000).

In the article "Sentiment polarity detection in Spanish reviews combining super-
vised and unsupervised approaches" (Martin-Valdivia et al., 2013) they train classi-
fier for film reviews in Spanish, and as training data they use Spanish corpora as
well as corpora of Spanish reviews automatically translated to English. They com-
bine two techniques: machine learning (supervised) and an unsupervised semantic
orientation approach, which doesn’t need training but just positive or negative ori-
entation of the words. They combine three models: the first one uses machine learn-
ing on Spanish corpus, the second one uses the same model on the English corpus,
and the third one uses the SentiWordNet (Baccianella, Esuli, and Sebastiani, 2010)
resource on the English corpus to generate an unsupervised polarity. After this, they
test different ways to combine these three models. For the supervised models they
compared different features: TF (term frequency) which is the relative frequency of
each word, TO (term occurrences) which is the absolute number of occurrences of
each word, TF-IDF (term frequency—-inverse document frequency) which combines
TF and IDF which decreases the weights of words that appear very often (for ex-
ample, the word "the") and increases the weights for words that occur rarely, as they
might be more meaningful, and lastly they use BTO (binary term occurrences) where
a word is 1 if it is present and 0 if it is not. For each set of features they test results
without processing, as well as with stemming (using only word stems) and filtering
out stop words (common meaningless words).

The paper "Assessing State-of-the-Art Sentiment Models on State-of-the-Art Sen-
timent Datasets" (Barnes, Klinger, and Schulte im Walde, 2017) compares several
models on several different datasets using several different features. For super-
vised methods they use word embeddings with different dimensions (50-, 100-, 200-
, 300-, and 600-dimensional sentiment embeddings) which were trained on a 2016
Wikipedia dump. Also they use models that are trained on a bag-of-words represen-
tation (each training example is represented as a vector in a size of the vocabulary,
representing the number of times each word appears).

Another related experiment is described in a publication "Sentiment Polarity De-
tection From Amazon Reviews: An Experimental Study" (Sygkounas, Rizzo, and
Troncy, 2016), where they use ensemble learning to implement five state-of-the-art
classifiers, for which the features are n-grams and a dictionary with semantic values
of emojis.

Models and methods

The experiment about language-independent movie review polarity detection (Grao-
vac and Pavlovic-LaZzetic, 2014), after having extracted the n-grams and their relative

2.1. Related work 5

frequencies for all positive and negative documents, for each test review again ex-
tract the n-grams and their relative frequencies and calculate a dissimilarity measure
between the test review and the two categories. They use three different dissimilar-
ity measures. The first is used by (Keselj et al., 2003):

- 2 (fi(n) — fo(n)\?
dK(Py,) =) < fl(ln) + fo(n) >

where f1(n) are the relative frequencies of n-grams in the either positive or neg-
ative category profile P; and f,(n) the frequencies in the test document profile.

The second dissimilarity measure is from (Cavnar and Trenkle, 1994), and it is
referred to as dOP (Out-of-Place). To calculate this measure for each n-gram in test
document the same n-gram is located in the category profile and and then calculated
how far it’s location in category profile is from the location in the test profile. If the
n-gram is not in the category profile, then the distance is equal to the number of n-
grams in the profile. The sum of all these values for all n-grams is the dissimilarity
measure dOP.

The third measure they use is a measure introduced by the first author of the
same paper (Graovac, 2014), it is referred to as dSD (symmetric difference), and it
represents the number of n-grams that appear in the union of the profiles but not in
their intersection:

necategoryprofile

dSD(Py, P,) = |PL AP,

where again P is a category profile and P, is a test document profile.

In the article that combines the supervised and unsupervised approaches to de-
tect polarity in Spanish reviews (Martin-Valdivia et al., 2013), authors used two
learning algorithms, Support Vector Machines (SVM) and Naive Bayes (NB), but
they only reported on SVM as it achieved better results. They report results on SVM
trained on different features with and without stemming and stop words (they found
the best result when they didn’t use neither stemming nor stop words). They trained
these models on both the original Spanish corpora as well as on the translated En-
glish corpora. For the unsupervised part, they calculated the SentiWordNet (SWN)
score for each document of the English corpora according to method by (Denecke,
2008). To combine the result from these three classifiers they tested voting and stack-
ing algorithms.

In the paper were authors compare several models of several datasets (Barnes,
Klinger, and Schulte im Walde, 2017), first of all they train an L2-regularized logistic
regression classifier on a bag-of-words classifier, then the same classifier on average
of the word vectors (trained on Wikipedia dump, different dimensions). Then they
also implement LSTM and PLSMT, and one layer CNN with one convolutional layer.
For all the neural network models they initialize word representations with skip-
gram algorithm with negative sampling (Mikolov et al., 2013).

Evaluation

All of the above mentioned papers use one or more of the following four evaluation
measures: Precision (P), Recall (R), Accuracy (Acc) and F1, which are defined as:

P TP R — TP Ao — TP+ TN 1_2PR
~ TP+FP’ TP+ FN’ ~ TP+TN+FP+FN’~~ P+R

6 Chapter 2. Background information and theory

where TP or True Positive is the number of correctly assigned test documents
to the considered (for example positive) category, TN or True Negative is the num-
ber of correctly assigned negative label test documents, FN or False Negative is the
number of negative assigned labels that should be positive, and FP or False Positive
is the number of positive assigned labels that should really be negative.

Chapter 3

Data processing

3.1 Data collection

In our dataset we have two type of student surveys - a survey about a professor
(related to a subject), and a survey about a subject (that might have more than one
professor). Both surveys have questions in Catalan language, but answers are often
also in Spanish or English. Surveys are formatted in pdf files.

I Enquesta d'opinié do alumnat do grau

INFORME INDIVIDUAL DE L'ASSIGNATURA

11.

FIGURE 3.1: Example of a student survey

Figure 3.1 displays an example of a student survey, which contains the following
information:

1. academic year,
2. semester,
3. professor name (for professor surveys),

4. group number,

8 Chapter 3. Data processing

5. subject name,
6. number of students enrolled in the course,
7. number of filled out surveys,

8. percentage of students who participated in the survey.

Furthermore each survey has some questions that are answered with grades from
0 to 10 (number 9. in Figure 3.1).

