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KEY POINTS 

 Heritable transcriptional differences between malaria parasites at the same 

stage of life cycle development can have a genetic or epigenetic basis. 

 Malaria parasites can also produce directed protective transcriptional 

responses in reaction to changes in their environment. 

 Stochastic and spontaneous processes play an important role in generating 

transcriptional variation in malaria. 

 Transcriptional plasticity plays a major role in the adaptation of malaria 

parasites to changes in their environment. 
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ABSTRACT 

Transcriptional differences enable the generation of alternative phenotypes from 

the same genome. In malaria parasites, transcriptional plasticity plays a major role 

in the process of adaptation to fluctuations in the environment. Multiple studies with 

culture-adapted parasites and field isolates are starting to unravel the different 

transcriptional alternatives available to Plasmodium falciparum and the underlying 

molecular mechanisms. Here we discuss how epigenetic variation, directed 

transcriptional responses, and also genetic changes that affect transcript levels can 

all contribute to transcriptional variation and ultimately parasite survival. Some 

transcriptional changes are driven by stochastic events. These changes can occur 

spontaneously, resulting in heterogeneity within parasite populations that provides 

the grounds for adaptation by dynamic natural selection. However, transcriptional 

changes can also occur in response to external cues. A better understanding of the 

mechanisms that the parasite has evolved to alter its transcriptome may ultimately 

contribute to the design of strategies to combat malaria to which the parasite 

cannot adapt.  

  



4 
 

INTRODUCTION 

Differences among the individuals of a microbial population are essential for their 

survival in changing environments, as diversity provides the grounds for dynamic 

natural selection when the conditions of the environment fluctuate. Similar to 

bacteria or other parasitic protozoans, human malaria parasites are exposed to 

fluctuations in the conditions of the environment in which they can establish long-

term infections (i.e. the human blood). This include changes in temperature 

associated with fever episodes, changes in nutrient availability associated with the 

metabolic or nutritional state of the host, changes in erythrocyte properties 

associated with host genetic traits, or changes in host immunity, among others. 

 

Phenotypic diversity within a population implies that, under a given environmental 

condition, not all individual cells have optimal fitness and some cannot survive. 

Optimal fitness of the majority of individuals is favored in some multicellular higher 

eukaryotes such as humans, but it is of little importance in microbial communities 

with population sizes several orders of magnitude higher. Instead, if unpredictable 

changes in the environment occur, the population will prevail only if it contains 

some cells that can survive. As a matter of fact, in microbial communities natural 

selection largely operates at the level of the population, rather than at the individual 

cell level, and the level of within population diversity is a selectable trait [1]. In the 

case of malaria parasites, this implies that blood infections may not consist of 

populations in which all individual parasites have optimal fitness, but rather 

populations with an optimal level of diversity that enables survival under different 

conditions, even if it is at the cost of losing many individual cells at each 

generation.  

 

Natural selection operates on phenotypes, rather than directly on genotypes. 

Selectable phenotypes can be determined by differences in the primary sequence 

of the genome, but also by other mechanisms. In this review we will focus on 

transcriptional variation in malaria parasites, which typically results in differences in 

protein expression and subsequently in phenotypes. As described in detail below, 
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different molecular mechanisms can lead to transcriptional differences in malaria 

parasites. Differences can arise spontaneously and stochastically in a population 

before any change in the environment occurs, but transcriptional alterations can 

also occur as a response that follows an external cue. Most of this review will focus 

on Plasmodium falciparum, which is responsible for the vast majority of severe 

human malaria cases, because transcriptional variation in other Plasmodium 

species has not been studied in detail. 

 

An important consideration is that the main source of transcriptional differences in 

malaria parasites is by far life cycle progression [2-5]. Parasites at different stages 

of development have different needs and use their genes differently. Here we will 

only focus on transcriptional differences between parasites at the same stage of 

life cycle development.  

 

TRANSCRIPTIONAL VARIATION AS A CONSEQUENCE OF CHANGES IN THE 

PRIMARY DNA SEQUENCE 

Genetic variability is commonly observed in P. falciparum, including single 

nucleotide polymorphisms (SNPs), small indels and major genomic changes such 

as gene copy number polymorphisms (CNPs) or translocations [6-9]. Some 

mutations result only in changes in the primary sequence of the protein products 

encoded, but others, discussed below, affect transcript levels (Fig. 1A).  

