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Insulin rapidly stimulates glucose transport in muscle
fiber. This process controls the utilization of glucose in
skeletal muscle, and it is deficient in various insulin-
resistant states, such as non-insulin-dependent diabetes
mellitus. The effect of insulin on muscle glucose transport
is mainly due to the recruitment of GLUT4 glucose carri-
ers to the cell surface of the muscle fiber. There is in-
creasing evidence that the recruitment of GLUT4 carriers
triggered by insulin affects selective domains of sarco-
lemma and transverse tubules. In contrast, GLUT1 is
located mainly in sarcolemma and is absent in transverse
tubules, and insulin does not alter its cellular distribution
in muscle fiber. The differential distribution of GLUT1
and GLUT4 in the cell surface raises new questions
regarding the precise endocytic and exocytic pathways
that are functional in the muscle fiber. The current view
of insulin-induced GLUT4 translocation is based mainly
on studies performed in adipocytes. These studies have
proposed the existence of intracellular compartments of
GLUT4 that respond to insulin in a highly homogeneous
manner. However, studies performed in skeletal muscle
have identified insulin-sensitive as well as insulin-insen-
sitive intracellular GLUT4-containing membranes. These
data open a new perspective on the dynamics of intracel-
lular GLUT4 compartments in insulin-sensitive cells. Di-
abetes 45 (Suppl. l):S70-S81, 1996

Skeletal muscle accounts for nearly 40% of body
mass and is the main tissue involved in the insulin-
induced stimulation of glucose uptake. Several
studies using the euglycemic-hyperinsulinemic

clamp have shown that, at circulating levels of insulin in the
upper physiological range, most of the infused glucose is
taken up by skeletal muscle and converted mainly into
glycogen (1-3). Evidence for the role of muscle glucose
uptake in overall glucose homeostasis also comes from
studies in transgenic mice overexpressing GLUT1 in skeletal
muscle. Thus overexpression of GLUT1 in transgenic mice
causes increased glucose uptake in muscle associated with
an enhanced expression of GLUT1, which leads to low
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plasma glucose concentrations and an increased glucose
disappearance rate after a glucose tolerance test (4).

Insulin treatment, exercise, or electrical stimulation rap-
idly stimulates the rate at which glucose is taken up across
the cell surface (5-9). Kinetic analysis of the effects of insulin
or contraction on muscle glucose transport indicates that
they are a consequence of an enhancement in Vmax values
(6,10). The effects of insulin and exercise on glucose uptake
or glucose transport in muscle are fully additive (10-13) or
synergistically additive (14-17), which has been interpreted
as being due to the triggering of different and interacting
mechanisms. A complicating factor when dealing with skel-
etal muscle is the considerable heterogeneity of insulin
action among muscles of different fiber compositions (18-
20). Red muscle exhibits three- to fourfold higher sensitivity
and maximal responsiveness to insulin with respect to
2-deoxyglucose uptake (18,19), glycogen synthesis (20), and
amino acid uptake (12) than white muscle. Some responsi-
bility for this effect might be attributable to intrinsic differ-
ences of insulin receptor kinase activity in red and white
muscle (21) or to a consequence of or differences in the
expression level of glucose transporters (22-24).

The rate of muscle glucose transport is thought to be a
rate-limiting step in the pathway of glucose utilization in
skeletal muscle. Several observations support this view: 1)
intracellular free glucose does not accumulate in normal
skeletal muscle and muscle rendered insulin resistant in
streptozotocin-induced diabetic rats, regardless of glucose or
insulin concentration (25,26); 2~) under normoglycemic con-
ditions, both in the absence of insulin and at submaximal
insulin concentrations, glucose clearance is constant in the
perfused rat hindlimb (27); and 3) overexpression of GLUT1
in skeletal muscle from transgenic mice leads to a 10-fold
increase in muscle glycogen content and a 2-fold increase in
muscle lactate, with no increase in muscle glucoses-phos-
phate concentrations (28).

Another aspect of considerable interest is the evidence
available indicating that patients with non-insulin-dependent
diabetes mellitus (NIDDM) show deficient insulin-induced
glucose transport in skeletal muscle (29,30). Furthermore,
nuclear magnetic resonance measurements have demon-
strated that deficient glucose transport or glucose phosphor-
ylation is responsible for the lower rate of muscle glycogen
synthesis found in NIDDM patients during a hyperglycemic-
hyperinsulinemic clamp (31). All these observations clearly
strengthen the importance of understanding the biochemical
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pathways triggered by insulin that lead to the stimulation of
glucose transport in skeletal muscle.

DISTRIBUTION OF GLUCOSE CARRIERS IN THE MUSCLE
FIBER UNDER BASAL CONDITIONS
To maintain a rate of glucose transport across the membrane
that can be stimulated by a variety of factors, such as insulin
or the degree and intensity of exercise, the skeletal muscle
expresses the glucose transporter isoforms GLUT4 and
GLUT1 (32-37). The GLUT3 glucose transporter was cloned
initially from an expression library obtained from human
fetal muscle (38). However, Northern blot analysis per-
formed with RNA preparations from fetal, neonatal, or adult
rat skeletal muscle does not support the expression of
GLUT3 mRNA in this tissue (A. Castello, A.Z, unpublished
observations).

