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Authentication of encoded information is a popular current trend in optical security. Recent research has 

proposed production of secure unclonable ID tags and devices with the use of nanoscale encoding and thin 

film deposition fabrication techniques which are nearly impossible to counterfeit but can be verified using 
optics and photonics instruments. Present procedures in optical encryption provide secure access to the 

information and these techniques are improving daily. Nevertheless, a rightful recipient with access to the 

decryption key may not be able to validate the authenticity of the message. In other words, there is no simple 
way to check whether the information has been counterfeited or not. Metallic nanoparticles may be used in 

the fabrication process because they provide distinctive polarimetric signatures that can be used for 

validation. The data is encoded in the optical domain that can be verified using physical properties with 
speckle analysis or ellipsometry. Signals obtained from fake and genuine samples are complex and can be 

difficult to distinguish. For this reason, machine learning classification algorithms are required in order to 

determine the authenticity of the encoded data and verify the security of unclonable nano particle encoded or 
thin film based ID tags. In this paper, we review recent research on optical validation of messages, ID tags, 

and codes using nano structures, thin films, and 3D optical codes. We analyze several case scenarios where 

optically encoded devices have to be authenticated. Validation requires the combined use of a variety of 
multi-disciplinary approaches in optical and statistical techniques and for this reason, the first five sections 

of this paper are organized as a tutorial. © 2016 Optical Society of America 

OCIS codes: (100.4998) Pattern recognition, optical security and encryption, (030.6140) Speckle, 

(240.0310) Thin films, (260.5430) Polarization, (240.0310) Ellipsometry and polarimetry, (150.0150) 

Machine vision. 
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1. Introduction 

The publication of the two seminal papers in optical security in 1994 and 1995 initiated 

the creation of a new sub-discipline within optics [1, 2]. Twenty years later, papers 

published in the field of optical security and encryption are numbered and downloaded in 

thousands [3-6]. Basic concepts behind optical encryption are relatively straightforward 

since they are based on the use of a 4f coherent processor: the data to be encrypted (plain-

text) is phase encoded using phase-only random distribution M1; a second random phase 

mask M2 is located at the Fourier plane of the first lens. When the system is illuminated 

by means of a laser source, the propagated field at the recording plane (i.e. the Fourier 

plane of the second lens) is pseudo-random and noise like. The original plain-text can be 

accessed from the complex cypher-text (not the intensity), provided the conjugate of 

phase mask M2 is known. 

In order to improve the encryption capabilities and security, multiple enhancements and 

variations of the original Double Random Phase Encryption setup have been proposed. 

For instance, encryption systems have been suggested that work in Fresnel domain [7], 

fractional-Fourier domains [8]; wavelength multiplexing [9] or incoherent light [10] are 
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also notable design variables. Special mention deserves those systems based on 

polarization since they dramatically increase the degrees of freedom of the encryption 

processor [11-14]. Nevertheless, it was proved that the original Double Random Phase 

Encryption design was flawed due to the linear character of optical transformations 

involving light propagation [15, 16]. Multiple alternatives have been suggested in order 

to make optical security systems more robust [17-21]. For instance, the so-called digital 

optics methods represent a very popular approach in optical-based encryption [22-27]. 

These procedures mimic physical processes by means of digital calculations or combine 

numerical operations with optical procedures. Related to these methods, phase-truncation 

asymmetric keys [28, 29] or optical designs aimed to break symmetries [30] have been 

proposed. On the other hand, systems that work in low light conditions are being used in 

security. These arrangements use quantum sources that provide very few photons. 

Despite operating in photon-starved conditions which makes the decryption very low 

light level, validation of the authenticity of the message can be achieved. In those 

scenarios where it is not required to access the information, photon counting encryption is 

a very good and secure alternative [31-39]. Other designs based on computational ghost 

imaging have proposed [40, 41]. 

Most of the optical encryption methods rely on the use of holographic encoding of 

information. A very recent approach on optical security is based on including an extra 

security layer in order to authenticate messages. Information is encoded using 

conventional techniques but the recipient may be able to determine whether the 

information was sent by a trusted party or not. The physical support used for the message 

plays a key role in this problem. The recipient has to be able to read or decrypt the data 

but also can test the material using optical analytical tools in order to validate the 

authenticity of the sender. For instance, bank notes printed using inks containing certain 

amounts of nanoparticles are difficult to be counterfeited [42]. Another possible scenario 

where validation is a critical issue is the electronic industry. A label with the 

specifications of an integrated circuit is attached to the microchip package. This label can 

be phase-encoded or produced with metal nanoparticles or thin-films. The user can rely 

on the contents of the information provided if the response to certain optical 

measurements (e.g. speckle statistics, polarimetric signatures, etc.) delivers the correct 

signal [43-45]. Gold nanoparticles (AuNP) can be used in the fabrication of 

pharmaceutical pills and tablets for consumer safety and protection. These samples 

become polarimetrically tagged and thus, authentication can be performed using 

ellipsometry [46]. 

As explained above, the message has to be encoded on a device that can be authenticated 

using optical technologies. Accordingly, production of these codes may require the use of 

fabrication techniques in the nanoscale such as nanostructures [47-49] or thin film 

deposition [50]. Regarding materials, metallic nanoparticles, and more specifically, 

AuNP, are suggested in the fabrication of optical codes because they provide distinctive 

polarimetric signatures that can be used for validation [51-55].  

This paper aims to review several scenarios on security and authentication of codes 

tagged with nanoparticles, phase-encoded or produced using thin-film technologies. 

Since authentication of such structures requires the combined use of several techniques in 

different disciplines, sections 2 to 5 are organized as a tutorial. This includes topics such 

as Fourier optics, polarimetry, and statistical pattern classification using machine learning 

techniques. Accordingly, the paper is organized as follows: section 2 reviews Fourier 

optics and wave propagation theory. Within this framework, the behavior of phase 

encoded information after propagation is analyzed and related with speckle noise. Double 

Random Phase Encryption is considered as a special case of phase encoding. Section 3 

describes basic concepts on polarized light including Stokes parameters and Mueller 

matrix formalism. Special emphasis is placed to the measurement of the Mueller matrix 

using ellipsometers. Section 4 describes the important concept of data analysis. Since 

multidimensional measurements are required for authentication of the samples, we 

introduce principal component analysis as a method to reduce dimensionality in complex 
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problems. Section 5 surveys three methods in machine learning classification used in this 

review: K-Nearest Neighbors, Multiclass Support Vector Machine and Random Forests.  

The second part of the paper reviews several experiments on authentication for security. 

Section 6 analyzes how to distinguish among phase encoded QR codes made of gold 

nanoparticles or silver [44]: the samples are illuminated using polarized light and speckle 

noise distributions are recorded after propagation. A three-class support vector machine 

algorithm is used to perform authentication. A similar problem is studied in section 7. In 

this case, QR codes are produced using thin films of Cr and Ta2O5. The dataset is 

synthetically generated from the measurements of the Mueller matrix. Different scenarios 

are considered for authentication. For instance, the samples can be imaged using a 

microscope polarimeter. The information provided by the Mueller components is used to 

perform authentication by means of correlation. When the samples are phase encoded, the 

recorded Mueller components of the speckle signal is used to generate a large dataset of 

Stokes vectors that feeds a K-Nearest Neighbors classification system [45]. In the next 

section, we describe how to distinguish among pharmaceutical tablets that have been 

coated with gold nanoparticles of different sizes. In this case, we analyze the polarization 

signature of these tablets using a Mueller spectro-polarimeter [46]. In section 9, we train 

a system based on Random Forests classifier to authenticate 3D phase-encoded samples 

[56]. Finally, conclusions and future perspectives on this topic are presented in section 

10.  

2. Propagation of phase-encoded information 

Scalar diffraction theory provides a simple way of describing the propagation of wave-

front E [57]. Without loss of generality, it is assumed that the electric field propagates 

along the z axis. Then, the mathematical relationship between the propagated wave-front 

E(x,y,z) and the beam E(x,y,0) at reference plane z=0 is: 

   1

2 2 2 2

, , FT FT , ,0 ( , , )

2
( , , ) exp 1 .

