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Abstract:  37 

The relationships between specific Type IV Pili (TFP) groups and antibiotic resistance, biofilm 38 

formation and bacterial motility were determined in 190 Pseudomonas aeruginosa clinical isolates. 39 

While motility and biofilm formation were determined by phenotypic assays, the presence of TFP 40 

was determined by PCR assay and antibiotic susceptibility by disk diffusion. The results showed a 41 

high ability to form biofilm (97.4 %), multidrug resistance (44.7%) and the presence of a high 42 

number of motile isolates. We also found an association between strong biofilm production and 43 

multidrug resistance. Furthermore, TFP Group III was associated with strong biofilm production. 44 

On the other hand, the isolates with TFP Group II and those without any TFP were associated with 45 

non-strong biofilm production. Regarding motility, TFP Group II were associated with higher 46 

percentages of swarming, swimming and twitching, while TFP Group I showed lower percentages 47 

of swarming and twitching and TFP Group III showed lower levels of swarming and swimming. 48 

In conclusion, these findings highlight the differences in P. aeruginosa phenotypes related to the 49 

presence of specific TFP groups and their potential implications in clinical settings. 50 

 51 
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Introduction  55 

Pseudomonas aeruginosa is considered an opportunistic human pathogen being mainly associated 56 

with nosocomial infections. P. aeruginosa has the ability to rapidly develop resistance to 57 

antibiotics generating multidrug-resistant (MDR) isolates leading to serious problems in hospital 58 

settings (Moskowitz et al., 2004). 59 

P. aeruginosa populations undergo frequent recombination events contributing to the evolution of 60 

successful epidemic clones (López-Causapé et al., 2017). Thus, while diverse P. aeruginosa 61 

populations may be present in different hospital environments (Varin et al., 2017), well adapted 62 

clones may cause nosocomial outbreaks (Oliver et al., 2015).  63 

A biofilm is defined as a community of microbial cells enclosed in an extracellular matrix and 64 

associated with a surface with architecture complexity (Deligianni et al., 2010). Despite containing 65 

molecules such as DNA or proteins, the extracellular matrix enclosing biofilm cells, is 66 

predominantly made up of different exopolysaccharides such as alginate, PEL or PSL (Mann and 67 

Wozniak, 2012). The specific relevance of each exopolysaccharide is related to specific bacteria 68 

characteristics (Høiby et al., 2017; Mann and Wozniak, 2012; Wozniak et al., 2003). Thus, alginate 69 

plays a mayor role in P. aeruginosa mucoid strains such as those prevalent in cystic fibrosis, and 70 

PEL and PSL are the most relevant amongst non-mucoid P. aeruginosa isolates (Høiby et al., 71 

2017; Mann and Wozniak, 2012; Wozniak et al., 2003). Biofilm formation causes considerable 72 

problems in medical and industrial settings, because bacteria in biofilms may be resistant to 73 

antibiotic treatment, host immune responses, and biocide treatment (Harmsen et al., 2010). 74 

Microscopic analyses have indicated that biofilm formation occurs in a sequential process of: (i) 75 

transportation of microbes to a surface; (ii) initial attachment; (iii) formation of microcolonies; (iv) 76 

biofilm maturation; and (v) biofilm dispersion (Klausen et al., 2003). P. aeruginosa presents three 77 

types of motility. Twitching motility, which is mediated by different factors including Type IV pili 78 

(TFP), allowing dissemination from the initial point of colonization via solid surfaces, interfaces or 79 
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moderate viscosities with repetitive alternating movements of extension and retraction 80 