 

An extreme case of genetic changes resulting in transcriptional alterations is the 

deletion of a gene. If a gene is deleted, its transcripts are not produced. Deletion of 

large subtelomeric regions including several genes are commonly observed in 

culture-adapted parasite lines. The genes involved play important roles in 

processes such as cytoadherence or gametocyte production that are essential in 

natural infections but dispensable in vitro [10-12]. In addition to deletions, CNPs 

observed in P. falciparum also include amplifications [6, 7, 13-15]. Generally there 

is a clear correlation between gene copy number and transcript levels [12], as 

exemplified by a duplication affecting 17 genes in chromosome 10 that resulted in 
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approximately twofold higher transcript levels of the majority of the genes [5]. 

Increased gene copy number is commonly observed for genes involved in drug 

resistance such as pfmdr1, pfgch1, dhodh or plasmepsins [12, 15-19]. 

 

In addition to transcriptional alterations occurring by outright deletion or 

amplification of a gene, genetic changes occurring in regulatory regions such as 

promoters also have the potential to affect transcript levels. This has been 

observed in P. falciparum, as exemplified by a deletion in the regulatory region of 

the pfmrp2 gene (encoding an ABC transporter) that results in expression of the 

gene at later stages of the asexual blood cycle than in normal parasites, and 

confers drug resistance [20]. The effect of CNPs on the expression of genes 

outside the region affected has also been reported, pointing to the presence of 

regulatory DNA elements or genes encoding regulatory factors within the amplified 

or deleted regions [21, 22]. The characterization of genetic changes (CNPs or 

SNPs) and transcript levels in the progeny of a genetic cross [22] and in field 

isolates [23] led to the identification of regulatory hotspots, but the putative 

regulatory elements involved have not yet been characterized in detail. 

Chromosomal translocation of subtelomeric genes as a result of ectopic 

recombination events also has transcriptional consequences, as the expression of 

the genes involved is altered [9, 24]. Lastly, SNPs in the coding sequence of 

transcriptional regulators can result in altered transcription of their target genes. 

This situation has been described in malaria during culture adaptation [25] and in 

stable culture-adapted lines [26, 27]. In both cases, premature stop codons 

occurred in ApiAP2 transcription factors that are not essential for asexual growth 

such as PfAP2-G, which is the master regulator of sexual conversion. In this 

transcription factor, non-sense mutations result in inability to activate the 

gametocyte-specific transcriptional programme [27]. 

 

TRANSCRIPTIONAL VARIATION REGULATED AT THE EPIGENETIC LEVEL 

Epigenetics refers to heritable differences between cells that cannot be explained 

by differences in the primary DNA sequence. Some malaria genes, termed clonally 
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variant genes, can be found in either an active or a silenced state in genetically 

identical parasites at the same stage of life cycle progression. Once established, 

the transcriptional state is stably transmitted from one cellular generation to the 

next in the absence of external cues, providing one of the best examples of bona 

fide epigenetic inheritance in any organism [28] (Fig. 1B). P. falciparum clonally 

variant genes include genes involved in antigenic variation [29], which contribute to 

immune evasion, and genes that confer different phenotypes for processes such 

as developmental fate determination, erythrocyte invasion or solute transport. 

Clonally variant genes have been identified by comparative transcriptional analysis 

in gene-centered studies [27, 30-36] and at a genome-wide level [5, 31, 37, 38], 

and can also be predicted from epigenomic profiles [39-41] or from comparative 

epigenomics [42, 43]. The genes and gene families that show clonally variant 

expression and their putative functions have been extensively reviewed elsewhere 

[44-47] and will not be further discussed here. The model that has emerged 

postulates that a limited number of gene families and individual genes show 

clonally variant expression as an intrinsic property, such that the genes of these 

families are found in different transcriptional states among individual cells of an 

isogenic population. The intrinsic heterogeneity in the expression of these genes, 

which precedes unpredictable environment changes, results in phenotypic variation 

within parasite populations, providing a substrate for natural selection.  