For professors the questions are:

1. whether the student is satisfied with the teaching activity of the professor,
2. whether the teacher maintains a good communication with students,

3. whether the professor clearly explains the contents of the subject,

4. whether the professor has adequately performed his tasks like teaching plan,
program, delivery of evaluation etc.

And for subjects the questions are
1. whether the student is satisfied with the subject in general,
whether the learning activities were adequate,

whether the assessment activities were adequate,

L

whether the amount of work required was corresponding to the number of
credits,

5. whether the study materials were useful.

For these questions there is information about frequency of the marks, the aver-
age for each question and the deviation of each question.

There are also open questions, for which our goal is to extract which sentiment
is expressed. The order for all questions is random and currently it is not possible
to match written answers to open questions with the points given to the questions
from the first group. However it should be useful to explore this mapping in the
future in order to obtain semi-supervised dataset.

The open questions for professors are:

1. which aspects of the teaching activity of this teacher has helped the students
the most in the process of learning the subject,

2. which aspects of the teaching activity by this professor should be improved.

And the one open question for subjects is simply to write any comments, sug-
gestions or observations.

3.2. Data pre-processing 9

For this thesis there are 113 surveys available for professors and 105 surveys for
subjects. The surveys are from the academic years of 15/16, 16/17 and 17/18, and
they are all from Computer Science bachelor programs in University of Barcelona.

To extract the information from the pdf Tused a Python library pdfquery *. Pdfquery
is a wrapper around several Python libraries for extracting data from pdf files. All
the information from these files was extracted to a MongoDB ? database so that later
it is easy to query and process this information. This database has two collections -
one for professors and one for subjects. To extract information from the first page,
each box with information is found based on their exact coordinates on the pdf file.
Then for the rest of the pages that have the open questions, all the pages are loaded,
and then their xml content is downloaded. Then items of xml are sorted by their
location on pdf (y axis) so that all answers and questions are in the correct order. To
detect which items are questions we check for their coordinates, and read questions
and answers one by one.

3.2 Data pre-processing

After the data was extracted from the pdf files to the MongoDB database, we prepro-
cessed the data before feature extraction.

First of all, professor names were replaced by a placeholder within the comments
to make all the data anonymous. Second, for each comment its language was de-
tected, so that later comments with the same language can be grouped, and because
feature extraction is language dependent. Third, all Spanish and Catalan comments
were translated to English, in order to obtain new English corpora, that will be
used in further experiments. Fourth, each sentence was processed with a part-of-
speech tagger, tokenized and lemmatized. Last, each sentence was annotated, that
is, marked as positive, negative, or neutral, in order to obtain a supervised dataset.

Data anonymization

Because the student surveys are not publicly available, it was important to replace
all of the mentioned professor names with a placeholder. To find the names, a list
of all the professor names from all the surveys was created, and these names and
parts of these names were searched for in the comments. The meaningless parts of
names were removed from the search list such as "de" and "mas". Then each name
in comment was replaced with a placeholder "PROFESSOR_NAME".

Language detection

For language detection task Python libraries such as langdetect > and polyglot * were
tested , but I found the googletrans ° to be the most accurate (and also the slowest), as
other libraries often failed to recognize languages, especially in shorter comments.
The library googletrans implements Google Translate API in Python.

Ihttps://github.com/jcushman/pdfquery

2Document oriented database, easy for storing and searching documents. https://www.mongodb.
com/

*https://github.com/Mimino666/langdetect

4http://polyglot.readthedocs.io/en/latest/Transliteration.html

Shttps://pypi.org/project/googletrans/

https://github.com/jcushman/pdfquery
https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/Mimino666/langdetect
http://polyglot.readthedocs.io/en/latest/Transliteration.html
https://pypi.org/project/googletrans/

10 Chapter 3. Data processing

Because this API has some restrictions regarding how many queries can be made
at once, for looping through the comments I had to add some waiting time (0.4 sec-
onds) between the processing of each comment.

With this library there were a few cases that wrongly detected Catalan language
and French or Dutch, and some other mistakes when dealing with Catalan and En-
glish abbreviations. These cases were fixed manually.

After language detection, the corpus can be split in three parts with

e 1598 Catalan comments,
e 632 Spanish comments,
e 14 English comments.

The average word count per comment was 27.9 words for Spanish comments
and 25.5 for Catalan comments, and average word count per sentence was 16.7 for
Spanish sentences and 15.4 for Catalan sentences. In figures below it is visible that
while the average word count per comment and sentence is quite high, most of the
comments have less than 10 words.

Word count per comment (Spanish) Word count per comment (Catalan)
a 0 a
175 ! !
| |
150 i 400 E
! !
125
300
100
75 200
50
100
25
o T 0 T
0 20 40 60 80 100 0 20 40 60 80 100 120
Word count per sentence (Spanish) Word count per sentence (Catalan)
7
400 i 1000
!
350 E
!
!
300 800
250
600
200
150 400
100
200
50
o T o
0 10 20 30 40 50 60 0 80 0 0 40 60 80

FIGURE 3.2: Average word count per comment and sentence for Cata-
lan and Spanish

English corpora

To obtain the parallel English corpora, each non-English sentence was translated to
English. For the task the same Python library googletrans as for the language detection
was used. Each translated sentence was inserted in the MongoDB as a new field
"sentences english".

3.2. Data pre-processing 11

Part-of-speech tagging

Part-of-speech tagger assigns to each word or a group of words its lemma (word in
its dictionary form) and a part-of-speech tag.

Because Polyglot doesn’t yet cover part-of-speech tagging for Catalan language,
for this task Freeling ® was used, which is an an open source language analysis tool
that covers most feature extraction for both Spanish and Catalan.

For this tool (as well as for annotating) each sentence was saved in a .txt file, with
file names like "language_PdfID_NumQuestion_NumSentencelnsideCommentary",
and create a dictionary for pdf names and ID’s. These files are anonymous, but to
keep track of them and a database a dictionary of keys was created.

Annotation

To obtain a supervised dataset, each Spanish and Catalan sentence was annotated,
that is, marked as either positive, negative or neutral. The annotation was done by
STeL (El Servei de Tecnologia Lingiiistica de la Universitat de Barcelona) ’.

Creating files for the feature extraction

Next a new MongoDB collection was created with only the relevant fields, where
each comment is a separate document. The fields are

e survey type (professor or subject),

pdf file name as an ID,

question number to which the comment belongs,

language of the comment,

sentences of a comment,

sentences translated to English,
e sentiment polarity of each comment.

