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ABSTRACT

In this paper, a sensitivity analysis using pair–copula decomposition of multivariate
dependency models is performed on estimates of value-at-risk (VaR) and conditional
value-at-risk (CVaR). To illustrate the results, we use four financial share portfolios
selected to exemplify this purpose. For each share, we calculate filtered log returns
using autoregressive moving average–generalized autoregressive conditional hetero-
scedasticity models and study their dependence. We analyze how selecting pairs of
assets to define vines prior to pair–copula decomposition affects the estimated VaR
and CVaR. Further, using bootstrap confidence intervals, we compare the results of
different risk measures obtained by employing alternative measures of dependence to
select the order in which the drawable vine (D-vine) is defined in different portfolios.
Moreover, we carry out a simulation study to analyze the finite sample properties of
the different criteria for selecting the pair–copula decomposition associated with the
D-vine. We find some differences between the results obtained for VaR and CVaR.
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2 C. Bolancé et al

1 INTRODUCTION

Value-at-risk (VaR) is the most popular measure proposed by the financial industry
regulator to quantify risk. The estimation of VaR has posed and will continue to pose
different challenges in the context of financial analyses. When losses have been gener-
ated by a set of dependent risk factors, we must take this dependence into account when
estimating VaR. Further, we include conditional value-at-risk (CVaR) in our analysis.

We have two strategies for including dependency. We can either use a multivariate
distribution to fit the marginal behavior of risk factors and their dependence together
or employ univariate distributions to model each risk factor and use a copula to model
dependency. However, when copulas are used, some restrictions exist if the number
of dimensions or risk factors is more than two, ie, except for the Gaussian copula,
the generalization from the bivariate copula to the multivariate copula assumes some
restrictions with regard to the dependence between pairs of risk factors. For example,
on the one hand, when using elliptical copulas to estimate the Student t copula, we need
to assume the degrees of freedom are the same for all pairs. On the other hand, when
using Archimedean copulas, it is assumed the value of the parameter of the copula is
the same for all pairs (for an introduction to copulas, see, for example, Nelsen (2006)).

A pair–copula decomposition of a multivariate distribution is a flexible form of mod-
eling the dependence relations between pairs of variables, considering different inten-
sities of dependence or even dependence structures. However, such flexibility could
lead to some inefficiency and bias in the risk estimation. In response to that, in this work
we analyze the effect of selecting pairs, better known as “vines” (Bedford and Cooke
2002), on the risk estimation. In particular, we focus on the selection of the drawable
vine (D-vine), although a similar analysis may be carried out on the canonical vine
(C-vine) or the regular vine (R-vine), the latter being the more general representation.

The subject of vine copulas is growing more popular in the literature. In fact, there
exists a wide variety of financial applications, related not only to the estimation of
VaR and CVaR but also to other contexts, such as portfolio optimization and trading
strategies (see, for example, Brechmann and Czado 2013; Low et al 2013, 2016;
Nikoloulopoulos et al 2012; Rad et al 2016; Weiß and Supper 2013). In this respect,
statistical analyses such as the one presented in this paper are fundamental.

Our contribution contains three main results. First, we show how different pair–
copula decompositions provide different VaR and CVaR values, and we analyze the
magnitude of these differences. The second result is related to the selection of the
optimal decomposition, where different criteria, depending on whether we assume
the copula is known or not, are analyzed. Finally, we define a specific algorithm for
selecting the optimal D-vine; this algorithm is programmed in R and is available from
the authors.

Journal of Risk www.risk.net/journals

To subscribe to a Risk Journal visit subscriptions.risk.net/journals or email info@risk.net

http://subscriptions.risk.net/journals/
mailto:info%40risk.net?subject=Subscriptions


Impact of D-vine structure on risk estimation 3

As indicated in the previous paragraph, our statistical aim is to analyze the effect of
using different D-vines to estimate VaR and CVaR. In relation to this, having greater
or lesser dependence between variables is a fundamental characteristic. To exemplify
our results, we model the losses obtained from filtered returns associated with four
stock portfolios, whose differences lie in their degrees of diversification. We design
the four portfolios so that greater diversification implies less dependence, while less
diversification implies greater dependence between filtered returns. Further, to have
a sufficient number of different D-vines, the portfolios are composed of six stocks.
In order to complete our analysis and compare results with different dimensions, we
also include a simulation study that allows us to compare the statistical properties of
different criteria for selecting optimal decomposition.

In this context, we use the D-vine for pair–copula decomposition because we have
no information justifying any hierarchical relationships between stocks. Our study
is similar to those of Aas et al (2006) and Min and Czado (2010), who analyze the
D-vine pair–copula construction applied to filtered financial returns.