Besides GLUT4 and GLUT1, there is some evidence that
skeletal muscle of humans but not of rats expresses GLUT5
(39,40). Based on the induction of fructose transport activ-
ity obtained in Xenopus oocytes after injection of human
GLUT5 cRNA (41), it has been hypothesized that GLUT5
accounts for fructose uptake by muscle. However, the pre-
cise functional role of GLUT5 in muscle deserves further
study.

GLUT4 is quantitatively the most important glucose carrier
expressed in skeletal muscle from adult rats, and GLUT1
accounts for only 5-10% of total glucose carriers (37), which
is consistent with data previously reported in isolated rat
adipocytes (42). However, the relative abundance of GLUT1
and GLUT4 in muscle depends on the developmental stage
(43). Thus, during fetal and early postnatal life, GLUT1 is the
predominant glucose transporter isotype expressed in skel-
etal muscle, and the onset of GLUT4 induction occurs during
late fetal life (43). During the perinatal period, a transition
occurs in muscle by which GLUT4 expression rises and
GLUT1 is repressed (43). During this period, the expression
of GLUT1 and GLUT4 glucose transporter in muscle is
controlled by innervation-dependent basal contractile activ-
ity (44) and by thyroid hormones (45).

GLUT4 expression is restricted to the muscle fiber and the
cardiomyocyte in skeletal muscle and heart, respectively
(Fig. 1). In an initial report, GLUT4 was immunodetected
both in muscle cells and in endothelial cells from cryosec-
tions of rat skeletal muscle and rat heart (46). These studies
were performed using monoclonal antibody 1F8, which has
been shown to detect GLUT4 protein specifically in immu-
noblot and in immunoprecipitation assays (33,42). Immuno-
fluorescence labeling of GLUT4 in muscle and in endothelial
cells with antibody 1F8 was shown to be specific, and it was
blocked by preabsorption of 1F8 with a peptide correspond-
ing to the COOH terminus of GLUT4. Later experiments
using different polyclonal antibodies against the COOH ter-
minus of GLUT4 did not show any labeling of GLUT4 in
endothelial cells (47) (Fig. 1). Further studies performed
using endothelial cells obtained from a variety of sources
such as bovine aorta, human umbilical vein, and rat heart
microvessels did not detect GLUT4 protein or mRNA (F.
Vinals, A.Z., unpublished observations). Therefore, whether
antibody 1F8 reacts, under the conditions used for immuno-
fluorescence or immunogold analysis, in a specific manner
with a membrane protein resident in endothelial cells that is
not GLUT4 remains to be determined.

The currently available evidence indicates that, under

basal conditions, GLUT1 and GLUT4 show a differential
localization in the muscle fiber. Results obtained from sub-
cellular fractionation studies indicate that GLUT1 carriers
are located mainly in a fraction enriched in plasma mem-
brane markers such as 5'-nucleotidase, Mg2+-ATPase, or
Na+-K+-ATPase activities (34,35,37), whereas GLUT4 carri-
ers are mostly abundant in membrane fractions containing
intracellular markers such as galactosyltransferase (34,35,
48). In our laboratory, we have also examined the distribu-
tion of GLUT4 and GLUT1 glucose carriers in different
fractions obtained in skeletal muscle from overnight-fasted
rats by using a new protocol of subcellular fractionation (49).
This protocol involves the sequential low- and high-speed
polytron homogenization of rat skeletal muscle. The ratio-
nale for a sequential homogenization step was based on
different reports that low-speed homogenization allows the
isolation of sarcolemmal membranes with little contamina-
tion with sarcoplasmic reticulum (50), whereas high-speed
homogenization is performed routinely to isolate substantial
numbers of transverse-tubule (T-tubule) membranes (51,52).
After homogenization, membrane fractions were washed
with high concentrations of KC1 to separate membranes from
myofibrils and subsequently loaded with Ca2+ to differen-
tially enhance the density of membranes derived from the
sarcoplasmic reticulum. Sucrose gradient centrifugation of
membranes derived from the low-speed homogenization step
(Fl fraction) and membranes derived from the high-speed
homogenization step (F2 fraction) allowed the isolation of
different membrane populations (Fig. 2). The membrane
fractions showing the maximal enrichment in cell surface
components were found in the lightest fractions of the
gradient (fractions 23F1 and 23F2, the membrane fractions
recovered on top of the 23% sucrose layer of the sucrose
density gradient; Fig. 2) (49). In parallel, GLUT1 was maxi-
mally abundant in the lightest fractions of the sucrose
density gradients (Fig. 2) under basal conditions, which is
consistent with the view that GLUT1 carriers are localized
mainly in the cell surface. In contrast, our data confirmed
that GLUT4 was localized mainly intracellularly. Thus the
greatest abundance of GLUT4 was found in denser mem-
brane fractions of the sucrose density gradients (the maxi-
mal abundance was found in membrane fractions 26F1 and
26F2, and high levels were also found in fractions 29F1 and
29F2; Fig. 2). Our subcellular fractionation data indicate that
under basal conditions (i.e., low endogenous circulating
insulin concentrations), GLUT4 and GLUT1 glucose carriers
present in the cell surface fractions account for 18 and 55%,
respectively, of the total amount present when all membrane
fractions obtained are pooled. The distribution of GLUT4 in
cell surface membranes is in good agreement with immuno-
electron microscopy data.