E x y z E x y H u v z

H u v z i z u v


 


      

 
   

 

  (1) 

In this formulae, operators FT and FT
-1 

stand for the Fourier and the inverse Fourier 

transforms respectively, H(u,v,z) is the transfer function, (u,v) are the spatial frequencies, 

 is the wavelength and i is the imaginary unit. Unit vector  , ,  s  indicates the 

normal direction to the wave-front at each point. Components  , ,   are related to the 

spatial frequencies (u, v) by means of 

2 2 2 2 2 2, , 1 1 .u v u v                  (2) 

Note that for , 1,    the wave is paraxial, i.e. vector s forms small angles with 

propagation axis z. If this approximation is valid, transfer function H(u,v,z) can be 

simplified and now reads   2 2( , , ) exp( )expH u v z ikz i z u v   . In this case, it is said 

that propagation is described by means of the Fresnel diffraction approximation.  

 

 
 

Propagation of light using scalar diffraction theory is calculated by means the following formula: 

   1 2 2 2 22
, , FT FT , ,0 exp 1E x y z E x y z u v


 



   
       

  
 

In Fresnel diffraction conditions, propagation of light is calculated using paraxial approximation:  

      1 2 2, , exp( ) FT FT , ,0 expE x y z ikz E x y i z u v       
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Figure 1 shows an example on how Eq. (1) is used in practice. Figure 1(a) depicts a QR 

code encoding the message 0034934021143 (a telephone number). This distribution 

[Q(x,y,0)] is illuminated by a coherent light source. The variables used in the calculation 

are summarized in Table 1.  

Table 1: Propagation variables  
Propagated distance 
Wavelength 
Size of the code  
Number of pixels 

Δz=15 mm 
=532 nm 
0.84 x 0.84 mm2 

256x256 pixels 

 

Figure 1(b) shows the propagated irradiance IQ(x,y,z)=|Q(x,y,z)|
2
. Note that the 

information displayed in this figure still resembles the image of the QR [Fig. 1(a)].  

 

 

Fig. 1: (a) Q(x,y,0): reversed QR code encoding the message 0034934021143; (b) propagated irradiance 
IQ(x,y,z)=|Q(x,y,z)|2  

Random phase-only distributions are commonly used in optical information processing 

problems (i. e. pattern recognition, optical encryption, etc). They are described by means 

of     , ,0 =exp 2 rand , ,R x y i x y where  rand ,x y is a function that is uniformly 

distributed random numbers over [0,1). Phase encoding is performed by attaching a 

diffusor such as adhesive tape to the sample. Note that thick diffusors are random in 3D 

by nature and thus, thick phase-masks cannot be duplicated.  

The analysis of the behavior of propagated random phase-only distributions R(x,y,0) 

provides interesting information. Figure 2(a) shows the irradiance IR(x,y,z)=|R(x,y,z)|
2
 

obtained by calculating the propagated field R(x,y,z) using Eq. (2) in Fresnel 

approximation conditions. The set of values in the calculation are the same used in the 

previous simulation and summarized in Table 1. Then, Q(x,y,0) is phase-encoded by 

multiplying this distribution by random phase mask R(x,y,0), i.e. 

     , ,0 , ,0 , ,0C x y R x y Q x y . Figure 2(b) shows the irradiance of the propagated 

joint distribution IC(x,y,z)=|C(x,y,z)|
2
. Unlike the result presented in Fig. 1(b), Ic(x,y,z) 

looks noisy and no information from the original image Q(x,y,0) can be inferred.  
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Fig 2: (a) Irradiance of the propagated field IR(x,y,z)=|R(x,y,z)|2 . (b) Irradiance of the propagated field 
IC(x,y,z)= |C(x,y,z)|2  

Moreover, the appearance of Figs. 2(a) and 2(b) is very similar, that is noise like 

distributions. Figures 3(a) and 3(b) show the histograms of IR(x,y,z)
 

and IC(x,y,z)
 

respectively (blue curves). Note that both histograms display an identical exponential 

decay behavior. At first sight, propagated phase-encoded images can be described as 

indistinguishable noisy distributions. Statistical optics [58, 59] describes the intensity 

distribution of speckle patterns using the following formula:  

 
 

0
0 1

00

0

exp /
( ) ,

n n
I In In

p I
I n


 

     
   (3) 

where I, I and σ are the intensity data points, its average and the corresponding 

standard deviation respectively; and () stands for the Gamma special function. 

Parameter n0 is defined as  
2

0 / .n I  Equation (3) corresponds to the Gamma 

probability density function [60]. This curve is superimposed on the histograms of Figs. 

3(a) and 3(b). Calculated histograms and curves generated using Eq. (3) are not 

distinguishable. In general, random phase encoded signals produces speckle-like noise 

distribution after propagation within the Fresnel domain. 

 

 

Fig. 3: Histograms of (a) the irradiance of the propagated phase mask IR(x,y,z) and (b) irradiance of the 
propagated phase-encoded image IC (x,y,z). 
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Despite the fact that IC(x,y,z) and IQ(x,y,z) can be easily distinguished by visual 

inspection, due to the statistical nature of the propagated random phase-encoded beam, 

the log-likelihood test can be used to discriminate among random phase-encoded and 

non-phase-encoded propagated distributions using a straightforward calculation [43]. 

Note that the log-likelihood statistical test is useful for distinguishing among two 

distributions of probability. Assuming that IC(x,y,z) and IQ(x,y,z) can be considered as 

classes that represent the null (H0) and alternative (H1) hypothesis respectively, the log-

likelihood condition that validates the null hypothesis (H0) is  

     
,

log , , log , , 0.C Q

x y

I x y z I x y z  
     (4) 

Calculating the natural logarithm of Eq. (4) for the N pixels of the image,  

 
     

 
     

0

0

0 0

0

, ,0

0 0

0

, ,0

1
ln 1 ln , , , ,

1
ln 1 ln , , , , 0.

en

C C

C C C

x y x yC C C

n

Q Q

Q Q Q

x y x yQ Q Q

n n
N n I x y z I x y z

n I I

n n
N n I x y z I x y z

n I I

  
          

  
      
  

   

 

 

 (5) 

Using the data obtained from Figs. 1(b) and 2(b) the following values are obtained 

     
, ,

log , , =126629 and log , , =54165.C Q

x y x y

I x y z I x y z 
    This means that the null 

hypothesis is accomplished. As expected, IC(x,y,z) has a better fit with the Gamma-

distribution model [Eq. (3)] than IQ(x,y,z). 

  

As explained in the introduction, the Double Random Phase Encryption [2] technique 

provides basic theoretical framework for optical encryption. It can be understood as a 

generalization of random phase encoding [1]. Figure 4 shows a sketch of a 4f optical 

encryption system: plain-text image Q is random phase encoded by means of phase-only 

mask M1 and phase-only key M2 is placed at the Fourier plane of the first lens. The scalar 

electric field at the Fourier plane of the second lens (cypher-text) is: 

    2 1, ,4f FT FT ,f fE x y M QM 
       (6) 

where sub-indices f indicates that Fourier transforms have to be scaled accordingly. 

E(x,y,4f) is a complex function and has to be recorded using holographical or 

interferometric techniques. Note that the same optical system can be used to decrypt the 

message: plain-text Q can be accessed provided that phase key M2
*
 is known: 

 *

2FT FT .f fQ M E 
        (7) 

where 
*
 is the complex conjugate operator. Note that Eq. (7) is valid assuming that Q is a 

real valued, positive distribution image.  