 

A relevant concept for malarial clonally variant gene expression is bet-hedging, 

which refers to an adaptive strategy that relies on pre-existing diversity within 

populations. While bet-hedging is formally defined by mathematic descriptors of 

population fitness, conceptually it refers to a risk-spreading survival strategy 

involving stochastic but stable epigenetic heterogeneity within populations to 

ensure survival in changing environments, thus increasing overall population 

fitness [48-52]. Clonally variant expression in malaria has been proposed to form 

the basis of a bet-hedging adaptive strategy [5, 53]. However, the adaptive 

potential of transcriptional variation has been formally demonstrated only for the 

extensively studied var genes, involved in cytoadherence and immune evasion 
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(reviewed in [29, 54]), and for clag3 genes involved in the transport of solutes, 

including nutrients and toxic compounds [55-58]. It is predicted that different 

families of clonally variant genes enable adaptation to different fluctuations in the 

human blood environment, but the cognate changing condition is not known for 

most variant families.  

 

Molecular basis of clonally variant gene expression 

The basic principles of the mechanism that regulates clonally variant expression of 

different P. falciparum gene families have been described. The regulatory regions 

of these genes lie within bistable chromatin domains [59], in which both an 

euchromatic and an heterochromatic state can be adopted and stably transmitted 

(Fig. 1B). The silenced (heterochromatin) state is characterized by tri-methylation 

at histone H3 lysine 9 (H3K9me3), whereas the active (euchromatin) state is 

characterized by acetylation at this same position (H3K9ac) [60-64]. The epigenetic 

memory of the active or silenced state of a variant gene is carried in the chromatin 

of the locus itself: histone modifications that determine the active or silenced state 

are maintained throughout the full asexual cycle including stages at which the gene 

is not expressed [42, 62-64]. However, while both states can be stably inherited for 

several generations, low-frequency switches from one state to the other occur in 

some parasites [32, 45]. In addition to alternative chromatin states, variant gene 

expression in P. falciparum involves relocation between different sites within the 

nucleus, at least for some gene families [40, 65-68]. 

 

Proteins that contribute to the establishment and maintenance of H3K9me3, such 

as H3K9-specific histone methyltransferases and deacetylases, as well as 

heterochromatin protein 1 (HP1), are necessary for the silenced state of clonally 

variant genes, whereas H3K9 histone demethylases and acetyltransferases enable 

the active state [40, 44, 47, 69, 70]. On top of this general mechanism common to 

all clonally variant genes, different histone modifications and enzymes control the 

variant expression of specific variant gene families such as var, which shows 

mutually exclusive expression [29, 71-76].  
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While the general mechanism regulating clonally variant expression has been 

elucidated, many questions still remain. One unresolved issue is how the 

transcriptional state of each individual variant gene is regulated independently of its 

neighbor genes [5, 62, 77, 78]. It is well-established that heterochromatin has the 

capacity to spread, both in model organisms [79] and in P. falciparum [80, 81], 

implying that independent heterochromatin-based regulation of neighbor genes 

requires a system to limit spreading. In other organisms this is achieved by 

boundary elements or insulators [82, 83], but in malaria parasites such elements 

still remain to be identified. Another as yet unanswered fundamental question is 

what makes a malarial gene clonally variant. Clonal variation implies the capacity 

to nucleate heterochromatin and to switch from one epigenetic state to another, but 

the determinants for these capacities remain unknown. The genomic location may 

play a role, as many clonally variant genes are located in subtelomeric regions and 

therefore could be influenced by the heterochromatin environment of the telomeres 

[84]. However, subtelomeric location is not strictly necessary for variant expression 

because many clonally variant genes are located outside of these regions [5, 39, 

40]. Therefore, it is likely that the capacity to reversibly form heterochromatin is an 

intrinsic property of the primary sequence of the regulatory regions of variant 

genes. Either a specific sequence motif (e.g. the cognate motif of a specific 

transcription factor) or a particular DNA conformation [85] could be recognized by 

factors able to recruit the complexes involved in nucleating heterochromatin 

assembly, as described in other organisms [86, 87], but none of these elements 

has been identified in P. falciparum so far. In other eukaryotes the main trigger of 

H3K9me3-based heterochromatin formation depends on siRNAs and the RNA-

induced transcriptional silencing (RITS) complex [79, 88], but they are absent from 

the P. falciparum genome [89].  

 

Mechanisms of switching 

Yet another major gap in our molecular understanding of clonally variant gene 

expression is the mechanism mediating switches between the two possible 
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chromatin states. Transcriptional heterogeneity develops spontaneously in parasite 

populations growing in an apparently homogeneous environment (e.g. in the same 

petri dish). This suggests that epigenetic switches can occur spontaneously as an 

intrinsic property of some genes [5, 32], notwithstanding the possibility that in some 

cases external cues may induce epigenetic changes. The on and off switching rate 

also appears to be a stable intrinsic property of a clonally variant gene, although 

this has only been studied in detail for var genes [90-93] and indirectly for pfap2-g 

[27]. 