Morphological studies have also provided evidence that
under basal conditions GLUT4 is mainly intracellular and
that GLUT1 is found in the cell surface in muscle fiber.
Immunofluorescence analysis using antibodies against
GLUT4 labeled both the cell periphery and the interior in
transverse cryosections of rat skeletal muscle (37). In con-
trast, antibodies against GLUT1 specifically labeled the cell
periphery but not the interior in rat skeletal muscle, as found
in immunofluorescence assays (37). Furthermore, immuno-
electron microscopy of human vastus lateralis (53), rat
soleus muscle (54-56), and rat extensor digitorum longus
(Fig. 3) has shown that GLUT4 labeling is associated mostly
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FIG. 1. Cryosections of rat heart labeled for GLUT4. Rat
heart cryo-ultrasections were incubated with polyclonal
antibody OSCRX against GLUT4 (1:400 dilution).
Antibody OSCRX was produced in rabbit after
immunization with a peptide corresponding to the final
15 amino acids of the COOH terminus of GLUT4 (121).
The localization of GLUT4 was revealed with protein
A-colloidal gold (15 nm gold), ec, endothelial cells;
arrow, labeling associated with T tubule. Scale bar: 100

with intracellular membranous vesicular structures (Fig. 3).
These tubulovesicular elements essentially occur in four
locations in extensor digitorum longus muscle: i ) perinu-
clear tubulovesicular elements near the Golgi apparatus (Fig.
3A), 2) between myofibrils (Fig. 3E), 5) near the sarcolemma
(Fig. 3.8), and 4) near the T-tubule membranes (Fig. 3C).
Quantification of GLUT4 labeling in rat extensor digitorum
longus muscle indicated that 88% of total specific labeling
was found in tubulovesicular elements inside the muscle
fiber.

The muscle fiber is characterized by the existence of
distinct domains in the cell surface, i.e., the sarcolemma and
the T tubules. The sarcolemma covers the muscle fiber and
contains membrane proteins involved in the transport or
recognition of different solutes (57-59). Furthermore, there
is evidence that some membrane proteins might be distrib-
uted rather heterogeneously throughout the sarcolemma.
Thus morphological observations performed in human,

guinea pig, rat, and mouse skeletal muscle (60-63) have
reported the preferential distribution of dystrophin in sar-
colemmal domains overlying the I bands. In addition, a
complementary distribution of vinculin and dystrophin has
been reported recently in two distinct sarcolemmal domains
in smooth muscle (64). Structurally continuous with the
surface sarcolemma and invaginating into the muscle fiber is
the T-tubule membrane system. In addition to providing
access to the interior of the muscle cell for extracellular
fluid, an important physiological function of the T-tubule
system is the transmission of membrane depolarization to
the central part of the muscle to activate contraction by
causing calcium release by the sarcoplasmic reticulum. The
protein composition of the T-tubule membrane reflects its
dual role in excitability and signal transduction. T tubules
express proteins shared with the plasma membrane, such as
the voltage-gated Na+ channel, (3-adrenergic receptors, or
G-proteins (59,65-67), as well as a distinct set of membrane
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FIG. 2. Distribution of GLUT1 and GLUT4 in different membrane
populations resulting after subcellular fractionation of rat skeletal
muscle membranes. The abundance of GLUT1 and GLUT4 was assayed in
fractions obtained after sucrose gradient centrifugation of membranes
obtained after low-speed homogenization (Fl fraction) and high-speed
homogenization (F2 fraction) of rat skeletal muscle. Fraction 23 (from
Fl or F2) was collected on top of 23% sucrose, fraction 26 from the
interphase 23-26% sucrose, fraction 29 from the interphase 26-29%, and
fraction 35 from the interphase 29-35%. The distribution of GLUT1 and
GLUT4 was studied by immunoblot analysis using specific antibodies.
Equal amounts of membrane proteins were laid on gels (1-3 fig).
Autoradiograms were subjected to scanning densitometry. The results
are means ± SE of four to six experiments. Data were expressed as
percentage of values found in fraction 23F2.

proteins, some of which are involved in excitation-contrac-
tion coupling, such as the dihydropyridine receptor (67,68).

In our laboratory, we have isolated three different cell
surface membrane fractions (sarcolemmal fraction 1, sar-
colemmal fraction 2, and T-tubule membranes) from a single
preparation of rat skeletal muscle (49) by using agglutination
in wheat germ agglutinin, as described previously (69,70).
The biochemical characterization of these cell surface mem-
brane fractions is shown in Table 1. Sarcolemmal fraction 1
shows a high enrichment in p1-integrin and lacks dystrophin,
two different markers of sarcolemma (71-73). In contrast,
sarcolemmal fraction 2 shows a high content of p1-integrin
and dystrophin. Sarcolemmal membrane fractions 1 and 2
also differ in their abundance of clathrin heavy chain; clath-
rin is highly abundant in sarcolemmal fraction 1, whereas it
is absent in sarcolemmal fraction 2. T tubules show a high
abundance of the specific T-tubule markers tt28 protein and
dihydropyridine receptors (68,74) and lack sarcolemmal
markers (Table 1). Our results demonstrate further the
existence of subcompartments within sarcolemma of the
muscle fiber. In addition, our experimental protocol for the
subcellular fractionation of membranes represents a suitable

tool to determine the distribution of membrane proteins in
different cell surface domains in the muscle fiber.