When we use the D-vine, the pair–copula decomposition relates to what we decide
is the most suitable risk-factor order at the beginning of the process. We can use
different criteria for sorting variables. For instance, for the Student t copula, Aas
et al (2006) estimate the degrees of freedom for each pair of variables and select
the order of variables, starting with the pairs that have lower estimated degrees of
freedom and ending with those that have higher estimated degrees of freedom, ie,
ordering from more to less lower and upper tail dependence. Dissmann et al (2013),
based on Kendall’s tau, use a method for selecting R-vine that they name a “maxi-
mum spanning tree” algorithm; typically, this algorithm is described as a minimum
spanning tree (Prim’s algorithm). Righi and Ceretta (2013, 2015) also use a Kendall’s
tau dependence matrix to determine the order of risk factors to design the D-vine.
Common to most applications is the flexibility with which this order can be chosen,
due to the absence of a specific decision rule; for this reason, it is necessary to ana-
lyze the effect of selecting the order of stocks to define the D-vine with the aim of
estimating the risk of loss.

So, for an analyzed portfolio we conduct two types of analysis. First, we estimate
the VaR for all possible orders and analyze its dispersion; with this aim in mind, we
use portfolios in our numerical example. Second, we determine the VaR obtained
using different criteria to select the order in the D-vine. In general, for a given copula,
Kendall’s tau, Spearman’s rho and, if it exists, tail dependence can be used. These
criteria are evaluated supposing that the copula is either known or unknown. We use
the Monte Carlo method to estimate every VaR and CVaR (see McNeil et al 2015,
Chapter 2).

Nowadays, the use of pair–copula decomposition is a topic that is gaining increas-
ingly more followers in different lines of research, but especially in the financial
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4 C. Bolancé et al

industry. Recently, Weiß and Scheffer (2015) proposed the use of different copulas for
different pairs in pair–copula decomposition in order to forecast the VaR of financial
portfolios. Min and Czado (2014) analyzed the properties of the maximum likelihood
estimator of the copula parameters associated with each pair, using pseudo-data. This
estimator is called the pseudo-maximum likelihood estimator, or, as the authors say,
the semiparametric maximum likelihood estimator, given that the empirical distribu-
tion multiplied by T=.T C1/ is used for marginals, where T is the sample size. They
show an application to daily log returns of foreign exchange rates (see Bolancé et al
(2014) for a comparison of semiparametric maximum likelihood estimators using
different nonparametric methods for marginal distributions).

To estimate multivariate distribution using pair–copula decomposition, we must
have independent and identically distributed (iid) observations. Then, similarly to the
papers cited in the preceding paragraphs, we use ARMA.P;Q/–GARCH.p; q/ serial
models to filter our data, ie, we use the residuals of the fitted serial models to estimate
the parameter in the pair–copula decomposition approach.1

2 PORTFOLIO RISK QUANTIFICATION

Bedford and Cooke (2002) define the concept of vine and R-vine. Specifically, we
can see that an R-vine is a sequence of trees that represents the dependence structure
of a multivariate vector of continuous random variables, given a factorization of
the multivariate density function. The D-vine is a particular case of the R-vine. In
Appendix 1 (available online), we describe the particular case of a D-vine with six
variables, which we will analyze in the empirical part of this paper. In practice, the
order in T1 of our D-vine (see Appendix 1, available online, for more details) affects
the estimation results and therefore the estimated risk (see Min and Czado (2010) for
further information). So, we analyze how, by using a different order, we can obtain
different estimates of VaR and CVaR.

To analyze the dispersion of the estimated VaRs and CVaRs, ie, the precision of
estimated risk, specifically for the case of six dimensions, we obtain 6Š=2 D 360

possible orders and their estimated VaRs and CVaRs using each resulting D-vine.
This procedure, based on Monte Carlo simulation, is described later.

To quantify the portfolio risk, we need to calculate a measure of returns for every
asset. Hence, we are interested in using a measure that allows us to reflect the relative
changes in the prices. For each share j , we define the log return variable at time t , ie,
Rjt D log.Pjt=Pjt�1/, t D 1; : : : ; T , whereT is the total of the observed time points,
and Pjt is the price of the asset j at time t . We are interested in modeling dependence

1 ARMA: autoregressive moving average. GARCH: generalized autoregressive conditional hetero-
scedasticity.

Journal of Risk www.risk.net/journals

To subscribe to a Risk Journal visit subscriptions.risk.net/journals or email info@risk.net

http://subscriptions.risk.net/journals/
mailto:info%40risk.net?subject=Subscriptions