(Kazmierczak et al., 2015). In addition, twitching is also involved in biofilm architecture and is 81 

responsible for the formation of microcolonies in biofilms (O'Toole and Kolter, 1998). Swarming 82 

and swimming motility are mediated by flagella and allow the movement of this microorganism on 83 

surfaces and in aqueous environments.  84 

The major subunit of TFP is a protein encoded by the pilA gene. This gene is found at a conserved 85 

chromosomal locus between the adjacent pilB and tRNA
Thr

 genes (Kus et al., 2004). In addition, 86 

pilA have five pili alleles with their accessory genes. Of these, only TFP group II presents the pilA 87 

gene without any accessory gene. TFP group I may be divided into subgroups defined by 88 

differences in the pili and accessory genes: Thus, subgroup Ia presents the tfpOa gene and Ib 89 

possesses the tfpOb gene (Kus et al., 2004). TFP group III and group V pilins possesses the tfpY 90 

and tfpZ accessory genes, respectively, and TFP group IV pili have the accessory genes tfpW and 91 

tfpX. The pilA alleles belonging to TFP group I (pilAI) and TFP group II (pilAII) have shown to be 92 

more closely related among themselves than with TFP group III, IV and V pilins (Asikyan et al., 93 

2008).  94 

Differences in P. aeruginosa phenotypes related to the presence of a specific TFP group remain 95 

underexplored, being even less studied in clinical isolates of this microorganism. Therefore, the 96 

objective of this study was to determine the relationships between specific TFP Groups and 97 

antibiotic resistance, biofilm production and bacterial motility in P. aeruginosa isolates from 98 

patients from two hospitals in Lima, Peru. 99 

100 
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Material and Methods 101 

Bacterial isolates  102 

A total of 190 P. aeruginosa isolates from clinical samples including bronchial secretions (sputum, 103 

trachea secretions and bronchoalveolar lavage), urine, wounds/abscesses and other (blood, body 104 

fluids, catheters and other unspecified sources) from patients attended at the Hospital Arzobispo 105 

Loayza (HAL, 78 strains) and the Hospital Nacional Cayetano Heredia (HNCH, 112 strains) from 106 

December 2012 to June 2013 were studied. In all cases only non-duplicated isolates from different 107 

patients were included in the study. The isolates were stored at -80ºC in skim milk medium until 108 

use. Each isolate was identified using conventional biochemical tests (Garcia, 2010). All samples 109 

were obtained within routine clinical practice; no personal data was requested or available to 110 

researchers.  111 

 112 

Clonal Relationships  113 

 DNA fingerprinting of all isolates was generated by BOX-PCR as described previously (Mitov et 114 

al., 2010). In all cases the bacterial DNA was extracted by direct boiling (Feizabadi et al., 2010). 115 

The BOX-PCR profiles were analyzed according to the similarity of bands calculated by the Dice 116 

coefficient using Info Quest software (version 5) (Bio-Rad Laboratories, Inc). Parameters of 1.0% 117 

tolerance and 0.5% optimization were used, and similarity matrices were generated with the 118 

unweighted pair group method using arithmetic averages (UPGMA). Isolates showing ≥85 % of 119 

similarity were considered to be related.  120 

 121 

Antimicrobial susceptibility determinations 122 

Susceptibility to ceftazidime (CAZ, 30 µg), cefepime (FEP) (30 µg), aztreonam (ATM, 30 µg), 123 

imipenem (IMI, 10 µg), meropenem (MER) (10 µg), piperacillin-tazobactam (PTZ, 100/10 µg), 124 

gentamicin (GM, 10 µg), tobramycin (TO, 10µg), amikacin (AK, 10µg), ciprofloxacin (CIP, 5 µg), 125 
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levofloxacin (LVX, 5 µg), ofloxacin (OFX, 5 µg) and colistin (CO,10 µg) was established by the 126 

disk diffusion test in Mueller - Hinton agar according to the methodology and guidelines proposed 127 

by the Clinical and Laboratory Standards Institute (CLSI, 2017). The strain P. aeruginosa ATCC 128 