Based on all the information mentioned above, the ques-
tion of whether GLUT4 and GLUT1 glucose carriers are
distributed homogeneously in all cell surface components in
the muscle fiber is relevant. Initial studies performed by
Burdett et al. (58) showed that membrane preparations
enriched in T tubules contained three- to fivefold more
glucose carriers (as measured by cytochalasin B binding)
than membrane preparations enriched in sarcolemma. Later
subcellular fractionation studies have provided evidence that
both sarcolemmal and T-tubule membrane preparations con-
tain GLUT4 carriers (75,76), which are more abundant per
unit of membrane protein in T-tubule membrane prepara-
tions (76) (Table 1). Quantitative analysis of immunoelectron
microscopy observations performed in rat extensor digito-
rum longus muscle also supports this view. Thus, under
basal conditions, 8% of total GLUT4 labeling was found in T
tubules, and 3% of total labeling was detected in sarcolemma
(Fig. 3). Additional proof for the presence of GLUT4 in T
tubules in muscle under basal conditions was obtained by
immunoisolation of T-tubule vesicles by using monoclonal
antibody TT2, which specifically recognizes tt28 protein (49).
Vesicles immunoisolated with antibody TT2 contained pro-
tein markers of T tubules, such as tt28 and dihydropyridine
receptors, as well as GLUT4.

Interestingly, the insulin receptor is also distributed het-
erogeneously in the cell surface of the muscle fiber. Under
basal conditions, insulin receptors are found mainly in the
cell surface (76). Furthermore, insulin receptors are detected
both in T tubules and in selective domains of sarcolemma, as
shown by subcellular fractionation analysis and by immu-
noisolation of T tubules (Fig. 4 and Table 1).

Subcellular distribution of GLUT1 shows a different pat-
tern than GLUT4. Both immunofluorescence analysis and
subcellular fractionation data (37,75,76) show that GLUT1
carriers in the cell surface are found in the sarcolemma and
absent from T tubules under fasted conditions. In addition,
GLUT1 glucose transporters are distributed heterogeneously
throughout the sarcolemma (76), and GLUT1 abundance is
greater in sarcolemmal fractions rich in clathrin and free
from dystrophin (Table 1).

In summary, the data currently available indicate that,
under basal conditions, GLUT4 and GLUT1 are targeted to
distinct domains of the cell surface; also, whereas GLUT1 is
mainly found in sarcolemma and is excluded from the T
tubule, surface GLUT4 is more abundant in T tubules than in
sarcolemma. This suggests the existence of separate exo-
cytic machineries involved in the arrival of GLUT1 and
GLUT4 carriers at the cell surface of the muscle fiber (Fig. 4).
For GLUT1, an intracellular transport pathway delivering
membrane proteins specifically to sarcolemma is likely to be
required. In contrast, targeting of GLUT4 carriers, resident in
both the T tubules and sarcolemma, may be accomplished by
one of two mechanisms: GLUT4 carriers either are routed
specifically to either cell surface compartment or are incor-
porated into one compartment and then redistributed
throughout the continuous membrane systems. In any case,
these results suggest a complex set of exocytic and endo-
cytic processes controlling the distribution of glucose carri-
ers in different cell surface domains of the muscle fiber. It is
estimated that 1) GLUT4 is 10-fold more abundant than
GLUT1 in skeletal muscle, 2)3 and 8% of all cellular GLUT4

DIABETES, VOL. 45, SUPPL. 1, JANUARY 1996 S73



GLUCOSE TRANSPORT IN MUSCLE

D

FIG. 3. Cryosections of nonstimulated rat extensor digitorum longus muscle labeled for GLUT4. Extensor digitorum longus muscle cryo-ultrasections
obtained from overnight-fasted rats were incubated with polyclonal antibody OSCRX against GLUT4 and protein A-colloidal gold (10,15, and 20 nm gold).
A: strong labeling of vesicular elements (double arrowheads) near the nucleus (n). Arrow, sarcolemma. Scale bar: 100 nm (15 nm gold). B: GLUT4 is found
in subsarcolemmal vesicles (short arrows) close to the sarcolemma (long arrow), m, mitochondria. Scale bar: 100 nm (20 nm gold). C: labeling of
intracellular vesicles (small arrowheads) near the T tubule (large arrowheads). Scale bar: 100 nm (15 nm gold). D: labeling of the T tubule (arrowhead).
Scale bar: 200 nm (10 nm gold). E: labeling of intracellular vesicles found between myofibrils (contiguous arrowheads). Scale bar: 100 nm (10 nm gold).
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TABLE 1
Distribution of membrane proteins in different sarcolemmal
membrane fractions and in transverse tubules from rat skeletal
muscle under fasted conditions