Impact of D-vine structure on risk estimation 5

between random time-independent shifts in the returns. For this reason, before starting
our pair–copula analysis we filtered the stock returns in the following way. We assume
that returns Rjt are generated by a time series model ARMA.P;Q/–GARCH.p; q/
that can be expressed as

Rjt D �j C
PX

iD1

�j iRjt�i �
QX

iD1

 j iejt�i C ejt ;

ejt D �jtxjt ;

�2
jt D j̨ 0 C

pX
iD1

j̨ ie
2
jt�i C

qX
iD1

ǰ i�
2
jt�i : (2.1)

The filtered log returns are xjt , t D 1; : : : ; T , and we can suppose that these are T
values independent of and equally distributed from random variable Xj .

Let .X.1/; : : : ; X.6// be a multivariate vector of six random continuous variables
that represent filtered log returns, where the parentheses indicate a given order; their
marginal cumulative distribution functions (cdfs) are F.1/; : : : ; F.6/, and the multi-
variate cdf is F . In our case, we are interested in estimating the VaR and CVaR, with
confidence level ˛, of the random variable L D �V0.w1X1 C � � � C w6X6/ (see
McNeil et al 2015, Chapter 2), whereL is the linearized loss variable associated with
a share portfolio, wj is the weight of share j in the portfolio and V0 is an initial
investment value that we can suppose equals 1.

The VaR with confidence level ˛ for a continuous random loss variable L can be
defined as

VaR˛.L/ D inffl; FL.l/ > ˛g D F �1
L .˛/; (2.2)

where L has a probability distribution function (pdf) of fL and a cdf of FL. Given a
VaR, the CVaR is (see Denuit et al 2005)

CVaR˛.L/ D E.L � VaR˛.L/ j L > VaR˛.L//: (2.3)

Let us assume that .X.1/t ; : : : ; X.6/t /, t D 1; : : : ; T , denotes a six-dimensional
sample of T iid observations from random vector .X.1/; : : : ; X.6//; for each possible
order o D 1; : : : ; .6Š=2/ D 360, we use a Monte Carlo procedure to estimate the
VaRo

˛.L/ and the CVaRo
˛.L/, which is described below.

Step 1. We obtain the pseudo-data

Ujt D T

T C 1
OFjT
.Xjt /; j D 1; : : : ; 6; (2.4)

where OFjT
.x/ D .1=T /

PT
tD1 I.Xjt 6 x/ is the empirical distribution function,

and I.�/ is the indicator function that takes a value of1 if the condition in parentheses
is true and 0 otherwise.
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6 C. Bolancé et al

Step 2. Using pseudo-data .U.1/t ; : : : ; U.6/t /, t D 1; : : : ; T , we calculate the
pseudo-loglikelihood associated with the multivariate copula in order to estimate
the dependence parameters that maximize this partial likelihood. The pseudo-
loglikelihood (see Genest et al (1995) and Min and Czado (2014) for a review
of estimation procedures based on pseudo-data) is

ln.L.�// D
TX

tD1

lnfc� .U.1/t ; : : : ; U.6/t /g; (2.5)

where c� is the pair–copula density and � is a vector with 6.6� 1/=2 D 15 copula
parameters that depends on the order selected for the risk factors, ie,

� D .�.1/.2/; �.2/.3/; �.3/.4/; �.4/.5/; �.5/.6/; �.1/.3/j.2/;

�.2/.4/j.3/; �.3/.5/j.4/; �.4/.6/j.5/; �.1/.4/j.2/.3/; �.2/.5/j.3/.4/;

�.3/.6/j.4/.5/; �.1/.5/j.2/.3/.4/; �.2/.6/j.3/.4/.5/; �.1/.6/j.2/.3/.4/.5//: (2.6)

To evaluate the goodness-of-fit of the estimated pair–copula decomposition, given
the bivariate copula used for all pairs, we use the statistics based on the probability
integral transform (PIT) method, proposed and described in detail by Aas et al
(2006).

Step 3. We simulate the vectors . QU.1/s; : : : ; QU.6/s/, s D 1; : : : ; S , from the estimated
copula, where S is the number of simulated six-dimensional vectors. We use the
CDVine package of R. The simulation method implemented in this R package is
described by Brechmann and Schepsmeier (2013).

Step 4. We calculate the simulated risk factors as

QX.1/s D OF �1
.1/ .

QU.1/s/; : : : ; QX.6/s D OF �1
.6/ .