22853 was used for quality control. Multidrug resistance was defined as resistance to three or more 129 

unrelated antibiotics. Antibiotic non-susceptibility refers to the sum of intermediate and resistant 130 

isolates. 131 

 132 

Biofilm growth assays 133 

Biofilms of each P. aeruginosa isolate were grown according to the methodology of Merritt et al 134 

(2005). The optical density cut-off (ODc) value to separate biofilm-producer from non-biofilm-135 

producer isolates was calculated on the basis of three standard deviations (SD) above the mean 136 

optical density (OD) of the negative control. Based on these OD values the isolates were classified 137 

as follows: non biofilm producers [NBP] (OD ≤ ODc); weak biofilm producers [WBP] (ODc < OD 138 

< 2 xODc); moderate biofilm producers [MBP] (2 xODc < OD < 4xODc); and strong biofilm 139 

producers [SBP] (4xODc < OD) (Stepanovic et al., 2000). 140 

The isolates were classified as SBP and non-SBP (MBP+WBP+NBP) for statistical purposes. The 141 

reference strain P. aeruginosa PAO1 was used as a positive biofilm control. 142 

 143 

Motility Assays 144 

Swimming, swarming and twitching motilities were assayed on agar plates containing specific 145 

medium according to the methodology of Gupta et al. (2016) and Deligianni et al. (2010). All the 146 

plates were inoculated from an overnight culture using a sterile toothpick and were incubated at 147 

37ºC for 48h (Deligianni et al., 2010; Gupta et al., 2016). Motility was determined as the radius of 148 

the circular expansion of bacterial growth from the point of inoculation. For swimming and 149 

swarming motility a measurable zone ≥25 mm was considered positive and twitching, was 150 
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considered as positive when ≥10 mm (Otton et al., 2017). The strain PAO1 was included in the 151 

analysis as a positive motility control. 152 

 153 

TFP detection 154 

The presence of TFP was determined by PCR. The primers used (Table 1) were designed by Kus et 155 

al (2004).  156 

 157 

Identification of accessory genes 158 

The primers used for identification of strains containing the tfpOa, tfpOb, tfpW, tfpX, tfpY, tfpZ 159 

accessory genes downstream from pilA were designed for this study by our group (Table 1). The 160 

PCR consisted of 15 min denaturation at 95 ºC followed by 30 cycles of 30s at 95 ºC, 1 min at 161 

55ºC, 2 min at 72 ºC, with a final extension of 7 min at 72 ºC. The quality of the PCRs was 162 

confirmed by the random selection of different amplified products to be sequenced.  163 

 164 

Statistical analysis 165 

The χ
2
 (Chi square) test text was used to determine the presence of significant differences among 166 

categorical data, which were considered statistically significant with a p value of ≤ 0.05. 167 

Adjustments for multiple comparisons were made using the Holm and Benjamini–Hochberg 168 

approaches.  169 

The normal distribution of quantitative data set was established by the Shapiro-Wilk’s W test; the 170 

one-way ANOVA test and Tukey´s post hoc with 95% confidence interval was used to compare 171 

differences between the individual TFP Groups. R study version 3.4.0. was used for all the 172 

statistical analyses.  173 
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The associations of isolates possessing TFP group V were not analyzed because of the small 174 

number of positive isolates. When not explicitly indicated, TFP Groups Ia and Ib were analyzed 175 

together as TFP Group I.  176 

177 
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Results  178 

Bacterial isolates 179 

During the study period, P. aeruginosa isolates were collected from a total of 190 non-duplicated 180 

isolates from different patients [Hospital Nacional Cayetano Heredia - HNCH (n=112); Hospital 181 

Arzobispo Loayza - HAL (n=78)]. P. aeruginosa was most frequently isolated from bronchial 182 

secretions 37.9% (72/190), urine 29.5% (56/190), and wounds/abscesses 17.4% (33/190). The 183 

proportion of isolates recovered from urine samples was significantly (p=0.0059) higher in HAL 184 

(32 isolates, representing 41% of HAL samples and 57.1% of total urine samples) compared to 185 

