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ERNEST FONTICH ¶, and JOSEP SARDANYÉS‖
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Abstract

Hypercycles are catalytic systems with cyclic architecture. These sys-
tems have been suggested to play a key role in the maintenance and in-
crease of information in prebiotic replicators. It is known that for a large
enough number of hypercycle species (n > 4) the coexistence of all hyper-
cycle members is governed by a stable periodic orbit. Previous research
has characterized saddle-node (s-n) bifurcations involving abrupt transi-
tions from stable hypercycles to extinction of all hypercycle members, or,
alternatively, involving the outcompetition of the hypercycle by so-called
mutant sequences or parasites. Recently, the presence of a bifurcation
gap between a s-n bifurcation of periodic orbits and a s-n of fixed points
has been described for symmetric five-member hypercycles. This gap was
found between the value of the replication quality factor Q from which
the periodic orbit vanishes (QPO) and the value where two unstable (non-
zero) equilibrium points collided (QSS). Here, we explore the persistence
of this gap considering asymmetries in replication rates in five-member
hypercycles as well as considering symmetric, larger hypercycles. Our
results indicate that both the asymmetry in Malthusian replication con-
stants and the increase in hypercycle members enlarge the size of this
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gap. The implications of this phenomenon are discussed in the context of
delayed transitions associated to the so-called saddle remnants.

Keywords: Bifurcations; Hypercycles; Origins of life; Complex systems;
Periodic orbits.

1 Introduction

The detailed characterization of bifurcations in nonlinear systems constitutes a
very important issue to understand qualitative changes in dynamics. Mathemat-
ical investigations of cooperative systems (e.g., molecular species with catalytic
interactions) have been carried out using different modeling approaches, the hy-
percycle model being one of the most important ones. Hypercycles are catalytic
sets of macromolecules that can catalyze their own replication or the replica-
tion of other species of the network, which have a cyclic architecture [Eigen &
Schuster, 1979]. Hypercycles have been largely investigated in the framework of
prebiotic evolution [Eigen, 1971;Eigen & Schuster, 1979; Campos et al., 2000;
Hofbauer et al., 1990; Smith & Szathmáry, 1995].

The shift from survival to extinction in hypercycles is governed by bifurca-
tions. The analysis of bifurcations in hypercycles has been classically restricted
to low dimensional time-continuous systems, specially for so-called symmetric
hypercycles [Nuño et al., 1993; Silvestre & Fontanari, 2008], for which all of
the species have the same kinetic properties (i.e., they are considered neutral
mutants [Silvestre & Fontanari, 2008]). Few works have explored asymmetries
in hypercycles: in two-member cycles [Sardanyés & Solé, 2006] or in larger hy-
percycles by means of numerical results [Campos et al., 2000]. Moreover, few
studies have focused on the dynamics of large hypercycles [Silvestre & Fonta-
nari, 2008], and especially, in the bifurcations found in hypercycles with n ≥ 5
species. It is known that, under appropriate parameter values, hypercycles are
bistable systems. Under bistability, the asymptotic coexistence or extinction of
hypercycles depends on the initial conditions. It is also known that the nature of
the coexistence attractor largely depends on the dimension (number of catalytic
species) of the hypercycle. The bifurcations for this type of systems are mainly
given by saddle-node (hereafter s-n) bifurcations, which involve a catastrophic
(i.e., sharp) extinction as the bifurcation parameters crosses its bifurcation value
[Sardanyés & Solé, 2006; Sardanyés & Solé, 2007; Silvestre & Fontanari, 2008].

The detailed mechanisms responsible for bifurcations in hypercycles have
been provided by several authors [Sardanyés & Solé, 2006; Sardanyés & Solé,
2007; Nuño et al., 1993]. For instance, Silvestre & Fontanari [2008] showed
that the conditions of viability for symmetric hypercycles competing with an
error-tail hold for all n, not only when fixed points were stable. That is because
they found numerically that the viability condition of hypercycle was the same
as the one that guarantees the existence of real fixed points. In particular, they
considered a symmetric hypercycle with n = 12 members, modeled with the
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system equations:{
ẋi = xi(AiQ+ kixi−1Q− φ),
ẋe = xe(Ae − φ) + (1−Q)

∑n
i=1 xi(Ai + kixi−1),

describing the time evolution of the ith hypercycle species (xi) and the error
tail (xe). Considering catalytic constants ki = 1, for all i, and A = 10−3

(Malthusian replication constant), there is a nonzero equilibrium point if and
only if Q & 0.19639, Q being the copying fidelity during replication (see Section
2 for a detailed description of the model). They found numerically that only
when Q & 0.19639 there exists a stable periodic solution and so the hypercycle
is viable. Therefore, the existence of an unstable fixed point seemed to be a
necessary condition for the presence of stable periodic orbits in a hypercycle.

More recently, Guillamon et al., [2015] investigated the periodic orbits in
symmetric hypercycles with n = 5. In particular, they studied how these orbits
behave in terms of Q using both numerical and analytical methods. As an ex-
ample, the results they obtained using A = 0.5 were the value QSS = 0.91607,
computed analytically, at which two unstable fixed points undergo a s-n bifur-
cation and the value of QPO = 0.91614, computed numerically, at which a s-n
bifurcation of periodic orbits takes place, thus causing the asymptotic extinc-
tion of the system for any initial condition. Interestingly, and contrary to what
Silvestre & Fontanari [2008] observed, the two values were not exactly the same.
Therefore, a slight gap between the two s-n bifurcations was found (see Figure
1).

In this manuscript we aim at exploring the effects of two important fea-
tures of hypercycle models on the persistence and characteristics of the bifur-
cation gaps previously reported. First, we analyse the impact of asymmetries
in Malthusian replication constants in the bifurcation gap. Asymmetric hy-
percycles are more biologically-realistic systems since symmetric ones consider
that the templates forming the hypercycle are neutral mutants [Silvestre &
Fontanari, 2008]. However, it is known that mutations have differential fit-
ness effects [Sanjuán et al., 2004; Carrasco et al., 2007]. That is, mutants can
carry deleterious, neutral, lethal, or beneficial mutations. Second, we explore
the impact of the size of the hypercycle on this bifurcation gap, focusing on
symmetric hypercycles. Moreover, the analyses of bifurcations in larger hyper-
cycles becomes relevant since, albeit being much more susceptible to stochastic
extinctions [Kauffman, 1993], they could store more information.