QU.6/s/; s D 1; : : : ; S;

where OF �1
.j /

denotes the inverse of the estimated marginal cdf of the random variable
X.j /. For marginal cdfs, we estimated j D 1; : : : ; 6 univariate normal distributions
with parameters �Normal

j and �Normal
j , or six univariate Student t distributions with

� degrees of freedom and parameters �Student
j and �Student

j . In all cases, to estimate
OF.j / we use the maximum likelihood method. Recent studies by Christoffersen

et al (2013) and Oh and Patton (2013) show that the distribution of equity returns
exhibits skewness and fat tails (see Fernández and Steel 1998). In this way, we
perform different tests for asymmetry of the marginal distributions of the filtered
returns (see Boos 1982) and, as we will indicate in Section 3, we do not reject the
null hypothesis of symmetry.
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Impact of D-vine structure on risk estimation 7

Step 5. Finally, we simulate the linearized losses as

QLs D �V0.w.1/
QX.1/s C � � � C w.6/

QX.6/s/; s D 1; : : : ; S;

and we estimate VaR˛.L/ empirically once a large number S of simulated data
is available. In our numerical example (Section 3), where the aim is to analyze
the sensitivity of VaR and CVaR to D-vine selection, the calculation of weights is
irrelevant. So, for simplicity, we assume w.j / D 1=6 for all j D 1; : : : ; 6.

The empirical estimation of the VaR for order o is

bVaRo
˛.L/S D inffl; OF o

LS
.l/ > ˛g; (2.7)

where OF o
LS

is the empirical estimation of FL, given the order o, obtained from the
S simulated losses. The empirical estimation of CVaR (1CVaRo

˛.L/S ) is the mean
of differences QLo

s � bVaRo
˛.L/S for all QLo

s >
bVaRo

˛.L/S , where QLo
s are the estimated

losses using the D-vine associated with order o.
Once we have estimated bVaRo

˛.L/S and 1CVaRo
˛.L/S for o D 1; : : : ; .6Š=2/ D 360,

in order to analyze the accuracy of our risk estimation, we calculate some dispersion
measures based on central moments, which can be the standard deviation or the
coefficient of variation. Alternatively, we can also calculate the range (maximum
minus minimum) or the interquartile range (quartile 3 minus quartile 1). At this point,
it is important to note that using the Monte Carlo procedure causes some dispersion
associated with the random process itself. To control this spurious dispersion, we use
the same initial seed in each random generation for each pair–copula decomposition.

2.1 Order-selection criteria

An easy way to select the optimal order of risk factors in the D-vine consists of
maximizing the pseudo-loglikelihood that was defined in (2.5); however, this criterion
has some drawbacks. First, it requires fitting the copula parameters for all possible
orders to search for those that maximize pseudo-loglikelihood. Second, maximizing
pseudo-loglikelihood does not have to be related to obtaining a better structure of
dependence for estimating risk; in fact, pseudo-loglikelihood obtained with different
orders allows us to estimate differently conditioned models that give more importance
to observations with higher density, which contradicts the fact that the risk is associated
with the least likely observations. For this reason, it is necessary to search for different
criteria that allow us to select the order before estimating the multivariate copula (see
Vaz de Melo et al (2010) for a financial example in six dimensions).

Given that we are interested in estimating dependence structure, the most natural
criteria for selection order are based on the dependence measures related to copulas, ie,
Kendall’s tau, Spearman’s rho and lower (left) or upper (right) tail dependence (�L and
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8 C. Bolancé et al

�U, respectively). These dependence measures can be defined according to the copula
or empirically. For this reason, we can say that selecting the order in D-vine may be
carried out with or without copula information. To estimate �L and �U empirically,
we use the nonparametric estimation proposed by Schmidt and Stadtmüller (2006).

In order to select the pairs, we define an algorithm that consists of sorting the edges
in the first tree (see Figure 1) from maximum to minimum dependence, considering
D-vine structure. The procedure is defined below.

2.1.1 Pair-selection procedure

To select the D-vine, we can use an algorithm based on finding the shortest or longest
paths between nodes in a graph (see, for example, Dissmann et al 2013). However,
in our context, these algorithms consist of maximizing the sum of the dependences
between the pairs of returns without considering that we need to select a specific
order for defining the D-vine. Our proposed procedure is based on sorting the pairs of
returns from higher to lower dependence. In every step, we select a pair conditioned
by the pair selected in the previous step.

Let D be a matrix of dependences that is symmetric and positive definite, and
let dij D dj i , i; j D 1; : : : ; k, be the dependence between returns i and j , where
dij D 1 if i D j ; then, if there are no ties between dependences, the following hold.