 

 

 

 

 

 

Random phase encoded images produce a speckle-like noise distribution after propagation. The intensity 
distribution of a speckle pattern is described using the following formula:  

 
 

0
0 1

00

0

exp /
( )

n n
I In In

p I
I n


 

     
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Fig. 4: Sketch of 4f Double Random Phase Encryption system  

3. Polarized light 

A quasi-monochromatic transverse electromagnetic field propagating in the z-axis 

direction is described as     , , , ,0 .x yE t E tE r r  The Stokes vector  0 1 2 3, , ,S S S SS

is a convenient way of describing the state of polarization of the wave-front [61]. The 

components of this vector (the Stokes parameters) are defined as 

* *

0

* *

1

* *

2

* *

3 ,

x x y y

x x y y

x y y x

y x x y

S E E E E

S E E E E

S E E E E

S i E E E E

 

 

 

  
 

    (8) 

where  stands for temporal average over time interval T, and 

* *1
.i j i j

T
E E E E dt

T
       (9) 

Note that S0 is a measure of the irradiance of the beam; S1 compares the irradiance of the 

wave in the x- and y- directions, S2 is similar to S1 but the comparison is performed along 

two perpendicular directions rotated 45º with respect to the x-axis. S3 provides 

information of the circular content of the wave. For instance, for a linearly polarized 

beam with a polarization angle  with respect of the x-axis, the Stokes vector takes the 

form  0 1,cos2 ,sin 2 ,0 ;S  S . Elliptically polarized light is described by Stokes 

vector: 

 0 1,cos2 cos2 ,sin 2 cos2 ,sin 2S     S   (10) 

where  is the eccentricity angle. The four Stokes parameters are sometimes combined in 

a single one, called the Degree of Polarization (DoP):  

2 2 2

1 2 3

0

1
P ,S S S

S
       (11) 

where P1. Note that for fully polarized beams 
2 2 2 2

0 1 2 3S S S S   and P=1 whereas for 

totally depolarized light P=0. Sometimes, the Stokes parameters are normalized to S0: 

 1 0 2 0 3 0/ , / , /S S S S S Ss and only three components are used. 
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The Poincaré Sphere, defined as the surface 1,s  provides a geometrical interpretation 

of the states of polarization (see Fig. 5). For instance, linear polarized light beams are 

located on the equator of the sphere. Circular polarized lights are placed on the poles 

(clockwise: North Pole, counterclockwise: South Pole). Totally polarized light (P=1) 

appears on the surface of the sphere whereas unpolarized light (P=0) is set at the very 

center of the Poincare sphere; partially polarized light states (P<1) are represented inside 

the sphere. In summary, an arbitrary state of polarization at the Poincaré sphere is 

described by 

 0 1, cos2 cos2 , sin2 cos2 , sin2 .S P P P    S   (12) 

When light interacts with an optical element, the state of polarization of the beam can 

change. The Stokes parameters of the wave-front are transformed according to a linear 

law represented by a 4x4 Mueller matrix, i.e. S’=M·S. If the beam passes through 

different polarization devices, the final Stokes vectors is obtained by combining the 

Mueller matrices of each element, S’=Mk·Mk-1·…·M1·S. Note that Mueller calculus 

provides a complete representation of the state of polarization of light because it can be 

used with incoherent light. The Jones formalism provides a simpler description of 

polarization, but it can only be used with coherent beams. 

 

 
 

 

 

Fig 5. Poincaré Sphere displaying some states of polarization. 

Equation (13) below shows the Mueller matrices for a linear polarizer with polarization 

axis in the 0º, 45º, 90º and -45º directions. The matrix for a quarter wave plate with fast 

axis in the horizontal direction is also indicated: 

 

The Stokes vector is a convenient way of describing the state of polarization of the wave-front. Samples 
and optical devices that interact with light are described by the components of the Mueller matrix. When 
a light beam interacts with matter, the resulting state of polarization is obtained by multiplying the 
Mueller matrix by the original Stokes vector. If the beam passes through different optical devices, the 
overall Mueller Matrix is obtained by combining the Mueller matrices of each element. 
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0º 45º

90º QWP

1 1 0 0 1 0 1 0

1 1 0 0 0 0 0 01 1

0 0 0 0 1 0 1 02 2

0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0

1 1 0 0 0 1 0 01
.

0 0 0 0 0 0 0 12

0 0 0 0 0 0 1 0



   
   
    
   
   
   

   
   

    
   
   

   

M M

M M

  (13) 

Note that Mueller matrix for a different direction of polarization  can be obtained using 

rotation matrix R( ) 

    

1 0 0 0

0 cos sin 0
  and

0 sin cos 0

0 0 0 1

 


 

 
 
 
 
 
 

R    (14) 

   θ 0º .  M R M R     (15) 

The Stokes parameters can be easily measured with the help of a polarizer and a quarter 

wave plate in front of the light sensor using the following set of equations: 

0 ,0 90 ,0

0

0 ,0 90 ,0

1

45 ,0 45 ,0

2

45 , /2 45 , /2

3

 

 .

S I I

S I I

S I I

S I I 

 

 

  

  

 

 

 

 

    (16) 

I
α,0

 stands for the recorded irradiance when the linear polarizer is set at an angle α with 

respect to the x direction and I
α,π/2

 is the image recorded when a quarter wave-plate is 

used in addition to the polarizer. After recording these six quantities, the Stokes 

parameters are easily obtained. Mueller calculus provides a simple way of explaining 

why Eq. (16) provides a way of measuring the Stokes parameters. The corresponding 

Stokes vectors of the state of polarization of the light recorded in each measurement, 

namely S0, S1, S2 and S3, are determined using the Mueller formalism. Let 

 0 1 2 3, , ,S S S SS be, then:  

 

 

 

 

0 0º 90º 0 1

1 0º 90º 1 0

2 45º 45º 2 0

3 45º QWP 45º QWP 3 0

, ,0,0

, ,0,0

,0, ,0

,0, ,0 .

S S

S S

S S

S S





    

    

    

      

S M S M S

S M S M S

S M S M S

S M M S M M S

  (17) 

Note that the first component of the Stokes vector provides the information of the 

measured irradiance. For instance, vector S2 is obtained by subtracting the states of 

polarization when the beam crosses polarizers M45º and M-45º. In this case, the measured 

irradiance is S2 that is the third Stokes parameter of the analyzed beam.  

Whereas light is characterized by the four parameters of the Stokes vector, samples and 

optical devices that interact with light are described by the components of the Mueller 

matrix. In the general case, the Mueller matrix displays 16 different non-vanishing terms. 

In fact, due to matrix normalization only 15 components have to be measured. For 

isotropic samples, the Mueller matrix MI takes a very simplified form because 8 out of 

the 16 components are zero [62]. In this case, MI reads 
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1 0 0

1 0 0
,

0 0

0 0

I

N

N

C S

S C

 
 

 
 
 

 

M     (18) 

where quantities N, C and S are related with ellipsometric angles  and  by means of 

 

 

 

cos 2 ,

sin 2 cos ,

S=sin 2 sin .

N

C

 

  

 

    (19) 

 and  are related to the p- and s- reflection Fresnel coefficients (rpp and rss) by means 

of ratio :  

 tan exp .
pp

ss

r
i

r
         (20) 

For non-depolarizing anisotropic samples, the differential Mueller matrix L=ln(M) 

provides a simpler description of the media considered [63]. Instead of the 15 

independent components of the conventional Mueller matrix, L is fully described by 

means of 6 independent terms:  
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03 13 23

0

0
.

0

0

l l l

l l l

l l l

l l l

 
 
 
  
 

 

L      (21) 

In this case, three generalized Fresnel coefficients have to be defined, namely:

ps sp,  and 
pp ps sp

ss ss ss

r r r

r r r
     where rps and rsp stand for the reflected light that is 

transformed from the p- to the s- polarization and vice versa. These ratios can be 

calculated using the components of the differential Mueller matrix [62]: 
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    (22) 

where 

 

     

01 23

2 2 2

23 01 13 02 12 03

1
cos sin  and

2 2

.

T T
K l il

T

T l il l il l il

 
   

 

     

    

3.1. Measurement of the Mueller matrix 

The measurement of the 16 components of the Mueller matrix of a sample is not a simple 

task. As a general approach, M can be determined by subsequently illuminating the 

sample with four different beams with independent states of polarization. It assumed that 

the best results are obtained when the four Stokes parameters of the illuminating beam 
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are on the vertices of a regular tetrahedron inscribed in the Poincaré Sphere [64, 65]. 

Accordingly, a set of 16 independent linear equations is produced and thus the problem 

can be solved. To minimize error, more than four different states of polarization 

measurements can be made. In this case, the components of the Mueller matrix can be 

determined by calculating the pseudoinverse matrix.  

Some different methods for measurement of the Mueller Matrix have been proposed [66]. 

Among the available techniques, in this paper we used two different approaches adapted 

to the characteristics of the problem. The first system considered is based on four photo-

elastic modulators (PEMs) as variable phase retarders. This device presents two main 

advantages: measurements are made simultaneously and there are no moving parts [67]. 

A sketch of this setup is presented in Fig. 6(a). PEMs are described as phase plates with 

horizontal fast axis with retardation of . PEMs are electrically driven, with retardation 

being a periodic function of time, i.e.   cos( )t wt   : 

1 0 0 0

0 1 0 0
.