The paper is organized as follows. In Section 2 we introduce the mathe-
matical model analysed, summarizing its dynamics. In Section 3.1, we explore
asymmetric hypercycles for n = 5, the lowest dimension with the presence of
periodic orbits. Within this section we first perform an analytical study of
an n-component asymmetric hypercycle, following the work conducted in Guil-
lamon et al., [2015] for symmetric hypercycles. We later concentrate on the
5-component asymmetric hypercycles. This study allows to know precisely the
locus of the s-n bifurcations of equilibria, namely Q = QSS . Then, a numeri-
cal study of the 5-component asymmetric hypercycle is made to carry out the

3



A

 0.035

 0.045

 0.055

 0.065

 0.075

 0.085

 0.095

 0.105

 0.91607  0.9161  0.91613  0.91616

x
4

Q

Periodic orbits bifurcation
Fixed points bifurcation

Q PO

Q SS

GAP

0 200 400
0

0,2

0,4

0,6

0,8

0 200 400 600
0

0,1

0,2

0,3

0,4

9000 9600

B extinction coexistence

x
4

copying fidelity, Q

s-n bifurcation of fixed points 

s-n bifurcation of periodic orbits

Q
SS

Q
PO

time time

P
o

p
u

la
ti
o

n

P
o

p
u

la
ti
o

n

1
x

2
x

0 0.4 0.8
0

0.4

0.8

time

1
x

5
x

0 0.4 0.8
0

0.4

0.8

time

x
n-1

x
1

x
2

xn

x
3

xe

1
x

5
x

0 0.25 0.5
0

0.25

0.5

time

A1

A2 A3

Figure 1: (A) Hypercycle formed by n species. The phase portraits display
several projections of the periodic orbits allowing coexistence of species (A1
and A2). Panel A3 displays the same projection than in panel A2 but with
parameters after the saddle-node (s-n) bifurcation of periodic orbits. Under this
scenario, the flows display transient periodic behavior since the trivial attractor
is asymptotically globally stable. (B) Bifurcation curves of periodic orbits (red)
and of fixed points (blue) taking coordinate x4 (see [Guillamon et al., 2015]
for details) with respect to parameter Q for the symmetric hypercycle, i.e.,
δ = 0, with A = 0.5 and k = 1. The parametric region in green allows for the
coexistence of the hypercycle members in an oscillatory regime. The bifurcation
value of periodic orbits, QPO, and of the fixed points, QSS , are indicated with
dashed vertical lines. Notice that both bifurcation values do not coincide, fact
which has been denoted as a bifurcation gap [Guillamon et al., 2015]. The
smaller panels display time series for all hypercycle members in the extinction
and coexistence scenarios.
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bifurcation analysis. Finally, in Section 3.2. we explore the behavior of the
bifurcation gap for larger hypercycles, focusing on the cases with n = 6 and
n = 8 catalytic species.

2 Mathematical model

We analyze the hypercycle model introduced by Campos et al., [2000], which
describes the dynamics of an n-member hypercycle competing with its error tail
(see Fig. 1A for a schematic diagram). The model is given by the next set of
ordinary differential equations:{

ẋi = xi(AiQ+ kixi−1Q− φ),
ẋe = xe(Ae − φ) + (1−Q)

∑n
i=1 xi(Ai + kixi−1),

(1)

with i = 1, . . . , n and φ =
∑n
i=1 xi(Ai + kixi−1) + Aexe. State variable xi is

the concentration of the ith template, xe being the concentration of the mutant
replicators. To introduce the cyclic architecture of catalysts we set x0 = xn.
Parameter Ai ∈ (0, 1] is the replication rate of species i, ki is the strength of the
catalysis that xi−1 has on xi replication, and Q ∈ (0, 1] is the copying fidelity of
the templates during replication. Concerning the mutant species, Ae ∈ (0, 1] is
their replication rate. Finally, φ is a dilution flow that keeps the total population
constant also introducing competition between all of the replicators. Since the
structure of the equations determine that

∑n
i=1 xi + xe = 1 is invariant, we

consider the system in this domain and hence we can forget about the population
of mutants, xe.

A hypercycle is called symmetric if Ai = Ae = A and ki = k for all i, and
asymmetric otherwise. Looking at Eq. (1), it is clear that a symmetric structure
eases the computations. Let us summarize some important properties of system
(1) in the symmetric case, see also [Campos et al., 2000; Silvestre & Fontanari,
2008; Guillamon et al., 2015]:

1. It is a bistable system for some set of parameters. The origin is always
an attractor. When n ≤ 4, there is bistability when Q > QSS and the
coexistence attractor - which allows the persistence of all the hypercycle
members - is a non trivial equilibrium point. When n ≥ 5, there is bista-
bility as well for Q > QPO, and the coexistence attractor is a periodic
orbit.

2. For n = 5, QPO and QSS do not coincide. Then, there is a bifurcation gap
in the parameter space where two non-trivial equilibria exist but periodic
orbits do not [Guillamon et al., 2015].

In this paper we break the symmetry by making parameters Ai to be hetero-
geneous up to some extent, while keeping ki = 1 for all i = 1, . . . , n. In other
words, here we focus on asymmetries in the so-called Malthusian replication
rates, given by the exponential replication (at low population numbers) of the
hypercycle species, keeping symmetries in the non-linear replication terms given
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by heterocatalysis. More precisely, we will consider cases in which Ai = A for
all i = 1, . . . , n except for one or two i values for which Ai = a = A− δ, where
δ (with δ < A) will be considered as the asymmetry parameter in Malthusian
replication and a,A ∈ (0, 1]. In particular, we will mainly deal with three cases:

- Case aA . . . A: A1 = a, Ae = A and Ai = A for all i = 2, . . . , n.