Step 1. The first pair Œ.1/; .2/� is that for which (the parentheses indicate order)

d.1/.2/ D max
i¤j

.dij /I

then, the first pair can be Œ.1/; .2/� D Œi�; j �� or Œ.1/; .2/� D Œj �; i��. To select
between these pairs, it is necessary to analyze the possible second pairs Œ.2/; .3/�.
So,

di�.3/ D max
j ¤j �

.di�j / and dj �.3/ D max
i¤i�

.dij �/I

then,

if di�.3/ > dj �.3/; the first pair is Œ.1/; .2/� D Œj �; i��;

if di�.3/ < dj �.3/; the first pair is Œ.1/; .2/� D Œi�; j ��;

and we eliminate row i� and column j � of matrix D. We denote by DŒ�1� the
matrix of dependence with k�1 columns and rows. In general,DŒ�s� is the matrix
of dependence with k � s columns and rows.

Step 2. The following pairs Œ.s C 1/.s C 2/� are selected using the criterion

d�s
.sC1/.sC2/ D max

h¤.s/
.d.sC1/h/ D d.sC1/h� ; (2.8)

where .s C 2/ D h�.

Journal of Risk www.risk.net/journals

To subscribe to a Risk Journal visit subscriptions.risk.net/journals or email info@risk.net

http://subscriptions.risk.net/journals/
mailto:info%40risk.net?subject=Subscriptions


Impact of D-vine structure on risk estimation 9

If there are ties between dependences, we apply step 1 for each pair with the same
dependence and select the initial pairs that provide the higher di�.3/ or dj �.3/. If there
are ties between dependences in step 2, similarly to step 1, we apply the criterion
defined in (2.8) for each pair with the same dependence until we reach a tiebreaker.
This procedure is implemented in R by the authors.

2.2 The analyzed copulas

We compare the results obtained with Student t , Gumbel, Clayton and Frank bivariate
copulas for the pair decomposition. For each multivariate model, we use the same
copula for all pairs, although, as Weiß and Scheffer (2015) suggest, the copula with the
best fit for each pair could be used. With these four copulas, a wide range of structures
of dependence alternatives to the Gaussian benchmark model are taken into account.

The bivariate Student t copula is an implicit and elliptical copula belonging to the
family of extreme value copulas (see Bahraoui et al (2014) for a revision of the family
of extreme value copulas and its inference). Its functional form is equal to the standard
Student t bivariate cdf, with � degrees of freedom and a correlation coefficient �.
This copula represents symmetric dependence structures, having heavier tails than
those of the Gaussian copula. In addition, the Gaussian copula does not present tail
dependence, while the Student t copula has both lower and upper tail dependence.
For a given pair, the bivariate Student t copula is

C�12;�12
.u1; u2/

D
Z t�1

�12
.u1/

�1

Z t�1
�12

.u2/

�1

1

2�

q
1 � �2

12

�
�
1C

t�1
�12
.s1/

2 C t�1
�12
.s2/

2

�2�12t
�1
�12
.s1/t

�1
�12
.s2/

�12.1 � �2
12/

��.�12C2/=2

dt�1
�12
.s1/ dt�1

�12
.s2/;

(2.9)

where t�1
� is the quantile function of the univariate Student t .

From the explicit and Archimedean family of copulas, we use the most popular:
the Gumbel (1960), Clayton (1978) and Frank (1979) copulas. This class of bivariate
copulas has a simple closed form, and its structure depends only on the dependence
parameter.

The Gumbel is an extreme value copula with functional form given by

C�12
.u1; u2/ D exp.�Œ.� ln.u1//

�12 C .� ln.u2//
�12 �1=�12/; (2.10)

where �12 2 Œ1;C1/ is the parameter controlling the dependence structure. Finally,
the dependence is perfect when �12 ! 1, and we have independence when �12 D 1.

www.risk.net/journals Journal of Risk

To subscribe to a Risk Journal visit subscriptions.risk.net/journals or email info@risk.net

http://subscriptions.risk.net/journals/
mailto:info%40risk.net?subject=Subscriptions


10 C. Bolancé et al

For the Gumbel copula, it is well known that �L D 0 and �U D 2 � 21=�12 , ie, the
Gumbel copula has upper tail dependence.

The Clayton copula has a functional form equal to

C�12
.u1; u2/ D .u

��12

1 C u
��12

2 � 1/�1=�12 ; (2.11)

where �12 > 0. In this case, the perfect dependence structure is achieved when
�12 ! 1, and independence is achieved when �12 ! 0. In contrast to the Gumbel
copula, the Clayton copula has lower tail dependence, in this case �L D 2�1=�12 and
�U D 0.