0 0 cos ( ) sin ( )

0 0 sin ( ) cos ( )

PEM
t t

t t

 

 

 
 
 
 
 

 

M     (23) 

The Mueller matrix of the sample is obtained by writing the polarization state of light 

recorded by the detector. The light reflected by the sample with matrix MS is:  

           2 1 1 0 0 0 1 1 1

1

0
,

0

0

S S PEM PEM P P P     

 
 
    
 
 
 

S M R M R R M R R M R  (24) 

where MPEM0, MPEM1, MP1, 0, 1 and, 2 are the matrices and orientation angles of PEM0, 

PEM1, and P1 respectively. The angles are set in such a way that calculations are 

simpler. Equivalently, the polarization state at the detector is  

           2 2 2 3 1 3 2 1 2 ,D P P P PEM PEM S        S R M R R M R R M R S  (25) 

where the first component of SD is the measured intensity of the detector. Since (t) is a 

harmonic function, the components of the sample matrix M can be obtained using Fourier 

analysis of the recorded signal. The interested reader can access reference [67] for a more 

comprehensive explanation.  

  

 

 

Fig 6: Sketch of (a) four photoelastic modulators Mueller matrix polarimeter and (b) Mueller Matrix 
imaging ellipsometer. PEMs are photo-elastic modulators. Adapted from [Opt. Lett. ,41, 4507 (2016)] 
[46]. 
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A second instrument for measuring the components of the Mueller matrix has been used. 

The outline of the apparatus is presented in Fig. 6(b). Again, this device can be described 

in terms of four main devices: the polarization state generator uses a linear polarizer and 

a rotating compensator whereas the reflected light beam is analyzed by means of a 

rotating compensator and a polarizer. The sample is imaged on a camera and thus, the 

present system is able to perform image polarimetry. 

According to Fig. 6(b), the Stokes vector SD of the detected light is determined using the 

following equation  

1 1 0 0 ,D RC S RC SS M M M M M S     (26) 

where M0 and M1 are the Mueller matrix of linear polarizers [Eq. (15)] and MRC is the 

corresponding matrix for a compensator  

 

 

2 2

2 2

1 0 0 0

0 cos 2 cos sin 2 cos2 sin 2 1 cos sin 2 sin
.

0 cos2 sin 2 1 cos sin 2 cos cos 2 cos2 sin

0 sin 2 sin cos2 sin cos

RC

       

       

    

 
 

 
 
   
 

 

M (27) 

Note that theta is a function of time θ=wt and δ is the retardation of the compensator. The 

angular speeds of the two compensators w0 and w1 were related by the relationship 

0 1

p
w w

q
  where p and q are integer numbers. The orientation of polarizers M0 and M1 

was set at 0º and 90º but other options can be considered. As in the previous case, the 

components of the Mueller Matrix of the sample are determined using Fourier analysis 

methods [68].  

4. Variables, datasets and reduction of dimensionality.  

Classification problems require an accurate selection of the variables used to train and 

test the system. In some of the practical examples described in this paper, we use 

different kinds of data: in scenarios where polarization plays a key role, parameters such 

as the Mueller matrix components, and the Stokes parameters or the Degree of 

Polarization (DoP) provide additional information. Sometimes these variables are 

measured for a determined range of wavelengths, providing classification features with a 

large number of dimensions. In the case of measurements of speckle, recorded data can 

be adjusted to a Gamma distribution of probability. Here, the histogram of the 

distribution or statistics such as mean, variance, skewness, and kurtosis can be helpful. 

These parameters are defined as: 
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 (28) 

where xi are the corresponding measurements and N is the total number of pixels. Note 

that the formulas for the skewness and kurtosis are bias-corrected and differ from the 

conventional ones. Also, the image entropy [69] is also taken into account: 

  2

1

log .
N

i i

i

H x p p


      (29) 

Here, pi is the relative frequency distribution of gray level i. 

A training dataset X for N samples is described by means of a N x M matrix where row i 

represents a M-dimensional vector containing the features that describe sample i. Classes 

are labelled as integer numbers and arranged as a column vector  
T

1 2, ,..., ny y yy  of 

dimension N, i.e.; 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

...

...

... .

...

...

m

m

m

n n n nm n

x x x x y

x x x x y

x x x x y

x x x x y

   
   
   
    
   
   
   
   

X y     (30) 

4.1 Principal component analysis 

Sometimes, feature vectors can have high dimensions. For instance, a conventional 8-bit 

image histogram has to be stored in a 256 component vector; a wavelength spectrum can 

require several hundreds of components depending on the analyzed range and the step 

size. This huge amount of information may complicate the use of classification 

techniques, especially when the number of measured samples is small when compared 

with the dimension of feature vectors. This effect is known as the curse of dimensionality 

[70]. Principal Component Analysis (PCA) is popular method for reducing 

dimensionality [71]. The idea beyond PCA is to find an alternative base that fits better the 

characteristics of the measured variables of the problem. For an excellent and intuitive 

tutorial on PCA the reader can access reference [72]. 

The PCA approach can be derived using just linear algebra. Let Y be a matrix related to 

dataset X [Eq. (30)] by means of linear transformation P, i.e. Y=P X. In what follows, the 

mean of the measurements is zero (i.e. the mean has been previously subtracted). 

Reduction of dimension is based on the idea that two uncorrelated variables can be 

described as a new variable which is a linear combination of the original ones. Note that 

the cross variance between two uncorrelated variables is equal to zero. We introduce 

covariance matrix for the dataset described in the transformed space Sy as  
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1
.

1M




T

yS YY      (31) 

Rewriting Eq. (31) in terms of P and X, Sy becomes,  

  
1 1 1 1

,
1 1 1 1M M M M

   
   

TT T T T

y
S YY PX PX PXX P PAP  (32) 

where new matrix A is A=XX
T
. Note that the target of PCA is to find the linear 

transformation that provides the best representation of dataset X. Best means that the 

variables have to be uncorrelated and thus Sy has to be diagonal. Since A=XX
T 

, this 

matrix can be diagonalizable, i.e ;T
A = EDE D is a diagonal matrix and E is the 

transformation (eigenvectors) matrix. Finally, if we set E=P
T 

then
T

A = P DP and Sy 

becomes diagonal: 

1 1 1
.

-1 -1 -1M M M
T T T

YS = PAP PP DPP = D    (33) 

Note that P
T
=P

-1
. In summary, the eigenvectors of A=XX

T 
transforms Sy into a diagonal 

matrix. It is worth to point out that eigenvectors associated with high eigenvalues 

(variances) of SY provide more information that those directions whose eigenvalues are 

small. Accordingly, these less relevant directions can be avoided and the dimensionality 

of the dataset is reduced.  

 

 

5. Classification using machine learning techniques: 

In this section we provide a summary of the machine learning classification methods [73] 

used in the present paper. Among different possible techniques we used K-Nearest 

Neighbors (K-NN), Support Vector Machines (SVM) and Random Forests (RFs). The 

three methods are non-parametric and supervised. Non-parametric means that the number 

of variables involved in the calculation is determined by the training data. Supervised 

learning means that the system learns from a training set of data in which each member of 

the training set is labeled with the class this element belongs to. 

5.1 K-Nearest Neighbors  

K-NN is a machine-learning classification algorithm relatively simple to implement that 

provides very accurate results with high classification success ratios [74]. To determine 

the class a test sample belongs, K-NN searches for the k closest points of the training 

dataset. The analyzed test point is assigned to the class the majority of the k-closest 

points belong. Sometimes, this voting procedure is weighted according to the distance, 

that is, the most distant points are less significant and vice-versa. Euclidean distance is 

the by default option but other definitions of distance or weights can be used as well. 

Note that the proper selection of the number of neighbors k is highly dependent on the 

problem considered. In general, small values of k define better boundaries but the system 

becomes more sensitive to noise 

Hold-out validation of classification is performed by splitting the dataset into training 

and test subsets. To avoid bias, validation is performed several times. In each trial, the 

samples used in the training or test sets are randomly selected. Classification accuracy is 

determined by calculating the ratio of the total number of correctly classified samples, 

divided by the total number of test samples [75]. Several websites provide materials to 

test and experiment classification methods using real data. For instance, the interested 

Principal Component Analysis looks for an alternative base for reducing dimensionality of dataset X; this 
base corresponds to the eigenvectors of A=XXT. Eigenvectors associated to high eigenvalues provide 
more information that those directions with small eigenvalues: at the end of the day, less relevant 
directions are avoided and dataset dimensionality is reduced. 
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reader can access the scikit-learn website for useful insight on K-NN classification [76, 

77]. 