- Case aaA . . . A: A1 = A2 = a, Ae = A and Ai = A for all i = 3, . . . , n.

- Case aAa . . . A: A1 = A3 = a, Ae = A and Ai = A for all i = 2, 4, . . . , n.

Given the cyclic structure of (1), these cases represent many other cases with
one or two different values.

Finally, we consider the effect of increasing the dimension (size) of the hy-
percycle, focusing on the symmetric case. Concretely we deal with n = 5, 6, 8.

3 Results and discussion

3.1 Asymmetric hypercycles

3.1.1 n-member hypercycle

We start studying analytically a general asymmetric case with n templates,
looking for general properties of asymmetric hypercycles. In the following we
are going to consider the system

ẋi = xi(AiQ+ xi−1Q− φ), i = 1, . . . , n, (2)

for the different cases above mentioned, with φ =
∑n
i=1 xi(Ai + xi−1) +Ae(1−∑n

i=1 xi) and x0 = xn. We recall that we do not take into account the equation

for xe since

n∑
i=1

xi + xe = 1.

We are interested in studying the fixed points of system (2), its saddle-
node (s-n) bifurcation and the regions where periodic orbits can be found, in
a way analogous to the one conducted in [Guillamon et al., 2015]. To simplify
notation we will also refer to the right-hand side of (2) as the vector field F (x).
Our analysis will consist of two steps. In the first one, we find fixed points and
the s-n bifurcation of fixed points. In the second step, we determine a region in
which we can find periodic orbits, i.e., where coexistence dynamics holds. For
that we analytically compute regions where it is impossible for periodic orbits
to exist.

Fixed points. We first deal with the case aA . . . A, which is the simplest
asymmetric structure one can consider. It is clear that (0, . . . , 0) is always an
equilibrium point. There are also fixed points for which some of their coordinates
are 0, but we do not compute them here since there is a huge number of possible
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combinations and knowing them is not necessary for the study we want to
conduct. Imposing xi 6= 0 for all i in Eq. (2) we get

(A− δ)Q+ xnQ− φ = 0,

AQ+ x1Q− φ = 0,
...

AQ+ xn−1Q− φ = 0,

which results in 
xn =

φ− (A− δ)Q
Q

,

x1 = · · · = xn−1 =
φ−AQ
Q

.

Subtracting x1 to xn, we get xn − x1 = δ.
Thus, we only need to find the expression of one of the xi. Let us find x1.

We first express φ in terms of x1:

φ =

n∑
i=1

xi(Ai + xi−1) + xeA = −δx1 +A+

n∑
i=1

xixi−1

= δx1 +A+ nx21,

and substituting it into the x1 expression above we get

nx1
2 − (Q− δ)x1 +A(1−Q) = 0.

Therefore, there are two equilibrium points of the form

(x±, . . . , x±, x± + δ),

with x± =
(Q− δ)±

√
(Q− δ)2 − 4nA(1−Q)

2n
.

From this last expression we know that there is a s-n bifurcation occurring
for a value of Q for which

(Q− δ)2 − 4nA(1−Q) = 0,

that is
Q = QSS = 2(

√
nA(1 + nA− δ)− nA) + δ > δ.

The two equilibrium points borning at the s-n bifurcation at Q = QSS exist for
Q > QSS . The bifurcation point is therefore:(

QSS − δ
2n

, . . . ,
QSS − δ

2n
,
QSS − δ

2n
+ δ

)
.

In the symmetric case this point was
(
Q
2n , . . . ,

Q
2n ,

Q
2n

)
, with Q = QSS |δ=0,

so that the bifurcation point for the asymmetric case tends to the one for the
symmetric case when δ tends to zero.
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Figure 2: Bifurcation diagrams for 5-member asymmetric hypercycles with
structure aaAAA setting A = 0.5 and: δ = 0.001 (a), 0.01 (b), 0.05 (c) and
0.1 (d). The saddle-node (s-n) bifurcation of periodic orbits is indicated with
red curves, while the s-n bifurcation of fixed points is indicated in blue.

Now that we have conducted a brief study of the simplest n-dimensional
asymmetric hypercycle, we study hypercycles where two of the templates have
a replication rate a = A − δ. In particular we are going to consider cases
aaA . . . A and aAaA . . . A, since these are the two cases we will focus on lately
when dealing with 5-member asymmetric hypercycles. In the case of 5 mem-
bers, these two cases cover all possibilities when two different values of Ai are
considered (relabelling the templates, if necessary). The procedure to obtain
the equilibrium points is similar to the above case aA . . . A. We obtain

(x± + δ, x±, . . . , x±, x± + δ), for case aaA . . . A;
(x±, x± + δ, . . . , x±, x± + δ), for case aAaA . . . A,

(3)

where x± =
Q− 2δ ±

√
(Q− 2δ)2 − 4nA(1−Q)

2n
. Now the bifurcation value is

Q = Q
′

SS = 2(
√
nA(1 + nA− 2δ)− nA) + 2δ > 2δ,

in both cases and the bifurcation points are(
Q

′

SS − 2δ

2n
+ δ,

Q
′

SS − 2δ

2n
, . . . ,

Q
′

SS − 2δ

2n
,
Q

′

SS − 2δ

2n
+ δ

)
,

for case aaA. . . A;(
Q

′

SS − 2δ

2n
,
Q

′

SS − 2δ

2n
+ δ, . . . ,

Q
′

SS − 2δ

2n
,
Q

′

SS − 2δ

2n
+ δ

)
,
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for case aAaA. . . A.
Periodic orbits. Since our main goal here is to study the behaviour of pe-

riodic orbits with respect to the parameter Q, we first care about the conditions
for their existence. In particular we are going to locate a subset of the basin of
attraction of the origin, and consider the complementary of this region as the
domain where the existence of periodic orbits is possible depending on Q. For
this purpose, we define the domains Ωα and the hyperplanes Σα as:

Ωα :=
{
x ∈ Rn | xi ≥ 0,

n∑
i=1

xi ≤ α
}
, (4)

Σα :=
{
x ∈ Rn |

n∑
i=1

xi = α
}
, (5)

for α ∈ (0, 1]. Observe that the dynamics of system (2) is restricted to Ω1−xe

which is a subset on the n-simplex Ω := Ω1. Besides, each subspace generated
by vectors of the canonical basis is invariant; in particular, the hyperplanes
xi = 0 are invariant. Thus, except for Σα, all other n faces of Ωα, for α ∈ (0, 1],
are invariant for the vector field F . We study the flow generated by F on Σα
by taking the vector v = (1, . . . , 1), which is normal to the hyperplane, and
computing v · F (x) for x ∈ Σα. We have that

cos(v, F (x)) =
v · F (x)

||v|| ||F (x)||
.