The Frank copula is defined by the parameter �12 2 .�1; 0Œ[�0;C1/ and is given
by

C�12
.u1; u2/ D � 1

�12

ln

�
1 � .1 � e�12u1/.1 � e�12u2/

1 � e��12

�
:

The upper and lower tail dependence coefficients of the Frank copula are 0. This
copula is characterized by its higher dependence in the central quantiles.

3 RESULT OF EMPIRICAL ANALYSIS USING FINANCIAL DATA

To study the effect on the risk quantification of the selection order of risk factors in
D-vine, we analyze four portfolios (P1, P2, P3 and P4). We select these portfolios,
changing the companies that form every one (see Table 10 in the online appendix
to see the companies that form each portfolio). The most diversified portfolios (P1
and P2) are composed of shares of companies belonging to at least five different eco-
nomic sectors. Alternatively, the less diversified portfolios (P3 and P4) are composed
of shares from companies belonging to the same economic sectors or, at most, two
different sectors. In our example, we use only stocks, but the results can be extrap-
olated directly to portfolios composed using other assets. The different log return
diversifications of the portfolios are evaluated using different empirical dependence
matrixes of filtered log returns, eg, Kendall’s tau and Spearman’s rho (see Table 11 in
the online appendix to see the estimated ARMA.P;Q/–GARCH.p; q/models). The
log returns are calculated using the daily prices from January 2011 to December 2013
obtained from Yahoo Finance. All prices are checked and expressed in US dollars.

In Figures 1, 2, 3 and 4, we show the scatter plots of filtered returns in portfolios
P1, P2, P3 and P4, respectively. From Figures 2 and 4, we eliminate the three plots
that have already been included in Figures 1 and 3. In general, we observe an elliptical
shape that reflects the dependence between filtered returns. This elliptical shape is
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Impact of D-vine structure on risk estimation 11

more pronounced in Figures 3 and 4, which correspond to less diversified portfolios.
In general, we also observe fairly symmetric shapes and some extreme points that
reflect the tail dependence between filtered returns.

In Table 1, we show the empirical Kendall’s tau and Spearman’s rho for each
portfolio; later, in Table 2 we present empirical upper and lower tail dependences
(R1; : : : ;R6 refer to filtered log returns). We also calculate the determinants (in
parentheses) of each dependence matrix: the smaller this determinant, the greater
the dependence between returns.

We fit pair–copula decomposition using Student t , Gumbel, Clayton and Frank
copulas, obtaining the best fit with the Student t copula. The Clayton copula does not
pass the PIT goodness-of-fit test at a 5% significance level for any equity portfolio
and any of the 360 possible D-vines, so we eliminate the results for this copula. For
the rest of the copulas, the PIT test is passed for all the D-vines in the four portfolios,
although the significance level is the highest for the Student t copula.

For the univariate marginal, using filtered returns associated with each share, we
tested the hypothesis of symmetry using a statistic based on the Hodges–Lehmann
estimator (see Boos 1982). In all cases, we cannot reject the null hypothesis of sym-
metry. Given these results, we analyze the fit of normal and Student t distributions,
and it turns out that the Student t presents the best fit for all filtered log returns.

3.1 Dispersion analysis

To analyze the shape of the distribution of the estimated VaR and CVaR using the
360 different initial orders in the tree T1 of the D-vine, which represent 360 different
multivariate dependence models, we use kernel density estimation with rule-of-thumb
bandwidth and the Gaussian kernel (see Silverman 1986). This is a nonparametric
method that allows us to easily smooth the shape of our histogram. In Figures 5, 6
and 7, we plot the densities obtained using the Student t , Frank and Gumbel copulas,
respectively, with Student t marginal distributions. The Student t and Frank copulas
assume symmetrical dependence structures between filtered log returns two by two.
Alternatively, the Gumbel copula supposes asymmetry in the dependence structures
and, in our example, it provides greater risk estimates.