 

Stochastic processes, which are an intrinsic feature of bistable systems and bet-

hedging in many unicellular organisms [51, 52, 94-97], likely play a key role in 

variant gene switching in malaria. Intuitively, it is clear that when two identical cells 

are under an identical environment but a given locus switches in only one of them, 

a stochastic or probabilistic event is involved. It is important to keep in mind that a 

stochastic event has unpredictable consequences for an individual parasite, but at 

the population level it can result in a well-defined outcome such as a stable 

frequency of switching (Fig. 2). A stochastic event is defined as a process that 

cannot be predicted from the variables that can be quantified. All biological 

processes are subject to stochasticity despite being controlled by physical laws 

[98]. In gene expression, a process often based on a small number of molecules 

[1], the stochastic variability of the system or noise can arise from variation in the 

location and concentration of regulatory proteins (extrinsic noise) and from 

variability within the biochemical process itself (intrinsic noise) [99]. For the 

switching of clonally variant genes, located in bistable chromatin domains [62], 

stochastic interactions with histone modifiers and positive feedback loops can 

result in switching events [59].  

 

We propose two distinct molecular mechanisms involving stochastic events that 

may promote switches between the two possible chromatin states of clonally 

variant genes: i) changes in the levels of the epigenetic regulators controlling 
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clonally variant genes; ii) errors in the transmission of the epigenetic memory 

during mitosis. 

 

The former mechanism involves variation in the expression levels of epigenetic 

regulators within parasite populations, such that in some individual cells expression 

of the regulators is altered and this affects the dynamic equilibrium at clonally 

variant loci, resulting in a switch (Fig. 3A). Given that switching events are 

infrequent, cells with altered levels of the epigenetic regulators are expected to be 

similarly rare; hence, detecting them experimentally poses a major challenge. 

However, some reports described variant levels of epigenetic regulators among 

parasite isolates. This suggests that rather than rare transient alterations in the 

expression of the regulators (only in parasites in which a switch occurs), parasites 

with stable alterations in regulator levels are selected under some conditions. In 

this scenario, regulator levels mediate not only the switch but also the maintenance 

of specific epigenetic states. One study observed increased transcript levels of P. 

falciparum sirtuins in patients with severe malaria, and this was associated with 

increased expression of specific var gene subgroups [100]. Sirtuins are NAD+ 

dependent histone deacetylases that can sense the NAD+/NADH levels and 

therefore link the metabolic state of a cell with chromatin states [101, 102]. In P. 

falciparum, sirtuins have been proposed to play roles in var regulation and in 

adjusting multiplication rates [66, 84, 103, 104]. Another study observed altered 

transcript levels of the histone deacetylases HDAC1 (downregulated) and HDA1 

(upregulated) in parasites from areas of low transmission intensity, and this was 

associated with increased expression of pfap2-g [105]. The authors proposed that 

the expression patterns of these enzymes determine the level of parasite 

investment in transmission. Reduced expression of genes encoding histone 

methyltransferases in severe malaria patients has also been reported [106]. 

However, no clear evidence for clonally variant expression of epigenetic regulators 

in culture-adapted parasites has been observed. Further studies will be needed to 

confirm if differences in the expression of epigenetic regulators play a role in 

determining switching events or stable transcriptional differences between parasite 
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populations. Nevertheless, this mechanism is unlikely to be the main determinant 

of epigenetic switches: the relatively small number of histone modifying enzymes 

identified in the parasite genome [107, 108] indicates that the same enzymes likely 

operate on all clonally variant loci, rather than each variant gene family being 

regulated by specific epigenetic regulators. Thus, if changes in the expression of 

epigenetic regulators were the main determinant of switches, such changes would 

be expected to have general effects on the expression of all variant genes, but this 

situation has not been observed.  