For these experiments the work was done both on sentence and comment level,
therefore to split comments into sentences Python library polyglot was used, which is
a natural language processing pipeline that supports different feature extraction for
several languages. This library will also be used later for feature extraction.

For the purpose of the classification experiments, all database entries were con-

verted to text files and grouped by language. The text files are available on GitHub
8

®http://nlp.1lsi.upc.edu/freeling/index.php/
"http://stel.ub.edu/
8https://github.com/Indral/student-survey-analysis/blob/master/README.ipynb

http://nlp.lsi.upc.edu/freeling/index.php/
http://stel.ub.edu/
https://github.com/IndraI/student-survey-analysis/blob/master/README.ipynb

13

Chapter 4

Feature extraction and
Experimental setup

After data pre-processing, the resulting dataset has Spanish and Catalan sentences
and their English translations marked as "positive", "neutral" or "negative". For each
sentence there is also a corresponding Freeling output where all words in each sen-
tence were lemmatized (each inflected word or group of words are converted to their
dictionary form (lemma)), and each lemma has its part-of-speech tag.

For Spanish language comments, after pre-processing and annotation there are:
e 883 negative sentence;

e 169 positive sentences;

e 137 neutral sentences.

For Catalan language comments, after pre-processing and annotation there are:
e 1596 negative sentence;

e 885 positive sentences;

e 444 neutral sentences.

In this chapter I will describe how different features (bag-of-words for original
and lemmatized texts, n-grams, word2vec features) were extracted from each sen-
tence, as well as the whole comment and their English translation. Then I describe
algorithms that are compared in the next chapter, and how they are evaluated.

4.1 Features

The following features are the most common features used for text representation
for natural language processing. All these features were extracted for both sentences
and comments in their original language (Spanish or Catalan) and their translation
to English. These features and different combinations of them were used as input
for different machine learning models (described in next section), and the results are
analyzed in the next chapter. The code for extracting these features is in GitHub '.

Ihttps://github.com/Indral/student-survey-analysis/blob/master/README. ipynb

https://github.com/IndraI/student-survey-analysis/blob/master/README.ipynb

14 Chapter 4. Feature extraction and Experimental setup

4.1.1 Bag-of-words

The most simple way of representing texts is using a bag-of-words (BOW) model.
These features will be used as a baseline for machine learning models. To create this
model we need to create a vocabulary of all the words that appear in the training cor-
pus. To obtain these words I removed punctuation, and lowercased all the words.
The feature vector for each sentence (or comment) is in the length of the vocabu-
lary. For Spanish the average feature vector length is 2801 (depending on train-test
partition) and for Catalan it is 4952.

The most simple way to create feature vectors and the first feature type I test is
for every sentence to put 0 for words that do not appear in that particular sentence
and 1 for words that appear in that sentence. In some publications this method is
also called BTO (binary term occurrences).

The second feature vector I used was to count frequencies of how many times
each word appears in each sentence.

To reduce feature vector dimension and remove impact of meaningless words
(stop-words) I deleted stop-words from the vocabulary. The list of Spanish and Cata-
lan stop-words was downloaded from GitHub.

For both of these vectors I did experiments with and without TF-IDF weights
that are described later in this chapter.

This type of feature vector on reports whether or how many times a word ap-
pears in text, but doesn’t address questions like these:

e if a word is misspelled it will be interpreted as another word,
e each declension and conjugation of a word is interpreted as a separate word,

e word order and context is ignored.

4.1.2 n-grams

Creating n-gram features is similar to creating the bag-of-words features except that
instead of taking one word, we take a sequence of n words. To create the vocabulary
for n-grams we will create a list of all co-occurring words with a window of n. The
length of each feature vector then will be the length of the vocabulary of n-grams.
For Spanish and Catalan this length is varies from 10556 to 16864 depending on
choice of n and train-test split.

For the experiments I tested how n-grams of different lengths perform. Because
most of the sentences and comments consist of less than 20 words, it is probable
that shorter n-grams might perform better. I will start with bi-grams (n = 2), tri-
grams (n = 3), and see if further increasing the size of n improves the classification
accuracy.

4.1.3 Lemmas and part-of-speech tags

Lemmatization is converting each word or group of words to its dictionary form,
taking into account their context within the sentence. Part-of-speech tagging is la-
beling words with their part-of-speech tags (these tags contain information about
the word class, declensions, conjugations, gender, count ans so on).

To convert words to lemmas and assign part-of-speech tags a language analysis
tool Freeling was used. Tagsets for part-of-speech tagging for Freeling are based on

4.1. Features 15

the guidelines from (EAGLES, 1996). With these guidelines it should be possible to
"encode all existing morphological features for most European languages".

From lemmatized senteces I experimented with bag-of-words and n-gram fea-
ture vectors created from lemmatized words, POS tags as well as lemmatized words
combined with their part-of-speech tags. Because the obtained part-of-speech tags
are quite complex and include a lot of information (type, gender, conjugations and
so on), I also experimented with keeping only the first letter of the part-of-speech
tag, which indicates the type of word (noun, verb, pronoun and so on).

414 Word2vec embeddings

Another way to convert text to feature vector is to use pre-trained word2vec models.
These models are neural networks that assign to each word a vector in n-dimensional
vector space, such that words that appear in similar context will be be located closely
in the vector space. To train such models a very large corpus is needed. For this task
I downloaded all texts from Spanish and Catalan Wikipedia, and with this corpora I
pre-trained word embeddings using Gensim word2vec > with 100 dimensions.

4.1.5 TF-IDF

TF-IDF or term frequency-inverse document frequency is a weight that can be cal-
culated for each word, n-gram, lemma and so on. For the above mentioned features
I calculated how many times a term (a unique word) appears in each sentence. This
approach can be normalized taking into account that each sentence and comment
is of different length, so for longer sentences terms can appear more times. Term
frequency (TF) weight normalizes this by dividing the number each term appears in
a sentence with the term count of that sentence.

TF(t) — number of times term appears

total number of terms

Term frequency needs to be normalized further because some terms (for exam-
ple, stop-words like "and" or "the") will have higher scores even though they are not
meaningful. To decrease the weights for these terms inverse document frequency
(IDF) can be calculated, which assigns larger positive weights if the term does not
appear in too many other sentences, and smaller or negative weights if the term
appears in most of the other sentences.