The differences between the copulas can also be observed in Tables 3 and 4, where
we include the mean (Mean), the standard deviation (STD), the coefficient of variation
(CV), the interquartile range (IQR) and the range (Range) of the estimated VaR and
CVaR at the 99% and 99:5% confidence levels, using the 360 different initial orders.
When analyzing dispersion measures, we observe that, with the Gumbel copula, the
results differ from those obtained with the Student t and Frank copulas. The highest
differences between estimated VaR and CVaR are obtained with the former, followed
by the Student t and finally the Frank copula.
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FIGURE 1 Scatter plots of filtered returns in P1.
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FIGURE 2 Scatter plots of filtered returns in P2 that are not included in P1.
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FIGURE 3 Scatter plots of filtered returns in P3.
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FIGURE 4 Scatter plots of filtered returns in P4 that are not included in P3.
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FIGURE 5 Kernel density estimation of VaR (plots (a) and (b)) and CVaR (plots (c) and
(d)), estimated with all possible D-vines using the Student t pair–copula.
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The densities of VaR plotted in Figures 5 and 6 (plots (a) and (b)), corresponding
to Student t and Frank copulas, have only a principal mode, although with the Frank
copula all of the distributions have more kurtosis (compare the vertical axes), smaller
dispersion and smaller centers than with the Student t copula (see also Table 3). Both
copulas sort the portfolios from higher to lower risk in the same way: P3, P1, P2
and P4, respectively, using both analyzed risk measures, VaR at the 99% and 99:5%
confidence levels. The densities of CVaR (plots (c) and (d)) show a lot of similarities
between P1 and P3 and a reduction in dissimilarities between P2 and P4.

The densities shown in Figure 7, which were obtained using the Gumbel copula
in the pair decomposition of the multivariate distribution, have a bimodal shape,
more dispersion and larger centers than those obtained using the Student t copula.
In general, the estimated risks using the Gumbel copula are much higher, and the
differences between these estimated risks using different initial orders are also much
higher. Again, the positions of P1 and P3 are similar and the same occurs with P2
and P4.

In general, we observe that the distributions of estimated VaR and CVaR with dif-
ferent D-vines depend on the selected copula and can have different shapes. Because
of this, it is fundamental to analyze the results provided by different statistical criteria
when selecting D-vine.
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FIGURE 6 Kernel density estimation of VaR (plots (a) and (b)) and CVaR (plots (c) and
(d)), estimated with all possible D-vines using the Frank pair–copula.
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FIGURE 7 Kernel density estimation of VaR (plots (a) and (b)) and CVaR (plots (c) and
(d)), estimated with all possible D-vines using the Gumbel pair–copula.
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3.2 Selecting optimal order

In Section 3.1, we described alternative criteria for selecting the optimal order between
the 360 possible orders in the six-dimensional D-vine. In this section, we show the
results obtained with the better fit that, in our case, is the Student t copula with
Student t marginal distributions.

First, in Table 5, we show the optimal order obtained using the different criteria
estimated empirically (left-hand side) and supposing a Student t copula (right-hand
side). In the latter case, we add the criterion based on degrees of freedom (changing
maximum for minimum in the procedure defined in Section 2.1.1) as well as that based
on the dependence structure, which maximizes the likelihood. Second, in Tables 6
and 7, we show the estimated VaRs and CVaRs at the 99% and 99.5% confidence
levels, respectively, using the different orders quoted in Table 5. The results show
how different criteria provide different orders. In general, however, there is not a lot
of difference between the estimated VaR and CVaR. Although the orders differ, the
results of estimated VaR and CVaR obtained with empirical criteria and Student t
copula-based criteria are, at first glance, very similar.

In Tables 6 and 7, under the estimations of VaR and CVaR, and given each order,
we include bootstrap confidence intervals (CIs) at the 90% confidence level (in paren-
theses), ie, 5% of estimated values are above the upper limit and 5% are below the
lower limit. The CIs allow us to evaluate to what extent the differences between
results obtained with different orders are statistically significant. To calculate boot-
strap confidence intervals, we extract 500 samples with replacements from the data
set associated with each portfolio. For each sample, we estimate the VaR and CVaR
at the 99% and 99.5% confidence levels using the same selection order as in Table 5.
Therefore, we do not consider the dispersion associated with the selection criteria;
we evaluate this in the simulation study shown in Section 4.

In general, we observe that CIs overlap to a greater or lesser extent. There is only
one case in which the CIs do not overlap: this corresponds to P1 when we compare
the VaR obtained using the �U criterion, estimated empirically, with the VaR obtained
from the D-vine that maximizes the likelihood. For all other cases, we can conclude
that the values of risk estimated with different D-vines are not significantly different
at the 5% level if the test is to one tail, or at the 10% level if it is to two tails.

4 SIMULATION STUDY

We now summarize the results of our simulation study. We compare the mean squared
errors (MSEs) of VaR and CVaR obtained using the different criteria for selecting
D-vine described in Section 2.1.1. We analyze whether significant differences exist
between these criteria.
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We generate 500 samples of size 500 from four pair–copula decompositions, two
with a dimension of four (dim D 4) and two with a dimension of six (dim D 6).
In total, then, we have four models, named Model 1 (dim D 4), Model 2 (dim D
6), Model 3 (dim D 4) and Model 4 (dim D 6). We use the D-vine based on
the given orders defined as .1; 2; 3; 4/ for dim D 4 and defined as .1; 2; 3; 4; 5; 6/
for dim D 6. For each pair we use a Student t copula. The theoretical parameters
used in the simulated models are shown in Table 12 of the online appendix. These
theoretical parameters are defined based on those obtained for the analyzed portfolios
in Section 3, ie, assuming greater (Model 3 and Model 4) or lesser (Model 1 and
Model 2) dependency between random variables in the multivariate vector. Moreover,
in Table 13 (see the online appendix) the true VaR and CVaR that we use to obtain
the MSE associated with alternative selection criteria are shown.