 

The second possible mechanism that we propose for the switches in variant gene 

expression involves “controlled errors” in the transmission of the epigenetic 

memory during mitosis (Fig. 3B) [94, 95]. During DNA synthesis parental histones 

are sequentially removed and later assembled on the two daughter strands. This 

implies that cells have a mechanism to restore the epigenetic status in the two new 

DNA copies [109-111]. In P. falciparum, which divides through mitosis during 

growth in the human blood [112], errors in the transmission of histone modification 

patterns in bistable chromatin domains may underlie variant gene switches. Of 

note, errors are both common and necessary in biological processes as they 

enable diversity and the evolution of organisms. While epigenetic information can 

be transmitted from one generation to the next, its transmission through mitosis is 

far less faithful than the transmission of the primary DNA sequence by DNA 

polymerase I. As a consequence, epigenetic processes are more dynamic and 

better suited to generate plasticity and mediate adaptation to fluctuating conditions 

than genetic changes. The role of epigenetic memory transmission errors in P. 

falciparum clonally variant gene expression switches remains to be experimentally 

demonstrated.   

  

SENSING PLUS DIRECTED TRANSCRIPTIONAL RESPONSES 

The fundamental difference between the mechanisms that result in transcriptional 

variation described above and directed transcriptional responses lays in the 

dependence on external cues. Both mutations and epigenetic switches occur 
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spontaneously; they can confer a fitness advantage under unpredictable host 

conditions and mediate adaptation by natural selection, but they occur before the 

change in the environment. In contrast, a directed transcriptional response follows 

an external cue, involving sensing the external condition, signal transduction and 

changes in the expression of genes that mediate protection against the new 

condition and ultimately parasite survival (Fig. 1C). The response is in principle 

transient and non-heritable, but it remains possible that in some cases the directed 

response may involve alterations in the epigenetic state of a gene that are 

maintained and inherited after the external cue disappears. Such situation would 

include features from both spontaneous epigenetic variation and transient 

protective responses (Fig. 1B-C, bottom). However, no clear example of this 

situation has been described so far, so it will not be further discussed.  

 

The ability to sense the environment and respond at the transcriptional level is 

widespread in prokaryotic and eukaryotic cells. However, theoretical models 

predict that for organisms that live in relatively stable environments bet-hedging-

like adaptive strategies may be more cost-effective than sensing plus directed 

response systems [113]. Malaria parasites can sense changes in the environment 

and respond to them during stage transitions, as in the case of gametocyte 

activation when parasites are taken from the human circulation during a mosquito 

bloodmeal [114, 115]. However, this response does not appear to primarily occur 

at the transcriptional level. For many years, whether or not malaria parasites are 

able to produce directed protective transcriptional responses in reaction to 

fluctuating conditions within the same host has remained controversial, and some 

authors proposed that P. falciparum blood stages have a hard-wired transcriptome 

unable to respond to changes in their environment [116-118]. Other authors 

described transcriptional responses following some challenges [116, 119-128], 

although in most cases they were of low magnitude compared to the responses 

commonly observed in other microorganisms. Additionally, the link between the 

transcriptional alteration and protection often remained unclear, and in some cases 
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the transcriptional changes observed may reflect parasite death or delayed life 

cycle progression rather than a protective response.  

 

Two recent reports have unambiguously demonstrated that malaria parasites have 

the capacity to produce protective transcriptional responses to changes in their 

environment. In one case it was shown that P. falciparum can sense the depletion 

of a specific serum component, lysophosphatidylcholine, and respond by activating 

the expression of pfap2-g (possibly via GDV1 [129]), which results in sexual 

conversion [130]. This study reveals intricate links between epigenetic regulation 

and directed transcriptional responses, as the pfap2-g locus is silenced by an 

epigenetic heterochromatin-based mechanism in asexually-growing parasites [27]. 

However, the new epigenetic state is not inherited because it triggers a stage 

transition. In addition, lysophosphatidylcholine depletion resulted in changes in the 

expression of many metabolism-related genes, demonstrating the capacity of the 

parasite to mount a protective transcriptional response to adapt its metabolism to 

the host conditions, besides the developmental transition. The other report shows 

that the murine malaria parasite P. berghei (and possibly also P. falciparum) can 

sense nutrient restriction and, after signaling by the KIN protein kinase, activate a 

transcriptional program that results in reduced multiplication rates [131]. These two 

studies clearly demonstrate that malaria parasites are able to sense fluctuations in 

their environment and respond at the transcriptional level, beyond developmental 

transitions. However, the master transcriptional regulators driving the metabolic 

readjustment upon lysophosphatidylcholine depletion or calorie restriction remain 

to be identified. Future research should also determine to which other fluctuating 

conditions parasites can produce directed transcriptional responses. 