 

 

5.2 Multiclass Support Vector Machine 

SVM is a classification method based on determining the best hyper-surface able to 

distinguish among two classes [78, 79]. Later on, SVM was generalized in such a way 

that can be utilized with multiple classes as well [80]. The use of SVM is suggested when 

the number of samples in the datasets is small but they present high dimensionality.  

Let xi and yi be the m–dimensional feature vector of sample i and the label that describes 

the class xi belongs, respectively [xi are the rows of Eq. (30)]. Possible values for yi are +1 

and -1. Let 0b  w x be the equation of the optimum hyperplane (namely, maximum 

margin hyperplane) that separates both classes; w is the normal vector to the 

hyperplane, x is a hyper-point in the feature space and b is the bias. Optimum hyperplane 

means here that the distance between the hyperplane and the nearest point of either group 

is maximized. These points are the so-called support vectors. The hyperplanes that 

contains the support vectors (margin hyperplanes) are 1b   w x and the distance 

between them is 2 / .w  Note that classes that are not separable in the feature (original) 

space, can be separated in a transformed higher dimensional space. A 2D sketch of the 

elements involved in a 2-class SVM is presented in Fig. 7. 

 

 

Fig. 7: Two-class SVM: margin hyperplanes and support vectors 

To determine the class a test sample, k-NN searches for the k closest points of the training dataset. The 
analyzed test point is assigned to the class the majority of the k-closest points belong. 
Hold-out validation of classification is performed by splitting the dataset into training and test subsets. To 
avoid bias, validation is performed several times. In each trial, the samples used in the training or test 
sets are randomly selected. 
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Linear SVM is enunciated as follows: All the samples of class +1 have to lay in the semi-

space defined by 1b  w x . For the class –1 samples, the condition is 1b   w x . 

Accordingly, all the samples of the training set have to satisfy the following conditions 

  1 for 1,..., .i iy b i n   w x     (34) 

The objective of the algorithm is to find the hyperplane whose distance between margin 

hyperplanes 2/|w| is maximized. In other words, the system looks for the hyperplane that 

satisfies:  

 
2

minimize with conditions 1 for 1,..., .i iy b i n   w w x  (35) 

This condition can be refined taking into account that some samples cannot be properly 

be classified. We introduce parameter  as the distance between a misclassified sample 

and the correct margin hyperplane; =0 if the sample is correctly classified. Then, 

condition (35) is rewritten as  

 

2
min + C  

with conditions 1  and 0 for 1,..., ,

i

i

i i i iy b i n



 

 
 
 

     

w

w x

 (36) 

where C is a regularization constant that has to be determined in such a way SVM reports 

the best possible results.  

In general, classes cannot be separated by means of a hyperplane and a nonlinear 

approach is required. Feature space is transformed to a new space by means of nonlinear 

transformation law. This new space can be of higher dimension but the decision 

boundary surface in the transformed space is again a hyperplane. Condition (36) becomes  

  

2
min + C  

with conditions 1  and 0 for 1,..., .

i

i

i i i iy b i n



  

 
 
 

     

w

w x

 (37) 

Kernel function K describes a simple way of calculating dot products. Several kernels 

have been described; in this paper we use the Gaussian Radial Basis Function kernel, 

defined as  

       2

, exp  with 0.i j i j i jK C        x x x x x x   (38) 

Again, C and  have to be found in order for SVM to produce the best classifications 

results.  

SVM has been generalized to K classes. In order to attack this problem, two possible 

approaches are possible:  

(i) one-versus-one (two classes are taken into account each time): 2-class SVM 

is run K(K-1)/2 times: class A vs B, A vs C, B vs C, et cetera. In each run 

the sample is assigned to a determined class and the class the sample 

belongs is the one that has been assigned a majority of times. This is the 

approach used in this paper. 

(ii) one-versus-the-rest: one class is tested against the rest of the samples.  

5.3 Random forests (RFs) 

RFs [81] are based on decision trees. Decision trees are commonly used as selection 

procedures since they provide a visual perspective of the analyzed problem. The main 

approach behind RFs is that a group of weak learners or classifiers such as trees can be 

integrated to produce a strong learner or classifier. Averaging trees is also known as 

Bagging. Based on this tool, random forests have been demonstrated as a very powerful 

classification technique. According to some authors, random forests provide the best 
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possible performance among classification methods [82] but other groups find this 

statement arguable [83].  

As indicated in Eq. (30), X is the dataset matrix; each of the n samples of the dataset is 

described by m features whereas y provides the information of the class each sample 

belongs to. X and y are combined in a new matrix X (see Fig. 8). 

 

 

Fig. 8: Combined dataset X . Ellipses indicate a random selection of data (yellow ellipses) and features 
(blue ellipses) for generating a random tree.  

With the information contained in the dataset a complete decision tree is generated (Fig. 

9). Each node is split into leaf nodes using the conditions until all features are used.  

 

 

Fig. 9: Example of a complete decision tree. The red box indicates a random selection of nodes and 
conditions, i.e.: a random tree 

RFs are based on selecting at random a limited numbers of features and samples of the 

dataset (bagging process). Note that the minimum number of features  required to create 

a random tree is ,v m 
 

 where the symbol    stands for the floor operator. A 

random decision tree is created using partial data (for instance, yellow and blue ellipses 

in Fig. 8). The system is trained by generating a large collection of uncorrelated random 

trees (such as the red box in Fig. 9). RFs classification is based on the assumption that 

most of the partial random trees will provide a correct prediction of the class. When a test 

sample has to be classified, its features are used to check the generated random trees. The 

output of every random tree provides a vote for a specific class for the test sample. The 

class the sample is assigned is obtained by the majority of votes of the set of random 

trees. 

 

Support Vector Machine is a classification method based on determining the best hyper-surface able to 
distinguish among two or more classes.  
Random forests are based on selecting randomly a limited number of features and samples of the dataset 
(random tree). The system is trained by generating a large collection of uncorrelated random trees. 
Classification is based on the assumption that most of the partial random trees will provide a correct 
prediction of the class. 
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6. Authentication of codes produced with gold nanoparticles 

In this section, we demonstrate by experiments that QR codes providing the same 

information but made of different materials can be distinguished by the combined use of 

nano particle phase encoding, polarized light, statistical analysis of speckle, and machine 

learning techniques [44]. The problem consists of authenticating a 21x21 pixel QR code 

fabricated with gold nanoparticles (AuNP) from another QR code fabricated with 

platinum nanoparticles. Both gold nanoparticles and platinum (Pt) nanoparticles QR 

codes are deposited on a glass surface and encoded with the same information, that is the 

sequence of numbers 12 155 22 13. The size of these codes is 0.840 x 0.840 mm
2
 (40 

microns/pixel). In order to increase the complexity of the problem, a third code made of 

AuNP but without QR code was also produced. The image of the three structures is 

shown in Fig. 10(a-c).  

 

 

Fig. 10: (a) AuNP (gold) QR code (sample A), (b) Platinum QR code (sample B), and (c): AuNP (gold) 
structure without QR code (sample C). Reprinted from [Opt. Lett.,  40, 2135 (2015)] [44]. 

Figure 11 sketches the optical setup. A green laser diode (λ=532 nm) passes through a 

variable density filter for tuning the total intensity. A linear polarizer and a quarter wave 

plate are used to generate circularly polarized light. A second polarizer is used to select 

the direction of polarization. Then, the sample is illuminated and propagated 15 mm 

where a CCD camera records the light distribution. Note that the light that illuminates the 

code has to be polarized. Metallic nanoparticles used to produce the code show dichroism 

and thus, absorption is dependent on the direction of polarization (see, for instance, [51-

53]).  

 

 

Fig 11: Optical setup for authentication of codes produced with gold nanoparticles. Reprinted from [Opt. 
Lett.,  40, 2135 (2015)] [44]. 

The corresponding light distributions after propagation are shown in Fig. 12(a-c) (see the 

caption for details). Note that Fig. 12(a) and Fig. 12(b) look different despite the initial 

QRs encode the same information.  
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Fig. 12: Propagated QR codes: (a) sample A, (b) sample B, and (c) sample C (see Fig. 10 for details). 
Reprinted from [Opt. Lett.,  40, 2135 (2015)] [44]. 