Sarcolemmal Sarcolemmal
membrane 1 membrane 2 T tubules

Pj-Integrin + + + + -
Dystrophin - + + -
Clathrin ++ - +
Caveolin ++ ++ + +
GLUT1 ++ + -
GLUT4 + + + +
Insulin receptor — + + +
tt28 - + + +
Dihydropyridine receptors - + + +

P1-Integrin, dystrophin, clathrin heavy chain, caveolin, GLUT1,
GLUT4, insulin receptors, tt28, and dihydropyridine receptors were
assayed in sarcolemmal membrane fractions 1 and 2 and T-tubule
membranes obtained from rat skeletal muscle (49,76). - and +
indicate the absence and presence of a certain protein in a particular
fraction, respectively; + + indicates that levels of a certain protein
were the highest in a particular fraction compared with the other
fractions.

is present in sarcolemma and T tubules, respectively,
under basal fasted conditions, and 3) 60% of all GLUT1 is
in the sarcolemma; based on this, we postulate that under
nonstimulated conditions most of the glucose uptake
through sarcolemma is catalyzed by GLUT1 and that
GLUT4 is responsible for glucose taken up through T
tubules.

INSULIN STIMULATES GLUT4 TRANSLOCATION IN THE
MUSCLE FIBER
The initial observation that insulin stimulated the transloca-
tion of glucose carriers from an intracellular locus to the
plasma membrane in isolated rat adipocytes (77,78) was
followed by different attempts to demonstrate an analogous
mechanism in muscle. Early studies performed in rat dia-
phragm showed that insulin caused a twofold increase in
glucose transporter number in plasma membrane fractions
and a concomitant decrease in intracellular glucose trans-
porters (79,80). Further studies of subcellular fractionation
in skeletal muscle also showed that insulin administration
led to an increased glucose transporter number in plasma
membrane and a decrease in intracellular glucose trans-
porter content, in agreement with insulin's promoting the
recruitment of glucose carriers to the cell surface (50,81).
Muscle contraction has also been shown to increase the level
of glucose transporters in plasma membrane in rat skeletal
muscle (82-87).

The development of tools to immunodetect specific glu-
cose carrier isotypes has facilitated the study of the translo-
cation of glucose carriers induced by insulin or exercise.
Immunocytochemical studies (53-56), subcellular fraction-
ation (34,35,37,48,76), and photolabeling assays (88,89) indi-
cate that GLUT4 moves from an intracellular locus to the cell
surface of the muscle fiber in response to insulin adminis-
tration. In contrast, GLUT1 is not recruited in response to
insulin in rat skeletal muscle (34,35). Exercise also recruits
GLUT4 to the cell surface (91); however, indirect evidence
suggests that exercise or muscle contraction depletes intra-
cellular GLUT4 pools different from the compartments re-
cruited by insulin (90). Whether insulin or muscle contrac-

tion also modifies the intrinsic activity of GLUT4 carriers
remains unknown.

Regarding the cell surface involved in insulin-induced
GLUT4 recruitment, it has been shown that GLUT4 is re-
cruited to the sarcolemma (54-56). Figure 5 shows immuno-
electron microscopy data of GLUT4 protein in nonstimulated
and insulin-treated extensor digitorum longus muscles. In
vivo insulin injection enhanced the labeling of sarcolemma in
muscle fiber (Fig. 5; specific labeling of the sarcolemma was
3 and 12% of total specific labeling in nonstimulated and
insulin-stimulated muscle fibers, respectively). However, un-
der these conditions the total specific labeling per unit area
did not differ with the control group. Subcellular fraction-
ation analysis performed in our laboratory has revealed that
only selective domains of sarcolemma are affected by GLUT4
recruitment in response to insulin (76). Thus GLUT4 is re-
cruited by insulin to sarcolemmal membrane fractions highly
enriched in dystrophin but not to sarcolemmal membrane
fractions not containing dystrophin and highly enriched in
clathrin (76).

Insulin also promotes the translocation of GLUT4 to the T
tubules of the muscle fiber. This conclusion is based on the
following observations: 2) GLUT4 abundance increases in
membrane preparations highly enriched in T tubules and
devoid of sarcolemmal vesicles from insulin-treated groups
(37,76), 2) immunoisolation of T-tubule vesicles with anti-
body TT2 specific for tt28 (a T-tubule marker) leads to
greater recovery of GLUT4 in the immunoprecipitates from
the insulin-treated group than in those from the control
group (76), 3) immunoelectron microscopy studies have
detected the translocation of GLUT4 to T tubules in human
vastus lateralis muscle (53), and 4) the amount of ATB-[2-
3H]BMPA photolabeled in T tubules from intact incubated

Sarcolemma

SM2
Oihw—o-mo—

FIG. 4. Scheme of the hypothetical distribution of glucose carriers and
insulin receptors in the cell surface of the muscle fiber under basal
fasted conditions. 0, GLUT1; I, GLUT4; ca, insulin receptors. The scheme
shows the distribution of glucose carriers and insulin receptors in T
tubules and in distinct domains of the sarcolemma. SMI and SM2,
sarcolemmal membranes 1 and 2, respectively (see Table 1 for detailed
characterization). Under basal conditions, most GLUT1 and insulin
receptors are found in the cell surface and GLUT4 is mainly intracellular.
The aim of this scheme is to show the distribution of glucose carriers
and insulin receptors in the different domains of the cell surface in the
muscle fiber; it is not meant to show the relative proportions of proteins
in the cell surface vs. in the intracellular compartment. The intracellular
proteins are indicated only to suggest possible (and as yet hypothetical)
exocytic pathways involved in the arrival of glucose carriers and insulin
receptors at the cell surface.
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soleus muscles was increased in response to insulin as
assessed by autoradiography (92).