 

TRANSCRIPTIONAL VARIATION IN PARASITES PRODUCING HUMAN 

MALARIA INFECTIONS 

Transcriptional variation has also been characterized in natural malaria infections, 

but studying the transcriptome of field isolates poses several important challenges. 

First, parasite densities in naturally infected individuals are usually very low, 
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limiting the amount of parasite RNA that can be obtained from a blood sample. 

Moreover, only ring-stages and mature gametocytes are present in the circulation, 

which makes culturing indispensable to study the transcriptome of other blood 

stages. Thus, maturing parasites ex vivo to obtain parasites at late asexual stages 

or culturing for a small number of cycles to amplify the amount of parasite material 

are common practice. This requires the availability of a parasite culture facility near 

the collection site. Additionally, culturing for a few cycles complicates the 

interpretation of the results because it can have an impact on several parasite traits 

[132] after only a few days, as shown for var and clag3 transcriptional patterns [56, 

133, 134]. Indeed, field isolates show important transcriptional differences with 

stable culture-adapted lines, mainly in genes involved in immune evasion, 

cytoadhesion, erythrocyte invasion and transmission [21, 38, 135-139]. However, 

direct transcriptional analysis without culturing restricts the study to genes 

expressed in ring and mature gametocyte stages, and there are differences 

between isolates in the precise age of the parasites or in the abundance of 

gametocytes. Stage differences have been proposed to be a major confounder in 

studies on transcriptional variability between field isolates [23, 135, 136, 140]. 

Lastly, the extensive genome polymorphism observed in subtelomeric regions 

among field isolates is also a major hassle for their transcriptional analysis [9]. In 

spite of these limitations, several studies have attempted to characterize field 

isolates at the transcriptional level, providing important initial insight both for 

specific gene families and at the full genome level. 

 

Many studies have attempted to identify associations between specific parasite 

transcriptional profiles and malaria clinical presentation. Genome-wide studies of 

field isolates revealed altered expression of virulence genes in patients with 

cerebral malaria compared to asymptomatic or uncomplicated malaria patients, or 

between patients with different levels of parasitemia [106, 136, 137, 141, 142]. 

These included genes that mediate host cell remodeling, immune evasion or 

cytoadherence, among others. Genome-wide studies also identified different 

transcriptional states in P. falciparum ring stages that appear to reflect different 
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parasite metabolic states [143]. Some of the genes involved, which are not clonally 

variant, are related to central carbon metabolism. Alternative transcriptional states 

were proposed to reflect different nutrient availability and a stress response 

associated with host clinical manifestations such as fever or inflammation [143], 

and later found to be associated with parasite load [142] or with malaria severity 

[106]. Specific transcriptomic profiles associated with infection in children [144] or 

with placental malaria [145] have also been reported. 

 

Studies of transcriptional variation among field isolates centered on specific variant 

gene families have focused mainly on genes related to erythrocyte invasion or 

immune evasion and cytoadherence. P. falciparum can use alternative invasion 

pathways determined by the expression of clonally variant genes of the families 

erythrocyte binding-like (eba175, eba140, eba181 and ebl1) and reticulocyte 

binding-like homolog (rh1, rh2a, rh2b, rh4 and rh5) [146, 147]. Field isolates exhibit 

different invasion phenotypes and vary in their expression of these invasion genes, 

but no clear association with clinical manifestation has been identified [148-155]. 

Whether the driving force for the variant expression of eba and rh genes in the field 

is functional diversification, immune evasion, or both still remains to be determined 

[147, 156]. The expression of variant genes involved in immune evasion and 

cytoadherence has also been extensively studied in field isolates. Strong host 

antibody responses are associated with lower total expression of var genes [157], 

and expression of specific var genes or subsets of genes are associated with 

clinical presentation. The best know example of such associations is expression of 

var2csa, which is linked to CSA binding and placental malaria [158, 159]. Other 

types of severe malaria are generally associated with expression of var genes of 

group A and/or containing the domain cassettes DC8, DC13 or DC6 [54, 160-164]. 