Then, when this scalar product is zero, F is tangent to the hyperplane. When
it is positive, F points outside of Ωα, and when it is negative F points inside
Ωα. If F points inside Ωα, for all points in Σα, we have that Ωα is positively
invariant, which means that no orbits escape from Ωα in forward time. We also
know that if the vector field F crosses transversally Σα for all α < α0 for some
α0, then Ωα0

is contained in the basin of attraction of the origin. Thus, periodic
orbits can only exist in the complementary of the region where this occurs.

This setting is general for any case of asymmetry, but the determination of
the suitable values of α that give information about the location of periodic
orbits must be performed case by case. As a general example, in this section we
study the case aA . . . A. Next, in Section 3.1.2, we will apply the same procedure
to 5-member hypercycles with two asymmetries. For the case aA . . . A, the
numerator of cos(v, F (x)) becomes

v · F (x1, . . . , xn) = (Q− α)

(
n∑
i=1

xi−1xi − δx1

)
+Aα(Q− 1). (6)

To study the behavior of expression (6) for a given α < 1, we distinguish two
cases. If Q ≤ α, the product (6) is negative (we use δ < A) so F points inside
Ωα and thus Ωα is positively invariant. If Q > α, we need the maximum of
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Figure 3: Same as Fig. 2 for 5-member asymmetric hypercycles with structure
aAaAA setting A = 0.5 and: δ = 0.001 (a), 0.01 (b), 0.05 (c) and 0.1 (d).

the RHS of (6). We first maximize f(x) =

n∑
i=1

xi−1xi, using the method of

Lagrange multipliers. We want:

max
x

n∑
i=1

xi−1xi, subject to

n∑
i=1

xi = α, (7)

together with xi ≥ 0. We obtain a unique critical point: x∗ = (αn , ...,
α
n ) ∈ Σα

and f(x∗) = α2

n . We need to check whether the maximum reached on the
boundary of Σα is greater than the value we have found.

When n = 2, the function f(x) = x1x2 is always 0 on the boundary of Σα.
Hence, the maximum is reached in the interior and turns out to be α2/2.

When n = 3, the function

3∑
i=1

xi−1xi is nonzero on the boundary when only

one xi is 0. Due to the cyclic structure of the previous function, it is indistinct
which coordinate we choose to be 0. Assuming x3 = 0, we want:

max
x

x1x2, subject to x1 + x2 = α, xi ≥ 0. (8)

Using the method of Lagrange multipliers we get that the maximum is α2/4.
Thus, the maximum on the boundary is less than the maximum that is achieved
in the interior of Ωα, which is α2/3. When n = 4, in the boundary of Σα either
one, two, or three of the xi may vanish. If three of them vanish, f is zero. If two
of them vanish, they can be consecutive and then we get a problem equivalent
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to (8) for which the maximum is α2/4, or non-consecutive and then the function
is 0. If only one of the terms vanishes, for instance x4, we have to consider

max
x

(x1x2 + x2x3), subject to x1 + x2 + x3 = α, xi ≥ 0.

Using again the method of Lagrange multipliers we get that α2/4 is the maxi-
mum, which coincides with the maximum reached in the interior of Ωα. There-
fore, the maximum is attained both on the boundary and in its interior.

When n > 4, we can proceed similarly. When two or more xi vanish, we
obtain a problem equivalent to the one solved for a lower n. We only need to
solve a “new” optimization problem when only one of the xi is 0. We are going
to solve it by induction.

Let us see now that ∀n > 4 the maximum of (7) is α2/4, attained on the
boundary when one and just one of the xi is 0. As the objective function has
a cyclic structure, it does not matter which of the xi is picked up to be 0. Let
us suppose, by induction, that the maximum α2/4 holds for n − 1 replicators.

Then we take n replicators. The image of the critical point is α2

n . We want to
solve (7) on the boundary. Taking xn = 0, we have:

f(x) = x1x2 + · · ·+ xn−2xn−1.

Now, as xi > 0, i = 1, . . . , n− 1,

f(x) ≤ x1x2 + · · ·+ xn−2xn−1 + xn−1x1,

the RHS being the function we have for n − 1 replicators. Hence, from the
induction hypothesis, the maximum of this function is α2/4. Therefore, ∀n ≥ 4,
n∑
i=1

xi−1xi ≤
α2

4
, for

n∑
i=1

xi = α, xi ≥ 0.

Moreover, for n ≥ 4,
∑n
i=1 xi−1xi − δx1 ≤ α2/4, and the maximum α2/4 is

attained at x2 = x3 = α/2, x1 = xj = 0, 4 ≤ j ≤ n. Then we get

v · F (x1, . . . , xn) ≤ (Q− α)
α2

4
+Aα(Q− 1). (9)

We are going to find a threshold for Q, denoted by Q∗, such that ∀Q ≥ Q∗, the
region Ωα is positively invariant.