IDF(t) = lo (total number of sentences >
T number of sentences that contain this term

Term frequency-inverse document frequency (TF-IDF) combines both of these
weights as

TF-IDF(t) = TF(t) x IDF(t)

I apply this normalization to all of the above described feature vectors to see if
this improves the classification. To perform this normalization I use sklearn Tfidf-
Transformer.

Zhttps://github.com/RaRe-Technologies/gensim

https://github.com/RaRe-Technologies/gensim

16 Chapter 4. Feature extraction and Experimental setup

4.2 Machine learning models

4.2.1 Baseline score and sentiment polarity lexicon

Before applying any machine learning models calculated a baseline score by count-
ing the number of positive and negative words in each sentence, and assigning a
score "positive" or "negative" depending on which kind of words appear more, or
a score "neutral” if a sentence has the same amount of positive and negative words.
Lists of positive and negative words for Spanish and Catalan were downloaded from
Kaggle dataset (Tatman, 2017) which contains sentiment polarity lexicons (positive
and negative) for 81 languages.

Resulting accuracy for all the annotated data using this method was 0.481 for
Spanish language and 0.399 for Catalan language. These are not good results, but in
further experiments I will use these positive and negative vocabulary lists in combi-
nation with other features to see whether this improves the classification.

Another baseline score is the expected accuracy, that is the accuracy we can ex-
pect to get by simply guessing the most common class. This baseline is known as
"most common class" baseline. . The Spanish dataset is very unbalanced with 74 per-
cent of negative sentences, so the expected accuracy for Spanish is 74%. The Catalan
dataset is more balanced, with 54 percent of negative sentences, so here the expected
accuracy is 54%.

4.2.2 Model training and evaluation

To implement all algorithms I use sklearn °. Because with sklearn results can vary
depending on the chosen random state, I will train and evaluate the model on 10
different random states, and average the results.

Because our dataset is unbalanced (there are many more data samples for neg-
ative data than for positive and neutral data) I will also experiment with adjusting
the weights for each class.

For each setup (features + model) the train and test split was 3/4 to 1/4 of data.
To evaluate the results of each setup a 4-fold cross-validation was performed by
rotating the three-fourths of training data and testing on the remaining quarter of
the data.

423 SVM

In the above described related work, support vector machines with linear kernel
outperformed the other methods. This algorithm finds the maximum margin hyper-
plane that splits the training space into two classes. It is a computationally expensive
algorithm, but because we have a small dataset, this will be the first method to test
in this work. I trained a standard linear support vector machine with hinge loss and
I2 penalty. For implementation I will use sklearn with different penalty parameters
and different number of iterations. The sklearn implementation supports multi class
classification by applying the one-vs-all scheme.

4.2.4 Multinomial NB

Another method often mentioned in related work is Naive Bayes algorithm. Because
we have discrete labels and our features contain frequencies and counts (of terms,

3http:/ /scikit-learn.org /stable/index.html

4.2. Machine learning models 17

n-grams) I tested Multinomial Naive Bayes algorithm. Even though in theory the
Multinomial NB algorithm requires integer features, in practice normalized features
(like TF-IDF) works as well. This algorithm models the probability of a term belong-
ing to a certain class with a multinomial distribution (Manning, 2008).

4.2.5 Logistic regression

The next algorithm we tested was logistic regression. Logistic regression is a dis-
criminative model that models the probabilities using sigmoid function. I imple-
mented this algorithm with sklearn with [2 penalty. With this implementation the
multi class classification is supported by using one-vs-all approach. Like with sup-
port vector machines I tried different number of iterations, and adjusting weights
for different classes.

4.2.6 Feed forward neural network

Last, for comparison, a simple feed forward neural network with 2 hidden layers
was implemented with Python deep learning library Keras *. This model is trained
with Adam optimizer with cross-entropy loss, 20 training epochs and batch size 128.

“https://keras.io/

https://keras.io/

19

Chapter 5

Experimental results

This chapter introduces the results after performing all the experiments. The main
research questions of this chapter are:

e which feature setup gives the best accuracies for each class;
e which model performs the best;

e does automatically translating comments to English improve the classification
results.

The experiments were performed at sentence level which is the original anno-
tated dataset and at comment level. To obtain the labels for comments, I counted
the number of positive, negative and neutral marked sentences in the comments,
and chose the most frequent label. These labels on comment level I also added to
MongoDB database. For these experiments I trained and tested on full comments.

In this report I only report results for Catalan, as for this language there is a
larger and well balanced dataset, as well as because this language is less researched.
Experiments for Spanish are in Github.

It is possible to get higher accuracy, by not balancing class weights. This way we
can have high results for the negative and positive class, but also very low results for
the neutral class (as it only has a few training samples). All of the reported results
have balanced class weights. The other experiments are in Jupyter notebooks.

For the sentence level (Catalan dataset) the train-test split is

e 2191 instances for training;

e 731 instances for testing.
And for comment level this split is

¢ 1198 instances for training;

¢ 400 instances for testing.

This split varies a bit for different folds in cross-validation.

For each model family I only report results of the best performing setting. Sim-
ilarly for each feature family (BOW, n-grams, lemmas and POS, word2vec) I tested
different combinations with count, frequencies, TF-IDF, removing stop-words, but
here I only report the best performing feature combinations.

20 Chapter 5. Experimental results

5.1 Evaluation metrics

For selecting the best models and features I report only the accuracy metrics, which
provides the proportion of correctly classified sentences or comments against all of
the sentences or comments. In the notebooks however I also compare the confusion
matrices to see if neutral class is not excluded.

count of correctly classified examples

accuracy =
y count of all the examples

For the best performing feature and model combinations I also report confusion
matrix.

Predicted class
positive negative neutral
positive | pos-pos pos-neg pos-neu
True class negative | neg-pos neg-neg neg-neu
neutral | neu-pos neu-neg neu-neu

FIGURE 5.1: Confusion matrix

In addition for the best models I also report precision, recall and F; score for each
class, where

TP . _ 2PR
TP+FP" ' P+R

precision = T + P ;recall =
where TP - true positives, TN - true negatives, FP - false positives and FN - false
negatives.

5.2 Results

For training support vector machines and logistic regression 5 iterations were per-
formed. For these two models the best accuracy is often achieved when all the
classes ("positive", negative" and "neural") have the same weights (that is, weight
for each class is one). However in this case neutral class is usually very badly clas-
sified with good results on positive and negative classes. Because of this, all the re-
ported examples have balanced weights where the weight of each class is inversely
proportional to frequency of this class in the training data.