These associations were also observed in a recent study using RNA-seq analysis 

of field isolates and de novo var gene assembly, which also identified additional var 

genes linked to severe disease [106]. In the case of var genes with DC8 or DC13, 

the link with severity involves binding to the endothelial protein C receptor (EPCR) 

[165, 166].  
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An important remaining question for all studies attempting to correlate parasite 

transcriptional patterns with malaria clinical presentation is about the direction of 

causality: it is currently unclear which transcriptional patterns cause severe 

disease, and which are the consequence of parasite adaptation to host responses 

associated with disease severity such as fever or inflammation. Future research 

will need to address this question, confirm the associations observed and ideally 

provide mechanistic insight. 

 

Transcriptional profiles have also been studied to compare parasites from regions 

with different malaria epidemiology or drug resistance status. A recent study 

suggested that transmission intensity influences parasite transcriptomes. Parasites 

from high-transmission areas generally presented transcriptional patterns 

consistent with higher investment in asexual replication and less in transmission 

compared to parasites from low-transmission areas [105]. Drug usage may also 

shape parasite transcriptomes. While mutations are the main determinant for 

antimalarial drug resistance [167], a recent study identified transcriptional 

alterations associated with artemisinin resistance. The transcriptional signature of 

resistant parasites involved delayed progression through the ring stage and 

upregulation of the unfolded protein response, which contributes to overcome the 

damaging effect of the drug [168]. 

 

Altogether, it is now clear that transcriptional patterns in vivo are affected by many 

factors, including the host environment and the epidemiological context. However, 

the relative contribution of genetic and epigenetic changes to transcriptomic 

heterogeneity in field isolates still remains to be determined for many of the 

examples discussed. While invasion ligand or var gene switches appear to have a 

clear epigenetic basis, it is likely that stable transcriptional adaptations such as 

those observed in artemisinin-resistant parasites [168], mostly affecting genes that 

are not clonally variant, have a genetic basis. Studies coupling transcriptomic 

analysis with full genome sequencing of field isolates are starting to define the 
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mechanistic basis of transcriptional variability in the field [23]. As a complement to 

studies with field isolates, parasite transcriptional patterns can also be studied in 

vivo in controlled human malaria infection (CHMI) studies. This approach has the 

advantage of a homogeneous parasite genetic background. Studies focused on var 

and clag3 genes already proved the usefulness of this approach, demonstrating a 

reset of the epigenetic memory during transmission stages [56, 169-172]. 

 

FUTURE PERSPECTIVES AND CONCLUDING REMARKS 

Multiple studies have unambiguously established that two malaria parasites at the 

same stage of development can have substantially different transcriptomes, which 

plays an important adaptive role. However, a deeper characterization of 

transcriptional variation in malaria is complicated by the limitations of methods that 

use bulk population analysis to study properties that vary from cell to cell. To 

overcome this limitation, several studies have analyzed subclones recently 

obtained from already clonal parasite lines, because transcriptional patterns are 

maintained for the few cycles between subcloning and analysis [5, 31, 37]. This 

approach provides two major advantages over regular bulk population analysis: 

first, transcriptional patterns can be compared between parasites of the same 

genetic background. Second, it captures transcriptional heterogeneity within a 

parasite population (Fig. 4A). However, this is a time-consuming approach not 

suitable for the identification of rare transcriptional states that would require the 

analysis of large numbers of subclones, or for the characterization of field isolates.  

 

The recent development of single-cell transcriptomics for malaria parasites is a 

major breakthrough in the field that holds the promise of overcoming these 

difficulties and boosting our understanding of transcriptional variation in malaria 

[173-177]. Single-cell RNA-seq enables the simultaneous characterization of the 

transcriptome of thousands of individual parasites (Fig. 4B). Importantly, it is 

suitable for the analysis of field isolates and in principle it can be applied to study 

transcriptional variation in any Plasmodium species (even those that cannot be 

cultured in vitro). Currently, the number of transcripts detected per cell is relatively 
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low, implying that transcripts from genes expressed at low level are either 

undetected or detected with a number of reads that precludes quantitative analysis. 

This restricts the analysis of cell to cell transcriptional variation to abundantly 

expressed genes, but it is expected that technological improvements will soon 

enable the meaningful analysis of more genes. Even with the current limitations, 

single-cell RNA-seq and single-cell qPCR have already provided important new 

insight on sexual commitment [173, 176-178], identified new male and female 

gametocyte markers [175], and challenged the previous dogma in the field of a 

continuous cascade of gene expression [174]. Of note, the latter study also 

included analysis of P. berghei, demonstrating the applicability of the method to 

different malaria species. 