We can find the zeros of the RHS of (9), which are α0 = 0 and

α± =
Q±

√
Q2 − 16A(1−Q)

2
. (10)

Looking for which Q expression (10) is real we get the threshold:

Q∗ = −8A+ 4
√
A(4A+ 1). (11)

Therefore, if Q ≥ Q∗, then v · F (x1, . . . , xn) < 0 for α ∈ (0, α−) ∪ (α+, Q).
This means that when α < α− or α > α+, Ωα is positively invariant. Since for

11



 3e-05

 5e-05

 7e-05

 9e-05

 0.00011

 0.00013

 0.00015

 0.00017

-3 -2.5 -2 -1.5 -1 -0.5  0

log(A)log (A)
Q

  
  
- 

Q
P

O
S

S

Figure 4: Measure of the gap size between the two bifurcations for different
values of A, in the symmetric case (see [Guillamon et al., 2015] for further
details).

all α < α−, v · F (x1, . . . , xn) < 0, for initial conditions in Ωα with α < α−, the
total population of the hypercycle tends to 0. Moreover, in order to look for
periodic orbits or other recurrent phenomena we have to concentrate on values
of α ∈ (α−, α+) and Q ≥ Q∗.

We need to note that this interval is not sharp because the inequality (9) is
not sharp. Hence, for values of α in the interval and close to the interval limits,
Ωα is possibly still positively invariant so, to be sure to truly find interesting
behaviour, we should choose values of α close to the midpoint of the interval.

Now, if the discriminant of (10) was to be negative, that is, if Q < Q∗, then
α− and α+ are complex and the only real zero is α0 = 0. Therefore, as the
RHS of (9) tends to −∞ when α grows, it is always less or equal than zero.
Then, Ωα is positively invariant ∀α, which means that the origin is globally
asymptotically stable.

Summarizing, consider the hypercycle formed by n replicators with Malthu-
sian replication rates aA . . . A, and let Ωα be given by (4) and Q∗ be given by
(11). Then,

• when α ≥ Q, Ωα is positively invariant. Moreover, since v · F < 0 in
{x ∈ Ω | x1 + · · · + xn > Q}, there can not be periodic orbits in that
domain;

• when α < Q,

– if Q < Q∗, Ωα is positively invariant, and v ·F < 0 in Ω. Then, there
can not be periodic orbits in Ω;

– if Q ≥ Q∗, Ωα is positively invariant for α ∈ (0, α−)∪ (α+, Q), where
α+ and α− are given by (10). Moreover, v · F < 0 in {x ∈ Ω |
x1 + · · · + xn < α−} ∪ {x ∈ Ω | x1 + · · · + xn > α+}. Then, if
periodic orbits exist, for each point of the periodic orbit the sum of
its coordinates must be between α− and α+.

12
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Figure 5: Bifurcation gap for the asymmetric case aaAAA with: δ = 0.001 (a),
0.01 (b), 0.05 (c) and 0.1 (d).

Hence, we have located, depending on the parameter Q, the regions where
periodic orbits can appear. In order to find them explicitly, we need to resort
to numerical methods, see Section 5.3. in the Appendix.

Next, we apply the same procedure to complete all possible asymmetric
cases with two different replication rates for dimension n = 5, which is a trade-
off between analytical tractability of equations and existence of periodic orbits
[Silvestre & Fontanari, 2008]. In particular, as commented above, all of the
remaining cases are aaAAA and aAaAA.

3.1.2 Five-member hypercycle

From (3), we know that the equilibrium points are (x± + δ, x±, x±, x±, x± + δ)
for the case aaAAA, and (x±, x±+δ, x±, x±, x±+δ) for the case aAaAA, where

x± = ((Q− 2δ)±
√

(Q− 2δ)2 − 20A(1−Q))/10. (12)

As x± is the same in both cases, the critical value of Q for which there is a s-n
bifurcation of fixed points, QSS , is the same:

QSS = 2
(√

5A(1 + 5A− 2δ)− 5A+ δ
)
.

Therefore, the respective bifurcation points can also be obtained from (12) with
Q = QSS .

As our goal is to study both the bifurcations of fixed points and of periodic
orbits in these two cases, let us find the regions of Ω where periodic orbits can
be found. We perform the analogous procedure explained in Section 3.1.1 for
the case aA . . . A to obtain the corresponding regions in the present cases. We
provide the results next.
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We need to study the sign of v · F (x) which becomes

(Q− α)

(
5∑
i=1

xixi−1 − δ(x1 + x2)

)
+Aα(Q− 1),

for the aaAAA case, and

(Q− α)

(
5∑
i=1

xixi−1 − δ(x1 + x3)

)
+Aα(Q− 1),

for the aAaAA case. In both cases, given

α± =
Q+±

√
Q2 + 16A(Q− 1)

2
,

Q∗ = −8A+ 4
√

4A2 +A,

and adapting the calculations done in Section 3.1.1, if periodic orbits exist, they
must lie in the region of the parameter space where Q ≥ Q∗ and, moreover, the
sum of the coordinates of its points, α, fulfill α > Q and α ∈ [α−, α+].

From this point on, we need to implement numerical routines (see Section
5.1. in the Appendix), in order to find periodic orbits of system (2) for the cases
aaAAA and aAaAA and, in particular, the parameter values of the correspond-
ing s-n bifurcations of periodic orbits, QPO. An important issue is the choice of a
Poincaré section. Adapting (3) to the case n = 5, we know that the equilibrium
points are (x+ δ, x, x, x, x+ δ) for the case aaAAA, and (x, x+ δ, x, x, x+ δ) for
the case aAaAA, with x = ((Q− 2δ)±

√
(Q− 2δ)2 − 20A(1−Q))/10. Clearly,

the average copying fidelity rate at which the s-n bifurcation of fixed points
occurs is:

QSS = 2
(√

5A(1 + 5A− 2δ)− 5A+ δ
)
.

Keeping in mind that our goal is to find periodic orbits, it is clear that the
Poincaré section should not be close to equilibrium points. A natural choice is
to fix one of the coordinates, for instance x1, at the value corresponding to the
first coordinate of the equilibrium point at the bifurcation Q = QSS . Then, if
Q − QSS is not too small, the Poincaré section (ΣP ) will be far enough from
both of them. Accordingly, we consider

ΣP =

{
x1 =

Q− 2δ

10
+ δ

}
for the aaAAA case, and

ΣP =

{
x1 =

Q− 2δ

10

}
for the aAaAA case. This choice is crucial for the success of the numerical
continuation with respect to parameters. Taking, for instance, the section given
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Figure 6: Same as Fig. 5 for case aAaAA with: δ = 0.001 (a), 0.01 (b), 0.05 (c)
and 0.1 (d).

in [Guillamon et al., 2015] for the symmetric case, would not allow to continue
the curve of periodic orbits.