Below are reported model performances on different features created from orig-
inal words, lemmatized words or POS tags, with results at sentence level, results
with sentences automatically translated to English, and results at comment level.

In this report I do not report the results of Multinomial Naive Bayes algorithm
as it performs badly and doesn’t deal well with unbalanced classes.

5.2. Results 21

5.2.1 Results with bag-of-words feature vectors created from original vo-
cabulary

In the table 5.2. are reported results with different type of features using bag-of-
words approach, with vectors created from original words (not lemmatized).

The first result - bag-of-words vectors with binary term occurrences as features
trained with support vector machine algorithm is 0.647. This is the most simple ma-
chine learning model, therefore this result can be interpreted as a baseline result for
the machine learning methods.

SVM LOgISt-IC
regression
unsupervised baseline 0.399
most comn:lon class 0.54
baseline

BOW BTO 0.647 0.68

BOW TF-IDF 0.677 0.706

BOW frequencies 0.633 0.683

BOW frequencies TF-IDF 0.673 0.707

FIGURE 5.2: Results with bag-of-words features (original texts) on
sentence level

Further in table 5.2. we present the results of bag-of-words feature vectors with
term frequencies. For support vector machines these vectors give lower results,
while for logistic regression algorithm the results are a little better.

Using TE-IDF on both binary term occurrences and term frequencies significantly
improves the result for both methods and both feature vectors. With logistic regres-
sion reaching accuracy of 0.707.

SVM LOgISt-IC
regression
unsupervised baseline 0.399
most comnjlon class 0.54
baseline

BOW BTO 0.623 0.661

BOW TF-IDF 0.654 0.682

BOW frequencies 0.607 0.644

BOW frequencies TF-IDF 0.651 0.671

FIGURE 5.3: Results with bag-of-words features (original texts) on
comment level

In Figure 5.3. we display the results for the same model and feature setup as
above but trained and evaluated at comment level. Resulting accuracies are a bit
lower than at the sentence level. This can be explained with the fact that the com-
ment level has fewer training data. Also annotations may not always be completely

22 Chapter 5. Experimental results

accurate, because they were calculated automatically by counting the number of
positive and negative sentences in each comment. This might not always be accu-
rate, as it is possible that a comment has an equal number of positive and negative
sentences, but is actually an overall negative or positive comment (rather than an
overall neutral comment).

SVM Loglst!c
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline

BOW BTO 0.644 0.679

BOW TF-IDF 0.692 0.705

BOW frequencies 0.642 0.681

BOW frequencies TF-IDF 0.693 0.705

FIGURE 5.4: Results with bag-of-words features on English transla-
tions

Figure 5.4. shows the same features and models trained and tested on original
sentences translated to English. The results are improved for support vector machine
and are about the same for logistic regression.

5.2.2 Results with bag-of-words feature vectors created from lemmatized
texts and POS tags

As mentioned above, a disadvantage of using bag of words features can be that the
same word in different forms or conjugations, or the same word with a spelling error
will be interpreted as a completely separate word. This has bigger impact on Catalan
language than on English as it has more word forms, for example, many inflected
forms for verbs. This is avoided by using lemmas instead of tokens.

For Catalan language using lemmatized words reduces the length of vocabulary
from 4941 to 3330 words.

SVM Loglst_lc
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline

BOW BTO 0.65 0.69

BOW TF-IDF 0.7 0.711

BOW frequencies 0.642 0.685

BOW frequencies TF-IDF 0.698 0.712

FIGURE 5.5: Results with bag-of-words features on lemmatized
words

5.2. Results 23

From table 5.5. it is clear that using lemmas rather than the original word forms
has improved the results for all bag-of-words feature vectors and for both algo-
rithms. Now the best accuracy - 0.712 - is obtained by using bag-of-words feature
vectors with term frequencies and TF-IDF with lemmatized vocabulary, trained with
logistic regression algorithm.

SVM Loglst_lc
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline

BOW BTO 0.499 0.548

BOW TF-IDF 0.518 0.564

BOW frequencies 0.466 0.546

BOW frequencies TF-IDF 0.528 0.574

FIGURE 5.6: Results with bag-of-words features on POS tags

Another type of feature to test is part-of-speech tags. Here for each word I took
the first letter of part of speech tag (this denotes the type of word) and calculated
all the bag-of-words vectors with these part-of-speech tags. Results are in the table
above. It is clear that the results are not good with only using part-of-speech tags,
but combining these features with others might improve results (this is tested in later
sections). Applying TF-IDF improved results in all the cases, with best result again
being the most complex bag-of-words features trained with logistic regression.

5.2.3 Results with n-gram feature vectors created from the original vocab-
ulary

In figure 5.7. I displayed the results for logistic regression model with n-gram fea-
tures for n = 2,3,4,5 with and without applying TF-IDF normalization. These re-
sults are calculated on sentence level on lemmatized texts. It is clear that n-grams
with n larger than 2 perform worse, and it is only worth to further look at bi-grams
with and without TF-IDFE.

24 Chapter 5. Experimental results

0.68 1 —&— n-grams

067 A n-grams + TF-IDF

0.66 4
0.65 4

0.64 1

accuracy

063 4

062 4

061 4

0.60 T T T T T T T
20 25 30 35 40 45 5.0

n

FIGURE 5.7: Logistic regression accuracy with different order n-
grams

In the tables for sentence level, comment level and translated sentences, are re-
ported model performances on bi-grams with without applying TE-IDF normaliza-
tion.

Results for all three tables are worse than using bag-of-words features. English
translations have almost the same accuracy as the original sentences. Accuracies are
better on comment level, which is likely because many sentences are too short to
contain several meaningful bi-grams.

SVM LOgISt-IC
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline
bigrams 0.609 0.613
bigrams tf-idf 0.609 0.642
FIGURE 5.8: Results with 2-gram features (original texts) on sentence
level
SVM Loglst_lc
regression
unsupervised baseline 0.399
most comn:lon class 0.54
baseline
bigrams 0.625 0.645
bigrams tf-idf 0.6 0.666

FIGURE 5.9: Results with 2-gram features (original texts) on comment
level

5.2. Results 25

SVM LOgISt-IC
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline
bigrams 0.61 0.613
bigrams tf-idf 0.609 0.642

FIGURE 5.10: Results with 2-gram features on English translations

5.2.4 Results with n-gram feature vectors created from lemmatized texts
and POS tags

In the tables for lemmatized words and POS tags, are reported model performances
on bi-grams and tri-grams with and without applying TF-IDF normalization.