 

Important insight has been gained on the molecular mechanisms that generate 

transcriptional variation in malaria parasites, including the molecular basis for 

stochastic epigenetic variation. Protective directed transcriptional responses have 

also been unambiguously identified. However, as noted through the text, many 

questions still remain. For instance, some transcriptional changes observed in the 

field, such as those associated with alternative metabolic states or with artemisinin-

resistance [143, 168], cannot be unambiguously ascribed to any of the three types 

of transcriptional variation that we describe. For convenience, we classify 

transcriptional variation in these three types, but they are likely interrelated. Also 

important to note, for much of this review for simplicity we have referred to the 

active or silenced state of clonally variant genes, but it is likely that intermediate 

states exist. We have neither discussed transient non-heritable fluctuations in gene 

expression levels, because these scenarios have not been explored yet in malaria. 

Future studies combining accurate transcriptomic, epigenomic and genome 

sequence analysis with single-cell technologies should move the field forward and 

identify all the strategies available to the parasite to change its transcriptome to 

adapt to changes in its environment, including human interventions. Ultimately, we 

should be able to unravel the full adaptive potential of transcriptional variation in 
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malaria parasites to guide the design of new interventions that are not susceptible 

to failure by parasite adaptation. 
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FIGURE LEGENDS 

 

Figure 1. Sources of transcriptional variation. Transcriptional differences 

between malaria parasites can arise from spontaneous changes both at a genetic 

(A) or epigenetic (B) level, or can occur as a response to an external cue (C). In 

some cases, responses to external cues may result in an epigenetic alteration, a 

mechanism that would share features of both B and C (box at the bottom). SNP: 

single nucleotide polymorphism; CNP: copy number polymorphism. 

 

Figure 2. Predictability of stochastic processes. Although stochastic processes 

are random, the outcome is predictable when the constraints of the system are 

known and the number of events is large. As an example, the result of rolling a 

dice a single time is unpredictable, whereas the result of rolling a dice 109 (a 

billion) times can be accurately predicted. A typical human malaria blood infection 

can contain 109 parasites and even many more. Stochastic switching between 

active and silenced chromatin states at malaria variant genes results in a controlled 
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outcome, such that heterogeneity in the population is constantly provided at the 

same rate.  

 

Figure 3. Possible mechanisms of switching. A, The epigenetic switch of 

clonally variant genes can be driven by variation in the levels of histone-modifying 

enzymes due to heterogeneity within the population or induced by external cues. 

Red flags are H3K9me3 silencing marks. Green flags are H3K9ac active marks. 

HDMs and HMTs are histone demethylases and methyltransferases, respectively, 

that operate on H3K9; HATs and HDACs are histone acetyltransferases and 

deacetylases, respectively. B, Switching between euchromatin and 

heterochromatin can occur by controlled errors in the transmission of the 

epigenetic memory. During DNA replication, histone chaperones interact with the 

DNA helicase minichromosome maintenance protein complex (MCM) to 

disassemble the nucleosomes of the parental DNA molecule. Parental histones, 

depicted in pale brown, are randomly distributed between the two daughter strands 

through the interaction of histone chaperones with the DNA clamp proliferative cell 

nuclear antigen (PCNA), which is responsible for maintaining the processivity of 

the DNA polymerases in both the leading and the lagging strand [179, 180]. Newly 

synthesized histones, depicted in green, are also assembled into the daughter 

strands. In order to maintain the epigenetic memory, the newly synthesized 

histones need to be modified to restore the original epigenetic state of the locus. 

This is driven by the presence of ‘bookmarking’ factors that recruit the histone 

modifying enzymes [109, 110]. In this example a histone methyltransferase (HMT) 

is recruited to maintain the repressed state of the locus. Errors in the maintenance 

of the epigenetic memory during mitosis can result in switches between clonally 

variant gene states.  

 

Figure 4. Methods to study cell to cell transcriptional variation. To overcome 

the limitations of studying bulk populations, a transcriptionally heterogeneous 

population can be either subcloned and analyzed soon thereafter, when the 

population arising from a single parasite is still relatively homogeneous (A), or 
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analyzed directly by single-cell technology (in this example, single-cell RNA-seq) to 

obtain information for each parasite individually (B). Colors represent different 

transcriptional patterns. 
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