To pick an initial condition for Q and x we use the condition for the existence
of periodic orbits derived in (10) and (11), and then we integrate several orbits
with random initial conditions until we detect the convergence to a periodic
orbit.

Once we have obtained a periodic orbit, for an initial value of Q (see Ap-
pendix Section 5.3) we proceed by continuation with respect of the parameter Q
(see Section 5.4 in the Appendix). In this computational part, we need to take
care of the step size and of the number of continuation steps. It turns out that,
after passing by the bifurcation point QPO, the continuation method follows
the unstable periodic orbit. For every A, there exists a value of Q for which
this unstable periodic orbit passes so close to the hyperplanes xi = 0 that the
Newton method we use does not converge. Thus, as QPO depends on A and δ,
the number of continuation steps needs to be adapted for every (A, δ) pair.

The curve of equilibrium points has been computed isolating Q in the ex-
pression for x, that is, from x± = ((Q− 2δ)±

√
(Q− 2δ)2 − 20A(1−Q))/10.

In the next section, we exploit the numerical implementation explained above
to plot and compare the bifurcation curves.

3.2 Impact of asymmetry on bifurcation gaps

Here we extend the numerical study conducted in [Guillamon et al., 2015] for
symmetric hypercycles to asymmetric ones. As mentioned, asymmetric hyper-
cycles might be more realistic from a biological point of view since mutations
giving place to different templates may produce differential fitness effects. We
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QSS −QPO
aaAAA aAaAA

δ = 0 5.98054× 10−5 5.98054× 10−5

δ = 0.001 6.12641× 10−5 6.01082× 10−5

δ = 0.01 1.93241× 10−4 8.33985× 10−5

δ = 0.05 2.34217× 10−3 4.96334× 10−4

δ = 0.1 4.88186× 10−3 1.28505× 10−3

Table 1: Bifurcation gaps for the cases aaAAA and aAaAA with different de-
grees of asymmetries, δ, using A = 0.5.

know explicitly QSS , the value of Q for which the saddle-node (s-n) bifurcation
of fixed points occurs, and we want to compute the value of Q for which the s-n
bifurcation of periodic orbits takes place, given by QPO. In [Guillamon et al.,
2015] the authors observed that there is a slight difference between these two
values, which they called gap. Here, we explore whether such a gap exists in
the 5-member asymmetric case and, if so, how it behaves as a and A differ from
each other, i.e., as δ changes.

Figure 3 shows the two bifurcation curves (equilibria and periodic orbits) in
terms of Q, taking A = 0.5, as in [Guillamon et al., 2015], and increasing δ from
0.001 to 0.1 in the four panels. We observe in all cases a clear difference in the
position of the bifurcation turning points, with QPO > QSS .

By definition of δ, the larger it is, the more the hypercycle differs from the
symmetric one. We are interested in quantifying how does the gap between the
two bifurcation points behave when the system gets more asymmetric. For the
symmetric case it was shown in Guillamon et al. [2015] that the gap reached
a value of approximately 1.5 × 10−4 for a certain value of parameter A (see
Figure 4, included here for the sake of comparison). In Figures 5 and 6 we can
appreciate that the magnitude of the gap for the asymmetric cases increases with
δ for both configurations, aaAAA and aAaAA. Hence, as the hypercycle gets
“more asymmetric”, the difference between the values where the bifurcations
of periodic orbits and fixed points occur is larger (see Table 1 where the value
QPO − QSS is displayed for each continuation curve). For example, when δ =
0.1, the gap becomes about two orders of magnitude larger compared to the
symmetric case.

Here, we make a necessary observation about errors, since we produce num-
bers that have been obtained numerically. In the computer codes we have
written, the main sources of error are the numerical integrator and the Newton
iterations. We have used a Runge-Kutta-Fehlberg method of orders 7-8 with
local relative tolerance of 10−14. For the Newton method we have iterated until
a tolerance of 0.5× 10−14 has been reached.
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periodic orbits, QSS−QPO, for hypercycles with n = 5 (blue), n = 6 (red), and
n = 8 (orange) members considering symmetric Malthusian replication rates.

3.3 Impact of higher dimensions on bifurcation gaps

In this section we further analyse the bifurcation gap in terms of Q for larger
hypercycles focusing on symmetric systems with n = 6 and n = 8 members.
These two cases are significant. The case n = 6 is the simplest dimension higher
than n = 5 and with different parity. On the other hand, in the symmetric case,
it is known that for n = 4k, k ∈ N, two eigenvalues of the nontrivial equilibria
are purely imaginary, so that n = 8 is a specially interesting case. There is
one difficulty that one must overcome somehow when increasing the dimension.
That is, as numerical computations indicate, the coordinates of the periodic
orbit pass extremely close to the origin. Then, computing the derivatives of the
Poincaré map using:

∂Pi(x)

∂xj
≈ Pi(x+ hej)− Pi(x− hej)

2h
,

it might happen that x − hej has some negative component, in which case we
are not anymore in the simplex Ω1 and the flow will probably never come back
to it (even if it did and crossed the Poincaré section again the solution would
have nothing to do with the expected one). One could think that decreasing
h would solve the problem, but doing so will lead to a huge numerical error in
the derivative (as it happens when we have a small value in the denominator).
This is why we have been forced to use more accurate algorithms to obtain the
derivative of the Poincaré map in order to apply successfully the Euler-Newton
continuation method. This alternative way is explained in Appendix Section
5.4.