The state of polarization of the light that illuminates the sample is modified by rotating 

the second polarizer from 0º to 179º at intervals of 1º [Fig. 11]. Accordingly, 180 8-bit 

images have been recorded and the corresponding histograms are calculated. Note that 

the variable density filter is set in a way that the camera never saturates. Figures 13(a), 

13(b) and 13(c) display the histograms of the propagated distributions of samples A, B 

and C respectively when the polarization angle is set at 0º, 30º, 60º, 90º, 120º and 150º. 

For a given sample, all the histograms behave in a very similar way. However, there are 

slight differences in the histogram when the polarization of the illuminating beam is 

changed. This fact can be explained in terms of the dichroism present in metal 

nanoparticles. In other words, optical parameters depend on the direction of polarization 

of the incident light [51-53]. 

As discussed in section 4.1, PCA provides a way for reducing the dimensionality of the 

problem. Accordingly, we used this technique to provide an alternative representation of 

the histograms. Figure 13(d) displays the results of applying this technique to the 

histograms. Results are shown using a 3D plot, which means that only the first three 

principal components are taken into account. It is apparent that using the PCA 

representation, the set of histograms for each sample look completely disconnected.  
 

 

Fig. 13: Histograms of the three samples in Fig. 12(a-c) for different directions of polarization (0º, 30º, 
60º, 120º and 150º). (d) Principal Components Analysis of the histograms. Red dots: sample A, green 
dots: sample B:, and blue dots: sample C. Reprinted from [Opt. Lett.,  40, 2135 (2015)] [44]. 
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The experiment presented above was repeated but now the codes of Fig. 10 are phase 

encoded. The propagated irradiances are presented in Fig. 14(a-c). At first sight, the 

images present a speckle-like appearance compatible with the theoretical concepts 

developed in section 2.  
 

 

Fig. 14: Propagated random phase-encoded QR codes: (a) sample A, (b) sample B, and (c) sample C. 
Reprinted from [Opt. Lett.,  40, 2135 (2015)] [44]. 

Figures 15(a-c) display the histograms measured for the phase-encoded samples. As in 

the previous experiment the measured histograms display small differences depending on 

the polarization direction of the illuminating beam. Moreover, the profiles of the 

histograms look very similar for the three cases considered. Taking into account that the 

histogram of the propagated irradiances can be described as a speckle-Gamma probability 

distribution, a Kolmogorov-Smirnov test was used to check the goodness of the fit [84]. 

All the histograms of the three samples passed the test.  

Again, we have performed reduction of the histogram dimensions using PCA. Figure 

15(d) shows a plot using the three first principal components. Surprisingly, the clouds of 

points for each sample are not overlapped.  

 

 Fig. 15: (a-c) Histograms of the three phase-encoded samples in Fig. 14(a-c) for different directions of 
polarization (0º, 30º, 60º, 120º and 150º); (d) Principal Components Analysis for the phase encoded 
samples. Red dots: sample A, green dots: sample B:, and blue dots: sample C. Reprinted from [Opt. Lett.,  
40, 2135 (2015)] [44]. 
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Finally, classification among samples using 3-class SVM has been carried out. Since 

SVM is appropriate for high dimensional problems, we fed the SVM algorithm with the 

information provided by the histograms. Both cases are considered: phase-encoded and 

non-phase encoded samples. A hold-out strategy is used to train the classification model 

(see section 5.1). The dataset is split into training and test subsets and validation is 

performed 40 times. As explained above, the samples used in the training or test sets 

were randomly selected. Table 2 shows accuracy results: no errors were detected during 

classification.  
 

Table 2. SVM Results, three class problem 

Phase mask Accuracy (test set, in %) # test runs 

No 100 40 

Yes 100 40 

 
In summary, we demonstrated that polarized light can be used to distinguish and validate 

phase-encoded QR codes produced with metallic nanoparticles. The histograms of the 

Speckle distributions obtained after propagation are used to produce a dataset for multi-

class SVM. Calculations show that the classification accuracy is 100%.  

7. Authentication of codes produced with thin-films techniques 

In the previous section, we demonstrated that codes encoding the same information but 

produced using different nano encoded materials can be distinguished because of their 

different polarimetric signature. Slight differences in the image histogram are used to 

train a classification system that is able to perform successful authentication. Now we 

consider a similar problem: two QR codes providing the same information are made 

using standard thin-film technology. We demonstrate that they can be distinguished by 

analyzing the polarimetric properties of the reflected light [45]. In the present study, the 

measurements were carried out using the Mueller matrix image ellipsometer presented in 

section 3.1 [Fig. 6(b] [68]]. 

The QR used is shown in Fig. 16(a). It encodes the numerical sequence 0034934021143. 

The lithographic mask with the QR image was produced using a high contrast 

orthochromatic film [Fig. 16(b)]. The two codes were produced using Chromium (Cr) 

and Tantalum pentoxide (Ta2O5) respectively. These materials were deposited on a 

microscope slide (25 mm x 75 mm) using radio-frequency sputtering [Fig. 16(c)]. The 

thicknesses of the resulting codes were 120 nm and 20 nm for the Ta2O5 and Cr samples 

respectively. Note that the Ta2O5 and Cr codes look very different whereas the former is 

very transparent, the latter is quite absorbent [Fig. 16(c)]. More information about the 

fabrication procedure of these codes can be found in [45, 85, 86]. 

 

 

 

Fig. 16: QR code encoding the message ‘0034934021143’; (b) high-contrast thin film used as 
lithographic mask; (c) Ta2O5 QR (left) code and Cr QR (right). Adapted from [Opt. Lett., 40, 5399 (2015)] 
[45]. 

The system is illuminated by means of a LED source in combination with an 

interferometer filter (λ=535 nm). The state of polarization of the beam is determined by 

means of a linear polarizer and a rotating achromatic compensator. The beam interacts 
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with the sample with an angle of incidence of 56º and passes through a rotating 

compensator and a linear polarizer. The resulting distribution of irradiance is imaged 

using an objective lens and recorded by a CMOS camera. This instrument produces the 

16 Muller component images of the sample.  

Figure 17(a-b) displays the 16 Mueller images for the two samples considered. It is quite 

apparent that 8 out of the 16 components of the matrix are zero and, as expected, the two 

samples are isotropic [Eq. (18)]. The Mueller matrix for isotropic samples is highly 

symmetrical with only three independent terms (N, C and S). These quantities are related 

to ellipsometric angles  and  [Eq. (19)], and ratio ρ between the p- and s- reflection 

Fresnel coefficients [Eq. (20)]. This parameter can be used to distinguish among the two 

samples.  

 

 

 

Fig. 17: Mueller matrix images for samples (a) Cr and (b) Ta2O5. Reprinted from [Opt. Lett., 40, 5399 
(2015)] [45]. 

We calculated coefficient  for the two samples namely
2 5Cr Ta O and   and phase-only 

filtering is used as a way to distinguish among the two samples [87]. This operation is 

defined as:  

 
 2 5 2 5

*
1 Cr

Cr Ta O Ta O

Cr

FT
FT FT ,

FT


  




 

     
  

   (39) 

where   
stands for the phase-only filter correlation operator. Figure 18(a-b) shows a 3D 

representation of correlations Cr Cr  and
2 5Cr Ta O  . Note that the correlation peak 

for the latter is very small when compared with the auto-correlation. This means that the 

chromium sample is detected whereas the Ta2O5 is rejected. Therefore, polarimetric 

coefficient  can be used for distinguishing two identical images made of different 

materials using correlation.  

  

 

 

Fig. 18: Phase-only correlation: (a) Cr Cr  and (b)
2 5Cr Ta O  . Reprinted from [Opt. Lett., 40, 

5399 (2015)] [45]. 
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Anisotropic materials such as cellophane [88] can be used for producing more complex 

structures. Anisotropy has been induced by attaching small strips of adhesive tape on the 

two samples; note that the orientation, length and width of the strips are placed at 

random. The resulting Mueller matrices are presented in Fig. 19(a-b). Note that in both 

cases, these matrices do not show vanishing terms or symmetries. 

 

 

  

Fig. 19: Mueller matrix images for samples with adhesive tape: (a) Cr and (b) Ta2O5. Reprinted from 
[Opt. Lett., 40, 5399 (2015)] [45]. 