As expected, using lemmatized words perform better than using the original
words, however these features do not perform as well as the bag-of-words features.
Still, these results are better than the machine learning baseline, that is, 0.647% accu-
racy, so concatenating these feature vectors with bag-of-words feature vectors might
improve the accuracy of classification.

SVM LOgISt-IC
regression
unsupervised baseline 0.399
most comn_mn class 0.54
baseline
bigrams 0.647 0.667
bigrams tf-idf 0.654 0.679
trigrams 0.573 0.604
trigrams tf-idf 0.558 0.608

FIGURE 5.11: Results with n-gram features on lemmatized words

In the table 5.12. the results of using part-of-speech n-grams as features are pre-
sented. These results are actually better than part-of-speech bag-of-words features
where the best accuracy was 0.574%, while here the best accuracy is 0.588%.

26

Chapter 5. Experimental results

5.2.5 Results with word2vec feature vectors

SVM Loglst!c
regression
unsupervised baseline 0.399
most comn_mn class 054
baseline
bigrams 0.492 0.565
bigrams tf-idf 0.577 0.588
trigrams 0.52 0.547
trigrams tf-idf 0.587 0.588

FIGURE 5.12: Results with n-gram features on POS tags

In the table 5.13. I report results for original sentences, full original comments,
and lemmatized sentences using word2vec with TE-IDF features, as they always per-
formed better that word2vec features without TF-IDE.

These vectors are trained on Catalan Wikipedia corpus. Texts in this corpora be-

long to very different domains from our survey domain texts, so for future to get
better results it would be useful to train word2vec embeddings on a domain specific
corpus. Still comparatively to the bag-of-words vectors, they perform quite as good.

SVM Loglst!c
regression
unsupervised baseline 0.399
most comrr_mn class 0.54
baseline
original sentences 0.651 0.655
comments 0.633 0.643
lemmas 0.665 0.668

5.2.6 Combining feature vectors

FIGURE 5.13: Results with word2vec with TF-IDF features on sentence
level

For this part I combined different feature vectors and applied the support vector
machines and logistic regression on them. On the table 5.14 are reported some of the
best combinations, with the best result achieved by using logistic regression with
combined bag-of-words term frequency with TF-IDF, bi-grams with TF-IDF and tr-
grams with TF-IDF, which gives the best accuracy 0.726.

5.3. Discussion of the results for Catalan language dataset 27

SVM Loglst_lc
regression
unsupervised baseline 0.399
most common class baseline 0.54
bow freq tfidf + 2gram tfidf 0.71 0.722
bow + bow POS 0.69 0.712
bow + 2gram + 3gram 0.715 0.726
bow + 2gramp+035gram + 2gram 0.706 0.725

FIGURE 5.14: Results with combined feature vectors

5.2.7 Feed forward neural network

For comparison I trained a simple feed forward neural network with 2 hidden layers.
This network was trained with only 20 epochs, and it generally performed similarly
as the other two machine learning models. The accuracies were:

e 0.665 for bag-of-words with term frequencies and TF-IDF;
e 0.697 for lemmatized bag-of-words with term frequencies and TF-IDF;

e 0.71 for the best performing feature combination in the other machine learning
models, that is, lemmatized bag-of-words with term frequencies and TF-IDF
combined with bi-grams and tri-grams, both with TF-IDF.

5.3 Discussion of the results for Catalan language dataset

Catalan dataset was balanced in that 54% of examples were of negative class. How-
ever only 15% of the examples were from neutral class, which led to lower results
for accuracy for neutral examples. In the practical part I compared models with
and without balancing class weights, however in the report all the results are with
balanced class weights.

The expected accuracy for Catalan dataset is 54%, as this is the percentage of the
majority class, meaning that this number we can expect to get by always guessing
the majority class. We used this number as a baseline accuracy for all the models.

In this report two machine learning models were compared - support vector ma-
chine and logistic regression. Logistic regression models generally performed better
than the support vectors machine models. In the practical part also Multinomial
Naive Bayes model was tested, and while it had a good accuracy it did not deal well
with the unbalanced neutral class, and did not predict it.

For most of the first setups I also trained the same models on comment level and
on the sentences that were automatically translated to English, to answer question
whether translating to English will improve the accuracy. On comment level almost
all features (except n-grams) performed worse than on the sentence level. This is
because, first of all, on comment level there are much less training examples, and
second, the annotations for comment level were calculated automatically from the
sentence level annotations so they might contain some mistakes.

As for the English translations, they perform almost as good as the original sen-
tences, and for support vector machines, in some cases they perform even a bit bet-
ter. When translating texts automatically, translation mistakes can accumulate and

28 Chapter 5. Experimental results

lead to worse results. However English language is the most researched for the sen-
timent analysis, and all the features I am comparing have been tested a lot and are
often good for English language corpora. Also translating Catalan to English might
result in more simple sentences as English does not have that many word inflections.

First the most simple features were used, that is, bag-of-words with binary term
occurrences. These features set the baseline for machine learning models at 0.647 for
support vector machines models and 0.707 for logistic regression models.

Then more complex features were discussed and compared, such as different
bag-of-words features, n-gram features and word2vec features. The more complex
bag-of-words features improved the classification accuracy, while the other more
complex feature types alone did not result in higher accuracy.

However n-grams did lead to better results when using full comments rather
than sentences as a training and testing data. This is because, as shown in a previous
chapter, sentences are mostly very short, and combining them into comments give
some longer sentences. However many comments consist of only one sentence.

Big improvement for all the feature setups was achieved by using word lemmas
rather than words in their original inflections. All the feature setups and models
gave somewhat better results with using only lemmas.

Further, after using all the feature vectors as input to machine learning models
separately, I compare combining different feature vectors, which leads to the best
accuracy when combining bag-of-words term frequency, bi-grams and tri-grams
(all with TF-IDF and created from lemmatized sentences), with the best accuracy
of 0.726.

Last, a simple feed forward neural network was tested. With the best feature
setup, it resulted in 0.71 accuracy. This result could be improved by adding more
training examples and performing the training for more epochs.