The actual computations look for the value of Q along the continuation
process at which the sign of the derivative of Q with respect to the arc length of
the curve which gives the periodic orbit with respect to the parameter Q changes
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and then compare it with the value of Q corresponding to the s-n bifurcation

for the fixed points which is Q = 2
(√

nA(1 + nA)− nA
)

. As long as we use a

small step size when applying the Euler-Newton method, the continuation goes
on (for example using as step size 10−6, which is what we have done).

The analyses for n = 6 and n = 8 reveal that the results are not only
analogous to the case n = 5 (see Fig. 4) but also that the width of the gap
increases with the dimension of the hypercycle (see Fig. 7). More specifically,
this distance increases more than one order of magnitude from n = 5 to n = 8.
Notice that when n = 6 (red curve, Fig. 7), the increase of the Malthusian
replication rate makes the gap to slightly grow up to log(A) = −1.5. Then the
gap slightly decreases. Within all the range of A analyzed, the size of the gap
remains at QSS − QPO ≈ 0.5 × 10−3, while this distance for the symmetric
n = 5 case was about 1.5 × 10−4 in its largest value tuning A (see Fig. 4 and
[Guillamon et al., 2015]). A similar behavior is found for n = 8, being the
largest value of the bifurcation gap QSS −QPO ≈ 2.25× 10−3.

4 Conclusions

In this manuscript we have conducted an analytical study of a general n-member,
asymmetric hypercycle with the Malthusian replication constants: aA . . . A. We
have found the coexistence fixed points, their bifurcation values and the region
in which the vector field can have periodic orbits. We have then focused on
cases aaAAA and aAaAA for five-member hypercycles. In this way we have
exhausted all of the possible asymmetries, relabelling constants and/or variables
if necessary.

Following previous results on oscillating 5-member hypercycles [Guillamon
et al., 2015], we have checked that the gap found between the saddle-node (s-n)
bifurcation value of fixed points and the s-n bifurcation value of periodic or-
bits in symmetric hypercycles also holds in asymmetric ones. Actually, the gap
grows as the asymmetry of the system gets larger. These results strengthen the
“gap problem” introduced in [Guillamon et al., 2015], as it was identified in the
symmetric case, which is a less realistic case from a biological point of view.
Moreover, in the symmetric case, the gap is shown to increase for larger hyper-
cycles. Symmetric hypercycles assume that all of the members of the hypercycle
are neutral mutants, since they might be synthesized from previously existing
templates by replication and mutation processes. In this sense, recent experi-
mental results on mutational fitness effects for RNA viruses quantified neutral
spontaneous mutations happening with about 25% of probability [Sanjuán et
al., 2004; Carrasco et al., 2007]. Hence, even for small hypercycles, asymmetries
might be expected.

The biological implications of these gaps could be relevant within the frame-
work of so-called delayed transitions [Sardanyés & Solé, 2005; Sardanyés & Solé,
2006]. It is known that after a s-n bifurcation a saddle remnant (also named
ghost) appears in the phase space [Strogatz, 2000; Fontich & Sardanyés, 2008;
,Duarte et al., 2012; Strogatz & Westervelt, 1989; Sardanyés & Solé, 2005]. In
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this phenomenon, the flow takes a long-lasting excursion just after the s-n bifur-
cation before going to the only asymptotically globally stable attractor, which
involves extinction. This phenomenon was interpreted as a kind of memory for
hypercycles occurring after the bifurcation [Sardanyés & Solé, 2005], possibly
becoming a selective advantage in fluctuating environments [Sardanyés & Solé,
2005]. Interestingly, this delaying phenomenon has been described in models for
delayed switching of charge-density waves [Strogatz & Westervelt, 1989], as well
as in an experimental electronic circuit behaving as a Duffing oscillator [Trickey
& Virgin, 1998]. Since the gap described in this article is found in between
two different s-n bifurcations, two delayed transitions may be found, one when
Q . QPO and another when Q . QSS . The presence of two consecutive s-n
bifurcations at decreasing Q could involve an enhancement of the delaying ef-
fects and thus a higher memory capacity of the system, therefore further slowing
down hypercycles’ extinction. However, we must notice that delayed transition
phenomena are local. This means that the delaying effect of the saddle rem-
nant occurs with parameter values close to the bifurcation value. Despite this
fact, future research could be devoted to quantify the delaying times within the
region [QSS , QPO] in order to analyse whether a reinforcement of the delayed
transitions occurs, especially under the presence of catalytic parasites.
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5 Appendices

5.1 Poincaré maps

Poincaré maps are a powerful device to study both theoretical and computa-
tional aspects of vector fields. In this work we use them to compute periodic
orbits of a vector field F which correspond to fixed points or periodic points of
P , the Poincaré map associated to F and some section. In its turn fixed points
of P correspond to zeros of the map H, defined as

H(x) := P (x)− x. (13)

Thus in this way we reduce the problem of obtaining periodic orbits of vector
fields to the problem of finding zeros of functions. To define a Poincaré map
first we have to choose a Poincaré section, ΣP . Motivated by the fact that,
after the bifurcation, our systems have two interior equilibrium points we just
choose a section defined by the first coordinate fixed constant at a value which
is the midpoint between the two first coordinates of these equilibrium points
(whenever they exist). Hence we take

ΣP :=

{
x1 =

Q

2n

}
,
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in the symmetric case and

ΣP :=

{
x1 =

Q− 2δ

10
+ δ

}
,

in the aaAAA case and n = 5, and

ΣP :=

{
x1 =

Q− 2δ

10

}
,

in the aAaAA case and n = 5.
We note that we could have chosen any other xi coordinate and proceed

analogously. Then taking an initial condition in ΣP we integrate our vector
field F until we reach again ΣP crossing it in the same sense as the vector field
crosses ΣP at the initial point x. To detect the case for which the orbit of
x ∈ ΣP does not return to ΣP we prescribe a time limit of integration. For
the numerical integration we use a method based on two Runge-Kutta-Fehlberg
algorithms of orders 7 and 8 (RKF78) with automatic step size control, using a
step size 10−4 ≤ ∆t ≤ 10−1 and local relative tolerance 10−14. When we detect
that the orbit has crossed ΣP in the desired sense, we proceed to obtain the
point of the trajectory that is on ΣP . For that we use the Newton method to
find a zero of the function

Φ(t) = y1(t)− Q

2n
,

where y1 denotes the first coordinate of the orbit (which we compute using the
RKF78 method). The Newton scheme gives the sequence of time iterates

tk+1 = tk −
y1(tk)− Q

2n

ẏ1(tk)
. (14)

From this, we get the next step size hk+1 = tk+1 − tk to perform one more
step of the RKF78 integration and arrive closer to ΣP . We repeat this iteration
until a prefixed tolerance (set as ε = 0.5× 10−14) is reached. As a result of this
process, we get a point that is on the orbit and on ΣP as well, which taken as
P (x), the image of x by the Poincaré map.