The simulation study is carried out in the following way. As a first step, using
each of the four theoretical models, we generate 500 samples of size 500, ie, we
have four simulated data sets. The second step consists of applying the pair-selection
procedure described in Section 2.1.1 to each sample in each data set. The third step
involves estimating the parameters of the D-vines associated with each order and
using a Student t pair–copula. The fourth and final step consists of using the Monte
Carlo method to estimate the VaR and CVaR of each sample. To obtain these results,
we assume the marginals are uniform .0; 1/ distributed.

The MSE estimations of model j ’s estimated VaRj and CVaRj using criterion k
are obtained, respectively, using

bMSEk.bVaRj / D 1

500

500X
iD1

.VaRk
ij � VaRj /

2 (4.1)

and

bMSEk.1CVaRj / D 1

500

500X
iD1

.CVaRk
ij � CVaRj /

2; (4.2)

where k refers to, on the one hand, the criterion based on empirical �, � , �U and �L,
and, on the other hand, the criterion based on �, � , �U, �L and the degree of freedom
estimated using the Student t copula.

In practice, to eliminate the size effect given the different theoretical values, we
calculate a relative MSE, which is the square root of the MSE divided by the cor-
responding theoretical VaR or CVaR. The results for VaR and CVaR are shown in
Table 8. We compare all cases, using the statistic for testing the value of the esti-
mated mean of VaR and CVaR obtained from the 500 simulated samples, with the
null hypothesis, which assumes that estimated values are equal to theoretical values.
In both parts of Table 8, we indicate using underlined italics the cases in which a
statistic does not reject the null hypothesis.
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The unmarked cases are those in which the estimated VaR or CVaR are biased. This
occurs in Model 1 with dim D 4, using any of the criteria for selecting the D-vine,
as well as in Model 3, also with dim D 4, except for the CVaR at 99:5%, which is
estimated with the criterion based on DF. For Model 2 and Model 4 with dim D 6,
the results improve when we assume higher dependency and use criteria based on
the known copula. In practice, the copula is not known and is based on statistical
goodness-of-fit criteria.

To evaluate the effect on the MSE when we use a different copula, we calculate
results on Model 3 and Model 4 using the Gumbel copula. These are shown in Table 9.
In this case, we reject the null hypothesis that estimated values are equal to theoretical
values for VaR and CVaR at the 99% and 99:5% levels. In this case, the MSE of
estimated VaR increases, especially for the 99:5% confidence levels. The results for
CVaR show that at the 99% level the relative MSE is similar to that obtained using the
Student t copula, while at the 99:5% level the relative MSE increases considerably.

In those cases where the null hypothesis is rejected, we need to assume some bias
in the estimations of risk, which can be positive or negative. In our simulation study,
this bias is quite small for the VaR; it does not reach 4% of the theoretical value in
any case. However, for the CVaR the bias much bigger. When the confidence level is
99:5%, for Model 2 (dim D 6) it may exceed 65% of the theoretical value.

5 CONCLUSIONS

We showed that different orders in the first tree of the D-vine provide different estima-
tions of VaR and CVaR. The higher or lower dispersion of these different estimations
depends on the selected copula, ie, the model for pair dependence has an important
role.

The dispersion of the estimated VaR and CVaR highlights the problem of select-
ing the optimal order. Maximum likelihood estimation requires an estimation of all
possible D-vines. Further, this estimation may not be the best choice if the objective
is to estimate the VaR or CVaR; alternative criteria based on dependence measures
should be used instead. In our empirical analysis, in general, we found that, by using
different criteria, we obtained different pair–copula decompositions. However, the
estimated measures of VaR and CVaR do not show significant differences when we
use a copula that offers a better fit: in our case, the Student t copula.

In our simulation study, we compared models with four and six dimensions and
obtained better results for the latter. In some cases, VaR and CVaR estimations are
biased, and this bias can increase considerably if the copula is not true. Given this
bias, it is advisable to use different criteria for selecting the D-vine and to evaluate
the differences between the different estimations of risk.
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