This final table reports the steps that helped improve the accuracy from the base-
line to the final best results. The baseline for counting positive and negative words
was 0.399 and the baseline of expected accuracy was 0.54. For support vector ma-
chine models the first baseline was 0.65 and for logistic regression models 0.726.

We can see that logistic regression models generally performs better that support
vector machine models with all of the features reported in this table. However, we
can see that, support vector machine models are very impacted by using different
feature vectors, while for logistic regression models variations in results are not that
wide.

Unsupervised SVM Logistic
regression

Sentiment polarity lexicon 0.399
Expected accuracy 0.54

BOW BTO 0.65 0.69

BOW freq TF-IDF 0.698 0.712

bow + 2gram + 2gram POS 0.705 0.719

bow freq tfidf + 2gram
tidf 0.71 0.722
bow + 2gram + 3gram 0.715 0.726

FIGURE 5.15: Accuracy improvements by using different feature vec-
tors and methods.

5.4. Discussion of the results for Spanish language dataset 29

In the two figures below (figure 5.16. and figure 5.17) are presented confusion
matrices for the best setups (that is, bag-of-words with term frequencies, bi-grams
and tri-grams) for both models, support vector machine and logistic regression.
There is a big improvement from the expected accuracy, which is:

e 30% for the positive class;
e 54% for the negative class;
e 15% for the neutral class.

All the classes have improved accuracies. Results with support vector machine
are a bit more balanced, but have lower overall accuracy than results with logistic
regression.

Predicted class
positive negative neutral
positive | 0.687 0.258 0.553
True class negative | 0.663 0.878 0.056
neutral | 0.13 0.62 0.25

vector machine.

FIGURE 5.16: Confusion matrix for the best accuracy with support

Predicted class
positive negative neutral
positive | 0.673 0.281 0.046
True class negative | 0.074 0.895 0.031
neutral | 0.157 0.63 0.213

FIGURE 5.17: Confusion matrix for the best accuracy with logistic
regression.

5.4 Discussion of the results for Spanish language dataset

In the practical part also experiments with Spanish dataset was done. However, this
datasets is very small (three times smaller than the Catalan dataset), as well as very
unbalanced with 0.74% of the expected accuracy.

To deal with this class imbalance I tried to balance the number of training exam-
ples based on the less represented class, but this led to an even smaller number of
training examples.

The same experiments as for Catalan were also done for Spanish. The best result
achieved was 0.75%, that is only one percent above the expected accuracy. Most of
the setups performed best when simply guessing the majority negative class, and
when forced to predict other classes with adjusting class weights, led to worse over-
all accuracy.

This dataset needs to be improved by obtaining more data examples for training.

31

Chapter 6

Conclusion and future directions

The goals of this project were

1) to create a dataset for supervised learning from quantitative answers from stu-
dent surveys from Computer Science bachelor programs in the University of
Barcelona; and

2) to perform experiments with the obtained dataset for sentiment polarity detec-
tion with different feature setups and models.

First of all, some of the related work on dataset creation and sentiment polarity
detection for similar datasets in English and Spanish was introduced and analyzed.
The related work, however, was done on larger datasets, that were focused on dif-
ferent domains (movie reviews, Amazon product reviews).

For creating the dataset, first of all, I extracted all the answers from the survey
pdf files and saved them to the database. Then I performed data cleaning, split-
ting comments in sentences, anonymization and language detection. After that, the
anoymized data was sent to STel institute were they were annotated by a native
Spanish and Catalan speakers. In addition, for all the words were lemmatized and
assigned a part-of-speech tag, All these steps resulted in two supervised datasets -
one in Spanish and other one in Catalan. Both datasets are novel and are address-
ing limitations of the currently available resources for NLP and Sentiment Analy-
sis in terms of source language and domain. There are very few datasets available
for languages other than English, and even fewer for lower resource languages like
Catalan. The educational domain is also not very well represented in the areas of
Sentiment Analysis and Polarity Detection, with most of the datasets built around
product reviews.

Further, with the obtained supervised dataset I performed several experiments.
For for all the experiments I tokenized the text by splitting it into words and remov-
ing punctuation. First of all, I calculated the unsupervised polarity score, by using
a predefined word list with positive and negative Catalan words. Then I compared
two supervised machine learning models that are often used for sentiment polar-
ity detection with English datasets - support vector machine and logistic regression.
I also tested the Multinomial Naive Bayes algorithm. For support vector machine
and logistic regression algorithms, I compared results with and without balancing
weights for each class. In this report all of the mentioned result are achieved by
adding weights to each class that are inversely proportional to frequencies of each
class in the training data. In addition I also trained a simple feed forward neural
network to compare the results.

For the machine learning models I compare some of the most common features
and their combinations from the related work. I start with the most simple feature
vectors, that is, bag-of-words with binary term occurrences. Then I add term fre-
quencies, TF-IDF, n-gram feature vectors and pre-trained word2vec feature vectors. I

32 Chapter 6. Conclusion and future directions

created these feature vectors with the original inflected words, as well as with lem-
matized words and with part-of-speech tags. All vectors created with lemmatized
words performed significantly better than the vectors created with inflected words.

Logistic regression algorithm generally gave better accuracy results than support
vector machine, however when looking at confusion matrices, results with support
vector machine were a bit more balanced for all the classes than results with logistic
regression.

The best result, 0.726 ,was achieved by using logistic regressions and concatenat-
ing feature vectors of bag-of-words with term frequencies, bi-grams and tri-grams
(all created from lemmatized sentences, with TF-IDF).

Experiments were also performed on sentences translated from Catalan to En-
glish. Results were similar (but a bit worse) than results from the original sentences.

Experiments on comment level performed worse than experiments on sentence
level, mainly because using full comments resulted in much less training examples.

These results also validate the quality of the dataset. They show that

1) the dataset can be used to learn to classify opinions in a supervised manner. This
is evident by the systems outperforming the unsupervised baseline or the most
common class baseline;

2) the dataset is not trivial. That is, while the different systems can obtain result
higher than the baseline, their predictions are still far from human-level perfor-
mance.

This project was a first step towards evaluating open question answers from stu-
dent surveys. This project provides a framework for creating a supervised dataset of
student opinions and a variety of polarity detection systems that can be applied
to that dataset. To further improve the results, the dataset should be improved
by adding more examples for training. If more neutral examples were obtained,
it would lead to better accuracy for the neutral examples as well as to a better over-
all accuracy. If more training examples are obtain, it would also lead to better results
with deep learning algorithms. To obtain better word2vec features, it would be useful
to train these vectors on a more specific domain that the Wikipedia.