In all, current evidence indicates that, in response to acute
insulin treatment, GLUT4 is translocated to selective do-
mains of sarcolemma and also to T tubules of the muscle
nber (Fig. 6). Based on the fact that insulin recruits GLUT4 to
a dystrophin-enriched sarcolemmal fraction and on the se-
lective distribution of dystrophin in sarcolemma (63) we
suggest that this is a costameric sarcolemmal domain (Fig
6> A similar process of insulin-induced GLUT4 recruitment
affecting both sarcolemma and T tubules has also been
descnbed in rat cardiomyocytes (93). A corollary that re-
quires experimental validation is that insulin enhances the
uptake of glucose through both sarcolemma and T tubules in
the muscle fiber.

The finding that GLUT4 is translocated to different do-
mains of the cell surface in response to insulin poses the
question of where insulin action is initiated in the muscle
r ™ I n t W S r e g a r d ' W e h a v e f o u n d t h a t insulin-induced
GLUT4 recruitment occurs in those membrane fractions
containing insulin receptors. These observations indicate
that both sarcolemma and T tubules are target domains for
the initiation of insulin action in the muscle fiber which
suggests that insulin action in T tubules and sarcolemma is
triggered and regulated in an autonomous manner

The insulin-induced GLUT4 translocation to T tubules is
certain to have an important role in muscle physiology. The

S76

FIG. 5. Cryosections of extensor digitorum longus
muscle from nonstimulated and insulin-treated rats
labeled for GLUT4. Extensor digitorum longus muscle
cryo-ultrasections obtained from overnight-fasted rats
r ™ n C U l f t e d w i t h Polyclonal antibody OSCRX against
GLUT4 and protein A-colloidal gold (10 nm gold), m,
mitochondria. Scale bars: 200 nm. A: under
nonstimulated conditions, most peripheral labeling is
lound in subsarcolemmal vesicles and not in the
sarcolemma (arrows). B: after stimulation with insulin,
substantial labeling is detected along the sarcolemma
(arrows).

muscle fiber is a thick structure, with an average diameter of
50 ̂ m; therefore the uptake of glucose through the T tubules
after stimulation by insulin might be a way to enhance the
efficiency of channeling glucose toward its metabolic fates
An aspect that requires experimental analysis is whether as
postulated by some authors, the T tubule is too narroW to
allow efficient diffusion of metabolites. The proposal of a
direct arrival of exogenous glucose at the muscle fiber via the
T tubules fits with several previous observations. Glycolytic
enzymes show a heterogeneous distribution in the muscle
fiber, and they are found preferentially in a cytosolic com-
partment surrounding the I band, i.e., close to T tubules (94-
96). Glycolytic enzymes such as aldolase and glyceraldehyde-
3-phosphate dehydrogenase are tightly bound to isolated
triads from skeletal muscle (97-99). Mitochondria display
two distinct locations in the muscle fiber: peripherally close
to the sarcolemma and packed in between the myofibrils
preferentially in a transverse plane between the triadic
system and the Z disk (100), i.e., close to the T tubules
Furthermore, insulin increases the binding of hexokinase to
mitochondria in muscle (101,102), which may increase the
efficiency of oxidative phosphorylation (103). In summary
the arrival of glucose through the T tubule would channel
glucose directly to hexokinase bound to the outer mitochon-
drial membrane, near the T tubules, and then to the rest of
the glycolytic enzymes, also located in the vicinity of T
tubules.
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sarcolemma

FIG. 6. Scheme of the hypothetical translocation of GLUT4 in the muscle
fiber in response to insulin. 0, GLUT4; H , insulin receptors; • , insulin.
Insulin binds to insulin receptors present both in sarcolemma and in T
tubules (1), which triggers insulin signaling (2). As a consequence,
insulin promotes GLUT4 translocation from intracellular compartments
to sarcolemma and T tubules (3). Under both basal and insulin-
stimulated conditions, GLUT4 is subjected to internalization from cell
surface membranes (4).

INTRACELLULAR GLUT4 COMPARTMENTS IN THE MUSCLE
FIBER
As mentioned previously, immunoelectron microscopy of
human vastus lateralis (53), rat soleus (54-56), and rat
extensor digitorum longus muscles (Fig. 3) has shown that
GLUT4 labeling is mostly associated with intracellular mem-
branous vesicular structures (Fig. 3). In extensor digitorum
longus muscle, these tubulovesicular elements are found in a
perinuclear location close to the Golgi apparatus and in the
proximity of the sarcolemma or the T tubules (Fig. 3). At
present, we have no information regarding the possible
functional role of the different GLUT4 pools identified by
morphological means.