In this second experiment, recognition based on phase-only correlation of Fresnel ratios  

is not as simple as in the scenario presented above. With non-isotropic samples, two new 

complex-valued ratios, namely sp and ps, can be used to discriminate among samples. 

The three Fresnel ratios for anisotropic non-depolarizing media are calculated using Eqs. 

(21) and (22) (see section 2 and reference [62]).  

Table 3 shows the value of the cross-correlation maxima for , sp and ps. Values are 

normalized to the corresponding autocorrelation maximum. In anisotropic media, the 

three cross-correlations have to be very small in order reject that sample. In this example, 

the three cross-correlation values are very small and thus the Cr code is detected.  

 

Table 3. Phase-only cross-correlation maxima. 

Samples with adhesive tape 

 

 
2 5Cr Ta O

Cr Cr

0,0

0,0

 

 




 0.040 

 

 
2 5ps-Cr ps-Ta O

ps-Cr ps-Cr

0,0

0,0

 

 




 0.020 

 

 
2 5sp-Cr sp-Ta O

sp-Cr sp-Cr

0,0

0,0

 

 




 0.014 

 

A third scenario has been considered. The objective lens of the ellipsometer was removed 

and thus, the samples cannot be imaged [see Fig. 6(b)]. Note that the QRs are phase-

encoded and therefore, the recorded components of the Mueller matrix are speckle-like 

noise distributions. In this conditions, the code cannot be read but we demonstrate that 

the samples can be distinguished using only the polarimetric signature. This is very 

advantageous from the security point of view because samples can be authenticated as 

true or counterfeit without accessing the QR code or the information encoded.  

Using the Mueller matrix, we can produce a large set of resulting Stokes parameters 

S’=MS. We take into account linearly polarized input light  0 1,cos2 ,sin 2 ,0S  S

with ψ ranging from 0º to 179º at intervals of 0.1º. Note that this large set of Stokes 

vectors is numerically produced. The 256-bins histograms of the four Stokes parameters 

of the 1800 synthetically generated distributions were calculated. The results are 

presented in Fig. 20(a-d) (Cr sample) and Fig. 21(a-d) (Ta2O5 sample) (see caption for 
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details). At first sight these histograms look different and could be used for classification 

purposes using machine learning algorithms.  

 

 

 

Fig. 20: Histograms (x-axis: grey levels  and  y-axis: frequency) of the 4 Stokes components distributions 
for class Cr: (a) S0, (b) S1, (c) S2, and (d) S3. Adapted from [Opt. Lett., 40, 5399 (2015)] [45]. 

Dimensionality is reduced using Principal Component Analysis. Figure 22(a-d) shows the 

representation of the three largest principal components for S0, S1, S2, and S3. Note that 

with only three principal components the histograms corresponding to S0 appear 

separated.  

Components S0, S1, S2, S3 and the DoP were used to produce 5 independent datasets. 

Using a hold-out strategy, the datasets were divided at random into training and test sets. 

A two-class K-NN method with k=1, was used to perform classification within the five 

groups of data. The algorithm was run 50 times. The results are presented in Table 4: in 

summary, K-NN provides error-free classification using the histograms of S0, S2, S3 or the 

DoP. 

 

Table 4. K-NN classification mean accuracy, k=1 

Parameter S0 S1 S2,  S3 DoP # test runs 

Accuracy (test set, in %) 100 78 100 100 100 50 

 

 

Fig. 21: Histograms (x-axis: grey levels and y-axis:  frequency ) of the 4 Stokes components distributions 
for class Ta2O5: (a) S0, (b) S1, (c) S2, and (d) S3. Adapted from [Opt. Lett., 40, 5399 (2015)] [45]. 
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Fig. 22: Principal Components Analysis for the phase encoded samples Cr (red dots) and Ta2O5 (green 
dots): (a) S0, (b) S1, (c) S2, and (d) S3.  

8. Authentication of pharmaceutical pills coated with gold nanoparticles. 

Pharmaceutical products are produced under strict safety measures following well 

established protocols. Falsification of specifics could be a major problem for the industry, 

drugs agencies and general public. Criminal activity related with counterfeit medicines 

produces financial losses for companies and can become a health risk for patients who 

acquire medicines outside of the regulated commercial networks. Both public 

administrations and companies are pursuing methods for detecting counterfeiting 

products in a secure and fast way [89-93]. 

AuNP are very common in biomedicine: since AuNP are non-toxic and biocompatible, 

multiple applications have been described [94-98]. Among many other applications, 

AuNP are used as drug carriers and labeling, delivery, heating, or gene-regulating agents. 

Also, AuNP are used in imaging diagnostics [99, 100]. 

In this section we introduce an approach for tagging pharmaceutical tablets in such a way 

that falsification becomes virtually impossible. AuNP are used to produce nano particle 

coated tablets that become polarimetrically labeled. As explained in section 6, AuNP 

present dichroic behavior and thus, the properties of the scattered light may depend on 

the state of polarization of the light source. Tablets can be analyzed by means of 

polarized light and according to the polarimetric signature detected they are classified as 

true of counterfeit [46].  

We produced flat placebo pharmaceutical tablets according to the specifications of Table 

5. The size of the tablets is 10 mm. The coating is composed by deionized water, AuNP 

of different sizes and hydroxypropyl methylcellulose (HPMC), a very common excipient 

used in the pharmaceutical and food industries. Three commercial solutions containing 

AuNP with different sizes and concentrations (provided by Endor Nanotechnologies, 

Barcelona) were used. The nanoparticles of the solutions used were very homogenous 

with a Dispersity index Đ close to 1. A short description on how the tablets were 

prepared can be found in [46]. In summary, three sets of gold-coated tablets were 
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produced containing respectively 4, 12 and 25 nm AuNP. In addition to these sets, we 

prepared a fourth group of tablets containing no nanoparticles. 

Table 5: Pharmaceutical tablets and coating components 
Tablet 

components: 
Lactose monohydrate  
(Tablettose® 80) 

35% 

 Microcrystalline cellulose  
(Vivapur® 101)  

59% 

 Talc  4% 
 Magnesium stearate  2% 

Tablet coating: Hydroxypropyl methylcellulose 
(HPMC) (Pharmacoat® 606) 

3% 

 Deionized water 97% 
Nanoparticles 4 nm AuNP. 0.05 mg/ml   

 12 nm AuNP, 0.03 mg/ml  
 25 nm AuNO, 0.01 mg/ml  

 

The tablets of the four sets look identical and cannot be distinguished by visual inspection 

(see Fig. 23). A couple of pills of each group were selected at random for 

characterization. The Mueller matrix components were obtained using a four-PEM 

Mueller Matrix Polarimeter; this instrument is depicted in Fig. 6(a) [67]. The light source 

was able to illuminate the sample in the range 280–700 nm. Results for the 8 measured 

tablets are presented in Fig. 24. 

 

 

Fig. 23: Produced tablets used in the experiments. 

Note that some of the Mueller components in Fig. 24 are very close to zero for any 

wavelength. Accordingly, the tablets display a behavior that can be identified as isotropic 

because the measured Mueller matrix can be approximately described by means of Eqs. 

(18) and (19) (see section 2).  

Figure 25 shows the DoP as a function of the wavelength for some particular states of 

polarization of the incident light, that is natural, linear (horizontal, 45º, vertical and -45º) 

and circular. For instance if the sample is illuminated with natural light S’=(1,0,0,0) the 

DoP of the reflected beam verifies 0.6<P<0.7. On the other hand, when S’=(1,-1,0,0), 

P>0.9. In any case, there is not a strong dependence of the DoP as a function of the 

wavelength.  

Then, wavelength average of the DoP as a function of polarization angle  

 0º 90º   was calculated. Results are presented in Fig. 26. The error bars indicate 

the standard deviation. Note that the maximum distance between the curves appears for 

polarization angles 20º 35º  . Nevertheless, red curves (4nm) and black curves (no 

nanoparticles) are very close to each other and almost overlap. 
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Fig. 24: Mueller matrix components as a function of the wavelength. The wavelength and the Mueller 
components range from 280 to 700 nm and [-1, 1] respectively. For the sake of clarity, the y-scale of the 
graphs is adapted to the dynamic range for each component. Two tablets of each class were used. Black: 
tablets without nanoparticles; red: tablets with 4nm AuNP; green: tablets with 12nm AuNP; blue: tablets 
with 25nm AuNP. Reprinted from [Opt. Lett., 41, 4507 (2016)] [46]. 