Another possibility to improve the annotations could be to connect the open tex-
tual answers in the surveys to the corresponding answers to the numerical questions.
That would lead to a large annotated dataset without having to do the annotations
manually.

A further application for this dataset would be to create system that given all the
survey pdf files, would create a report of how many positive and negative comments
each professor and subject has and to compare them with the numerical scores.

33

Bibliography

Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani (2010). SentiWordNet 3.0:
An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.

Balahur Dobrescu, Alexandra, Rada Mihalcea, and Andres Montoyo (2014). Compu-
tational approaches to subjectivity and sentiment analysis: Present and envisaged meth-
ods and applications.

Barnes, Jeremy, Roman Klinger, and Sabine Schulte im Walde (2017). “Assessing
State-of-the-Art Sentiment Models on State-of-the-Art Sentiment Datasets”. In:
CoRR abs/1709.04219. arXiv: 1709.04219. URL: http://arxiv.org/abs/1709.
042109.

Barnes, Jeremy, Patrik Lambert, and Toni Badia (2018). “MultiBooked: A Corpus of
Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Clas-
sification”. In:

Cavnar, William B. and John M. Trenkle (1994). “N-Gram-Based Text Categoriza-
tion”. In: In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pp. 161-175.

Denecke, K. (2008). “Using SentiWordNet for multilingual sentiment analysis”. In:
2008 IEEE 24th International Conference on Data Engineering Workshop, pp. 507-512.
DOI: 10.1109/ICDEW.2008.4498370.

EAGLES (1996). “Recommendations for the Morphosyntactic Annotation of Cor-
pora”. In: Expert Advisory Group on Language Engineering Standards. URL: http :
//home .uni-leipzig.de/burr/Verb/htm/LinkedDocuments/annotate.pdf.

Graovag, Jelena (2014). “A variant of n-gram based language-independent text cate-
gorization”. In: 18, pp. 677-695.

Graovac, Jelena and Gordana Pavlovic-LaZetic (2014). Language-Independent Senti-
ment Polarity Detection in Movie Reviews: A Case Study of English and Spanish.

Kaur, Amandeep and Vishal Gupta (2013). “A Survey on Sentiment Analysis and
Opinion Mining Techniques”. In: 5.

Keselj, Vlado et al. (2003). “N-Gram-Based Author Profiles For Authorship Attribu-
tion”. In:

Manning (2008). Introduction to Information Retrieval. New York, NY, USA: Cambridge
University Press. ISBN: 0521865719, 9780521865715.

Martin-Valdivia, MariA-Teresa et al. (2013). “Sentiment Polarity Detection in Spanish
Reviews Combining Supervised and Unsupervised Approaches”. In: Expert Syst.
Appl. 40.10, pp. 3934-3942. 1SSN: 0957-4174. DOI: 10.1016/j.eswa.2012.12.084.
URL: http://dx.doi.org/10.1016/j.eswa.2012.12.084.

McAuley, J. and J. Leskovec (2013). “From amateurs to connoisseurs: modeling the
evolution of user expertise through online reviews.” In: URL: http://www.cs.
cornell.edu/people/pabo/movie-review-data.

Mikolov, Tomas et al. (2013). “Efficient Estimation of Word Representations in Vector
Space”. In: CoRR abs/1301.3781. arXiv: 1301.3781. URL: http://arxiv.org/abs/
1301.3781.

http://arxiv.org/abs/1709.04219
http://arxiv.org/abs/1709.04219
http://arxiv.org/abs/1709.04219
http://dx.doi.org/10.1109/ICDEW.2008.4498370
http://home.uni-leipzig.de/burr/Verb/htm/LinkedDocuments/annotate.pdf
http://home.uni-leipzig.de/burr/Verb/htm/LinkedDocuments/annotate.pdf
http://dx.doi.org/10.1016/j.eswa.2012.12.084
http://dx.doi.org/10.1016/j.eswa.2012.12.084
http://www.cs.cornell.edu/people/pabo/movie-review-data
http://www.cs.cornell.edu/people/pabo/movie-review-data
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

34 BIBLIOGRAPHY

Pang, Bo and Lillian Lee (2004). “A Sentimental Education: Sentiment Analysis Us-
ing Subjectivity Summarization Based on Minimum Cuts”. In: Proceedings of the
ACL. URL: http://www.cs.cornell.edu/people/pabo/movie-review-data.

Sygkounas, Efstratios, Giuseppe Rizzo, and Raphaél Troncy (2016). “Sentiment Po-
larity Detection from Amazon Reviews: An Experimental Study”. In: Semantic
Web Challenges. Ed. by Harald Sack et al. Cham: Springer International Publish-
ing, pp. 108-120. ISBN: 978-3-319-46565-4.

Tatman, Rachael (2017). “Sentiment Lexicons for 81 Languages”. In: kaggle. URL:
https://wwuw.kaggle.com/rtatman/sentiment-lexicons-for-81-languages/
data.

http://www.cs.cornell.edu/people/pabo/movie-review-data
https://www.kaggle.com/rtatman/sentiment-lexicons-for-81-languages/data
https://www.kaggle.com/rtatman/sentiment-lexicons-for-81-languages/data

	Abstract
	Introduction
	Background information and theory
	Related work

	Data processing
	Data collection
	Data pre-processing

	Feature extraction and Experimental setup
	Features
	Bag-of-words
	n-grams
	Lemmas and part-of-speech tags
	Word2vec embeddings
	TF-IDF

	Machine learning models
	Baseline score and sentiment polarity lexicon
	Model training and evaluation
	SVM
	Multinomial NB
	Logistic regression
	Feed forward neural network

	Experimental results
	Evaluation metrics
	Results
	Results with bag-of-words feature vectors created from original vocabulary
	Results with bag-of-words feature vectors created from lemmatized texts and POS tags
	Results with n-gram feature vectors created from the original vocabulary
	Results with n-gram feature vectors created from lemmatized texts and POS tags
	Results with word2vec feature vectors
	Combining feature vectors
	Feed forward neural network

	Discussion of the results for Catalan language dataset
	Discussion of the results for Spanish language dataset

	Conclusion and future directions
	Bibliography