5.2 Derivative of the Poincaré map

In this section we provide a formula for the differential of the Poincaré maps
we use in this work, which is based upon the solution of the variational equa-
tion associated to the vector field. It provides a much more accurate way to
effectively compute the differential than to approximately compute the partial
derivatives through quotiens of differences. Let F : Ω ⊂ Rn −→ Rn be a vector
field and ϕ(t, x) its flow. The variational equation is

d

dt
Φ(t, x) = DF (ϕ(t, x))Φ(t, x). (15)
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Let M(t, x) be the solution of (15) with initial condition M(0, x) = Id. It is
well known that M(t, x) = Dxϕ(t, x). Given a section ΣP = {x1 = c}, the
associated Poincaré map P is

P (y) = ϕ̂(τ(x̂), x̂), x̂ = (c, y2, ..., yn) ∈ ΣP ,

with y = (y2, ..., yn), ϕ̂ = (ϕ2, ..., ϕn), and τ(x̂) being the time needed for the
solution to arrive to ΣP as described in Section 5.1. Now we can compute the
differential of P by using the chain rule

DP (y) =
∂ϕ̂

∂t
(τ(x̂), x̂) Dyτ(x̂) +Dxϕ̂(τ(x̂), x̂) Dyx̂.

Let fj = Fj(ϕ(τ(x̂), x̂)) and mi,j = Mi,j(τ(x̂), x̂). Using this notation we have

∂ϕ̂

∂t
(τ(x̂), x̂) = (f2, ..., fn)>,

Dxϕ̂(τ(x̂), x̂) =

 m2,1 . . . m2,n

...
...

mn,1 . . . mn,n

 ,

and

Dyx̂ =

(
0

Idn−1,n−1

)
.

Since τ is characterized by the implicit condition

ϕ1(τ(x̂), x̂) = c, (16)

we can obtain its derivative by differentiating both sides of Eq. (16). We have

∂ϕ1

∂t
(τ(x̂), x̂) Dyτ(x̂) +Dxϕ1(τ(x̂), x̂) Dyx̂ = 0,

so that

Dyτ(x̂) = − 1

f1
(m1,1, ...,m1,n)

(
0

Idn−1,n−1

)
= − 1

f1
(m1,2, ...,m1,n),

and finally

DP (y) =


m2,2 − f2

f1
m1,2 . . . m2,n − f2

f1
m1,n

...
...

mn,2 − fn
f1
m1,2 . . . mn,n − fn

f1
m1,n

 .

Therefore to apply this formula we have to integrate both the equation and the
variational equation from the initial condition x̂ = (c, x2, ..., xn) ∈ ΣP until we
arrive again at ΣP crossing it in the same sense to obtain ϕ(τ(x̂), x̂), fj , and
mi,j .
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5.3 Search of a periodic orbit

As explained in Section 5.1. we have to find the zeros of H(x) = P (x)− x. For
that we use the Newton algorithm, which, given an initial guess x0, is defined
by the following iteration:

xk+1 = xk −DH(xk)−1H(xk). (17)

We have DH(x) = DP (x) − Id. We can compute DP (x) as explained in
the previous section or using the central differences method, using, for example,
δx = 10−4. To solve (17) we rewrite it as the linear system

DH(xk)(xk+1 − xk) = −H(xk),

and we perform a LU decomposition of the matrix DH(xk) to easily solve it.
We iterate (17) until we get k such that ||xk+1−xk|| < ε (with ε = 0.5×10−14)
or until the maximum number of iterates is exceeded, in which case we decide
that the method does not converge. In the first case, we consider xk+1 as a fixed
point of the Poincaré map, P , and so, a point belonging to a periodic orbit of
the vector field F .

5.4 Continuation of periodic orbits: The Euler-Newton
method

The Euler-Newton method is a method of continuation of implicit curves given
by the zeros of some function f : Rn+1 → Rn of class Cr with r ≥ 1 once
we know a point x∗ ∈ Rn+1 such that f(x∗) = 0. The whole idea of this
method consists in finding the derivative of the implicit curve (we know that it
exists locally if rank (Df(x∗)) = n by the Implicit Function Theorem), apply the
Euler method to find a first approximation of the following point of the curve
in the desired direction and then refine this approximation using a Newton-like
method. A more detailed explanation of how does this method work can be
found in [Simó, 1990].

If we denote g : I ⊆ R→ Rn+1 the implicit curve parameterized by the arc
length, then it can be proved that

dgj
ds

= (−1)j
Aj√∑k=n
k=0 A

2
k

,

where Aj is the determinant of Df(x∗) without the j-th column. It can also be
proved that then the sequence {xi}i defined by

xi+1 = xi −Df(xi)
>(Df(xi)Df(xi)

>)−1f(xi),

where x0 = x∗ + h∇g, does converge to
{
x ∈ Rn+1 | ∃t ∈ I with g(t) = x

}
if h

is small enough (see [Allgower & Kurt , 1987]). To obtain the whole curve as
long as it is regular we only have to apply these steps repeatedly.
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As we have already mentioned in earlier sections, our particular interest in
this method is to apply it to do the continuation of fixed points for the Poincaré
map with respect to parameters and therefore to study bifurcations of periodic
orbits. We apply the method to f(x,Q) = PQ(x)−x, where PQ is the Poincaré
map depending on the parameter Q.
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