Subcellular fractionation analysis has identified an intra-
cellular pool of GLUT4 vesicles obtained from rat skeletal
muscle that becomes depleted of GLUT4 after insulin treat-
ment (34,35,48,90). However, although some subcellular frac-
tionation protocols obtain an intracellular GLUT4 pool that
is depleted in response to exercise (91), other studies obtain
an intracellular GLUT4 pool that is depleted by insulin but
not by acute exercise (35,90). These observations have
allowed researchers to postulate that exercise-sensitive
GLUT4 transporters do not originate necessarily from the
insulin-sensitive intracellular membrane compartment. Con-
sequently, this concept points to the existence of various
intracellular GLUT4 pools in the muscle fiber, showing a
different response to signals. In any event, any future work-
ing hypothesis dealing with the cell biology of the distinct
intracellular GLUT4 pools responding to various signals
should explain the fact that muscle contraction and exercise
are fully or synergistically additive activators of glucose
transport.

Linked to this issue, we have found in our laboratory that,
concomitantly with the GLUT4 recruitment affecting sarco-
lemma and T tubules, insulin treatment causes a marked
decrease in the content of GLUT4 in some intracellular
vesicles (intracellular membrane fractions originating from

the low-speed homogenization step previously defined,
which represent 28% of the total intracellular GLUT4 pool)
but not in other fractions (intracellular membrane fractions
originating from the high-speed homogenization step, which
represent 72% of the total intracellular GLUT4 pool) obtained
from subcellular fractionation of rat skeletal muscle (49,76).
These findings again suggest the existence of several pools of
intracellular GLUT4 carriers in skeletal muscle. The nature
of the intracellular insulin-insensitive and -sensitive GLUT4
pool, its distribution in the muscle fiber, and its biochemical
composition remain to be determined. Another urgent ques-
tion is the physiological role of the insulin-insensitive GLUT4
pool. This all requires deeper knowledge of the molecular
architecture of these different membranous vesicular popu-
lations.

Our data have also revealed that in response to insulin,
— 12% of the intracellular GLUT4 was redistributed to the cell
surface. These results may agree with previous findings from
Rodnick et al. (55) indicating that the combined stimulation
with insulin and acute intense exercise causes a redistribu-
tion of 40% of intracellular GLUT4 in skeletal muscle. These
observations substantiate the existence of a large intracellu-
lar reservoir of GLUT4 compared with the requirements of
insulin action in skeletal muscle. Furthermore, this large
excess intracellular GLUT4 pool might elucidate the additive
or synergistic effect of insulin and exercise on glucose
transport substantiated in skeletal muscle (10-17,22).

One logical way to define the biological role of different
intracellular GLUT4 pools is to characterize the proteins
associated with GLUT4 in the same vesicles. Recent studies
have identified some of the proteins that colocalize in
GLUT4-containing vesicles from rat adipocytes. These in-
clude phosphatidylinositol-4-kinase (104), vesicle-associated
membrane proteins (105), secretory carrier membrane pro-
teins/GTV3 (106,107), gpl60 (108-110), and some low-mo-
lecular weight GTP-binding proteins including rab4 (111,
112). The precise role of these proteins is currently un-
known. There is very little information regarding the bio-
chemical composition of GLUT4 vesicles from skeletal
muscle. Vesicle-associated membrane protein and gpl60
proteins are also expressed in skeletal muscle (109,113), and
it is important to determine whether they colocalize with
GLUT4 in the same vesicles. Recent studies have found that
insulin-induced GLUT4 recruitment to the cell surface of the
muscle fiber was concomitant with translocation of GTP-
binding proteins (114). The functional relationship between
GLUT4 and GTP-binding proteins remains unestablished.

In our laboratory, we have initiated the characterization of
the intracellular GLUT4 compartment from rat skeletal mus-
cle. To this end, in some initial experiments we explored the
abundance of GLUT4 as well as different membrane proteins
in membrane fractions obtained by subcellular fractionation
of rat skeletal muscle. From the different proteins analyzed,
we detected a number of membrane proteins to be highly
abundant in intracellular membrane fractions enriched in
GLUT4 (Fig. 7). A protein subjected to study was caveolin,
the caveola coat protein, which is believed to play an
important role in sorting processes, transmembrane signal-
ing, or molecular transport across membranes (115). Caveo-
lin was present in all cell surface domains of the muscle fiber
(Table 1), and it was highly abundant in intracellular mem-
brane fractions, following a pattern similar to GLUT4 (Fig.
7). Furthermore, intracellular membrane fractions that con-
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tubules and to selective domains of the sarcolemma, and the
cell surface domains affected by GLUT4 recruitment also
contain insulin receptors. Redistribution of intracellular
GLUT4 only affects a small percentage of total GLUT4. In this
regard, we have identified two different intracellular GLUT4
populations: an insulin-sensitive pool that is depleted in
response to insulin treatment and an insulin-insensitive pool.
The biochemical characterization of these two membrane
populations might be fundamental in the understanding of
the processes triggered by insulin that lead to the recruit-
ment of GLUT4 to the cell surface in the muscle fiber.