 

Fig. 25: DoP as a function of the wavelength for several input states of polarization: S=(1,0,0,0), 
S=(1,1,0,0), S=(1,-1,0,0), S=(1,0,1,0), S=(1,0,-1,0) and S=(1,0,0,1). Two tablets of each class were used. 
Black: tablets without nanoparticles; red: tablets with 4nm AuNP; green: tablets with 12nm AuNP; blue: 
tablets with 25nm AuNP. Reprinted from [Opt. Lett., 41, 4507 (2016)] [46]. 

The calculation of the average of the DoP is not enough to perform a trustable 

classification of the sample. For this reason we used a classification algorithm such as K-

NN. Since the sample is characterized by the Mueller matrix, a dataset with an arbitrary 

number of states of polarization can be generated. We calculate the state of polarization 
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of the reflected light when the polarization angle  ranges from 20º to 35º with a step size 

of 0.057º (0.001 rad). Then, the DoP as a function of the wavelength for each angle  

was obtained. Note that DoP curves can cross each other when <350 nm (see Fig. 25). 

For this reason, the wavelengths are limited to   [350,700]. The system was trained 

using a hold-out strategy: half of the values of DoP are used to train the system and the 

other half for testing purposes. The training and test sets are generated at random. The 

classifier was trained 1000 times with k=1 (i.e. only the closest neighbor is taken into 

account). The accuracy of the classification was 1 and no errors were detected.  

We performed a second classification test using K-NN (k=1). The DoP was calculated in 

the same way as explained above, but in this case the sets were not generated at random: 

the training set was produced by selecting one of the pills of each class; the data obtained 

from the remaining pill was used as the test set. The 16 possible combinations where 

taken into account. The accuracy of the classification was again 1 for all cases 

considered.  

In summary, we demonstrated that pills coated with nano particles (AuNP) of different 

sizes can be successfully classified using polarimetric techniques. This result may open a 

possible trend in research of anti-counterfeiting of pharmaceutical products.  

 

 

Fig. 26: Averaged DoP as a function of the polarization angle . Two tablets of each class were used. 
Black: tablets without nanoparticles; red: tablets with 4nm AuNP; green: tablets with 12nm AuNP; blue: 
tablets with 25nm AuNP. Reprinted from [Opt. Lett., 41, 4507 (2016)] [46]. 

9. Authentication of Three Dimensional phase encoded samples 

In the previous sections, we analyzed the effect of polarized light on the behavior of 

codes or pharmaceutical pills produced with AuNP, platinum, chromium, et cetera. The 

polarimetric signature is used to distinguish among different classes of samples and 

authentication is performed using machine learning algorithms such as SVM or K-NN, 

etc. Now, the problem is slightly different because polarization does not play a key role 

in validation. As we discussed in section 1, phase encoding using adhesive tape produces 

speckle-like distributions after propagation. In this section, we extend conventional 2D 

phase encoding to a more general 3D encoding [101-103]. We show that 3D phase masks 

(3DPM) of different thickness will produce different speckle signals. Consequently, 3D 

masks attached to codes can be used for authentication purposes [56]. 
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Fig. 27: 3D phase encoded codes: (a) two layers 3D code (code A); (b) four layer s3D code (code B), and 
(c) five layers 3D code (code C). Adapted from [J. Opt. Soc. Am. A, 33, 1160 (2016)] [56]. 

Figure 27(a-c) shows how the samples were prepared. Three 3D phase masks of different 

thickness were attached to a printed QR code. The 3D phase masks were produced by 

combining glass and diffuser paper. Note that we use the same QR code for the three 

cases considered. According to Fig. 27, we refer to the three samples as code A, B, and 

C. For illustrative purposes, Fig. 28(a) and 28(b) shows the QR code printed on 

transparency film and the two-layers 3D code (code A), respectively. The size of the 

codes is 4 mm x 4 mm. 

The optical set-up for measuring the speckle signal is presented in Fig. 28(c). An 

expanded laser diode with wavelength λ=455 nm illuminates the sample. A linear 

polarizer is used as attenuator. The sample is placed in front of a CCD camera with the 

following specifications (Table 6): 

Table 6: camera specifications 
Sensor size 14.9 mm x 22.3 mm 

Pixels 2784 x 1856 
 

The camera records the speckle distributions. Distance d is set at 30, 70, 110, and 150 

mm. Because speckle patterns can be influenced by vibrations and other surrounding 

variables, twenty images were recorded for each distance d [59],  

 

 

 

Fig. 28: (a) conventional QR code printed on transparency film, (b) two layer 3D code (class A) and (c) 
optical setup. Adapted from [J. Opt. Soc. Am. A, 33, 1160 (2016)] [56]. 

Fig. 29(a-c) shows recorded images and histograms at d= 110 mm for samples of classes 

A, B and C. Images are presented in false color in order to better visualize the speckle-

like character of these distributions. Note that in Fig. 29(b) the illumination was not 

uniform due to a slight misalignment of the optical setup. The three histograms look 

slightly different. It seems that when the number of layers increases, the histogram tends 

to be narrower. Accordingly, distinctive information could be derived to perform 

classification. As discussed in section 1, speckle values follow a Gamma distribution 

probability [Eq. (3)]. Note that the curve that fits each gray level distribution is 

superimposed on the histograms. 
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Fig. 29: Recorded speckle distributions and the corresponding histograms for d = 110 mm. Gamma 
distributions fitted to match the histograms are depicted in red: (a) 3D code class A, (b) 3D code class B 
and, (c) 3D code class C. Reprinted from [J. Opt. Soc. Am. A, 33, 1160 (2016)] [56]. 

In the present problem, instead of using the 256-bin histograms to feed the classification 

system, we calculated the following statistics: mean, variance, skewness, kurtosis and 

entropy [see Eqs. (41) and (42)]. These features are used to train a Random Forest 

classification system. A total of twelve classes have been considered according to the 

information presented in Table 7:  

Table 7: 12 classes considered 
 Code A Code B Code B 

d=30 mm Class 1 Class 2 Class 3 
d=70 mm Class 4 Class 5 Class 6 
d=110 mm Class 7 Class 9 Class 10 
d=150 mm Class 10 Class 11 Class 12 

 

In summary, the system has to determine the code and the distance the measurement was 

carried out. Each class is described by 20 sets of m=5 features: 10 are used to train the 

classifier and the remaining 10 are used to test the system. According to the formula that 

estimates the minimum number of features  required to create a random tree ,v m 
 

is ν=2 (see section 5.3). The number of random trees is selected by calculating the 

classification error as a function of the number of trees. The error decays with the number 

of trees used (see Fig. 30). Note that when the system is trained with 100 random binary 

trees, the error is less than 1%. Finally, the model is checked with the members of the test 

set. All test images were successfully classified.  
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Fig 30: Classification errors as a function of the number of trees used. Reprinted from [J. Opt. Soc. Am. A, 
33, 1160 (2016)] [56]. 

A second experiment was taken into account. 50 extra speckle patterns were recorded at 

arbitrary distances d, ranging from 30 to 150 mm. In particular, distances d=30, 70, 110 

and 150 were explicitly excluded. The features obtained from these new images were 

used to test the classification system. The classifier tried to assign the images to one of 

the 12 classes of Table 7 using the following criteria: a sample image is assigned to one 

of the classes if and only if gets 95% of the votes; otherwise, this speckle image is 

rejected. As a result, none of these 50 speckle images were assigned to one of the 12 

possible classes.  

In summary, we demonstrate authentication with 3D codes in scattering medium that is 

identical QR codes, encoded with different 3D phase masks can be distinguished using a 

Random Forest classifier.  

10. Concluding remarks. 

In this paper, we have reviewed recent progress on validation and authentication using 

optics and photonics with nano particle and thin film encoding. Optically encoded data 

produced using nanoparticles or thin film technologies can be verified using polarimetric 

speckle analysis and pattern recognition techniques. Experimental methods include 

Mueller matrix polarimetry and image analysis. Since measured signals for true and 

counterfeit samples are very similar and difficult to distinguish, statistical and machine 

learning methods are required to perform successful classification. Future trends on this 

topic may include preparation of more complex samples with nanoparticles and 

simplified measuring methods that do not require sophisticated laboratory equipment.  
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