Caveolin *- « ^.

23 26 29 35

- 22 kDa

F1

23 26 29 35

F2
FIG. 7. Distribution of GLUT4, TGN38, GIMPc, and caveolin in
membrane populations resulting after subcellular fractionation of rat
skeletal muscle membranes. The abundance of GLUT4, TGN38/GIMPT1,
GIMPc, and caveolin was assayed in fractions obtained after sucrose
gradient centrifugation of membranes obtained after low-speed
homogenization (Fl fraction) and high-speed homogenization (F2
fraction) of rat skeletal muscle. Fraction 23 (from Fl or F2) was
collected on top of 23% sucrose, fraction 26 from the interphase 23-26%
sucrose, fraction 29 from the interphase 26-29%, and fraction 35 from
the interphase 29-35%. The distribution of the different membrane
proteins was studied by immunoblot analysis by using specific antibodies.
Equal amounts of membrane proteins (1-3 |ig) from the different
fractions were laid on gels. Representative autoradiograms are shown.
Times of exposure for one particular protein were the same for F l and
F2 fractions.

tain high levels of GLUT4 were also enriched in GIMPc and
TGN 38/GlMPT1, known markers of the cis- (116) and trans-
Golgi networks (116-118), respectively (Fig. 7).

Based on these data, we performed further studies to
determine the possible colocalization of GLUT4 with caveo-
lin and TGN38. To this end, intracellular GLUT4-enriched
membrane fractions were subjected to immunoisolation by
using monoclonal antibody 1F8, which specifically recog-
nizes GLUT4. Under our experimental conditions, 1F8 spe-
cifically immunoadsorbed 70% of the GLUT4 present in
fractions (Fig. 8). Vesicles immunoisolated with antibody
1F8 only contained trace amounts of caveolin and TGN38,
supporting the view that most of the GLUT4 does not
colocalize with caveolin or TGN38. It appears, therefore, that
the trans-Golgi network is not a major site of the intracellu-
lar GLUT4 pool within the muscle fiber. In fact, a similar lack
of colocalization between GLUT4 and TGN38 has been
shown in 3T3-L1 adipocytes (119). Our data are in agreement
with recent data obtained by Hundal et al. (120) indicating
that the disruption of the trans-Golgi network does not
interfere with insulin-like growth factor I-dependent glucose
transport in L6 muscle cells in culture. In addition, our data
indicate that the recycling of GLUT4 and caveolin occurs via
independent pathways.

Currently available information regarding insulin-induced
GLUT4 translocation in muscle fiber can be summarized
according to the following model (Fig. 6). Under fasted
conditions, most GLUT4 is intracellular in the vicinity of
Golgi apparatus, T tubules, and sarcolemma. It is unlikely
that a substantial amount of GLUT4 is in the trans-Golgi
network. Insulin causes the translocation of GLUT4 to T

FUTURE PROSPECTS
The detailed understanding of the mechanisms by which
insulin stimulates glucose transport in skeletal muscle is a
major task that will contribute to the development of thera-
peutic strategies for patients with insulin resistance or
NIDDM. In the last few years, we have learned a great deal
about the cell biology of GLUT4 in adipose cells, but we are
just beginning to understand how GLUT4 is targeted in the
muscle fiber. GLUT4 glucose carriers seem to be translo-
cated to both sarcolemma and T tubules; however, we do not
know yet the relative importance of each particular cell
surface domain in regard to the effect of insulin in the muscle
fiber. The nature and biochemical characteristics of the
intracellular GLUT4 compartments that are recruited by
insulin also remain unknown. Several major technical prob-
lems must be solved before these questions can be answered
completely: 1) the subcellular fractionation of skeletal mus-
cle is fraught with difficulties and, as a result, the membrane
yields are low compared with those obtained in other
insulin-sensitive cells or tissues; and 2) muscle cells in
culture currently available do not form T tubules, so they
represent cell models that are hardly comparable with the
muscle fiber. In this regard, the achievement of better
subcellular fractionation protocols, the development of mus-
cle cells in culture more comparable with muscle fibers, the

26F1 26F2

1F8: + - + -

GLUT-4

TGN38

Caveolin

- 45 kDa

- 80 kDa

JT22 kDa

FIG. 8. Immunoadsorption of intracellular GLUT4-containing vesicles
with immobilized antibody 1F8. Membrane vesicles of intracellular origin
(membrane fractions 26F1 and 26F2) obtained from rat skeletal muscle
were incubated with (+) or without ( - ) immobilized antibody 1F8. After
the incubation, the adsorbed fractions (P) and supernatants (S) were
electrophoresed and immunoblotted to determine the abundance of
GLUT4, TGN38, and caveolin. Autoradiographs were subjected to
scanning densitometry. Representative autoradiograms obtained after
various times of exposure are shown. The arrow indicates the presence
of immunoglobulin G light chain.
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improved understanding of the cell biology of the muscle
fiber, and the production of transgenic animals defective in
proteins critical for GLUT4 recruitment are appropriate lines
of research to be pursued in the future.
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