HNCH (24 isolates, representing 21.4% of HNCH samples and 42.9% of total urine samples). 186 

The colony characteristics of 187 isolates were similar to PAO1. Thus, none was mucoid, only 187 

three isolates showed morphology of small colony variant (SCV), all isolates but 2 were β-188 

hemolytic, and 142 isolates were pigmented. 189 

 190 

Clonal relationships 191 

The analysis of the clonal relationships by BOX-PCR of the 190 isolates resulted in the 192 

identification of 72 clones (Supplementary Table). Of these, 27 (37.5%) were represented by a 193 

single isolate, 41 (56.9%) included 2 to 6 isolates and the remaining 4 clones included more than 6 194 

isolates. In clones including more than one isolate, a high internal variability in terms of TFP 195 

groups, antibiotic resistance, biofilm production and bacterial motility was observed 196 

(Supplementary Table).  197 

 198 

Antimicrobial resistance 199 

High levels of non-susceptibility were observed among the 190 P. aeruginosa isolates, ranging 200 

from 38.4% (CAZ) to 56.3% (OFX), with similar results in both hospitals. Overall, 44.7% (85/190) 201 

were MDR, with no differences between the two hospitals studied (HNCH 44.6%, 50/112; HAL 202 
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44.9%, 35/78). (Table 2). In addition, the MDR isolates were also mainly from urine, 31/85 203 

(36.5%), bronchial secretions 25/85 (29.4%) and wounds/ abscesses 13/85 (15.3%). 204 

 205 

Biofilm production 206 

Ninety-seven percent (185/190) of the isolates were biofilm producers. Of the total isolates, 41% 207 

(78/190) were SBP, 44.7% (85/190) were MBP, and 11.6% (22/190) and 2.6% (5/190) were WBP 208 

and NBP, respectively. Moreover, the SBP phenotype was significantly more frequent in the 209 

HNCH isolates [50.9% (57/112) vs. HAL 26.9% (21/78); p= 0.0009] (Fig.1). 210 

In all cases, the SBP isolates exhibited higher levels of antimicrobial resistance than the non-SBP 211 

isolates, except in the case of PTZ in HAL. Overall, the SBP isolates were significantly more 212 

resistant to CAZ, FEP, ATM, IMI, MER, TO, AK and CIP (p<0.05), and accordingly, were 213 

associated with the presence of MDR (p=0.0179) (Table 2).When biofilm formation was examined 214 

according to the clinical origin of the samples, only isolates from wounds/abscesses [78.8% 215 

(26/33)] were associated with non SBP (p= 0.0186). 216 

 217 

Motility phenotype  218 

Twitching, swarming and swimming motilities were analyzed in 189 isolates recovered from 219 

frozen stock. Of these, 86.2% (163/189) presented twitching, while 57.7% (109/189) and 83.1% 220 

(157/189) showed swarming and swimming, respectively. MDR isolates presented rates of positive 221 

migration zones of 83.5% (71/85), 40% (34/85) and 76.5% (65/85) for twitching, swarming and 222 

swimming motilities, respectively, and non-MDR isolates showed rates of 88.5% (92/104), 72.1% 223 

(75/104), 88.5% (92/104), respectively. The results showed that non-MDR isolates were 224 

significantly associated with swarming and swimming motility (p<0.0001 and p=0.0287), 225 

respectively.  226 

 227 

 228 
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Type IV pili 229 

Overall, 161/189 (85.2%) of the isolates presented at least one TFP. Of these, 135 (83.9%) 230 

presented only one TFP group, and the remaining 26 (16.1%) had more than one TFP group 231 

(Tables 3 and 4). TFP Group II was the most frequently detected, being found in a total of 103 232 

isolates; being the only TFP group detected in 83 of these isolates (43.9% of the total isolates, 233 

51.5% of isolates possessing TFP). TFP Group I was detected in 45 isolates (together with other 234 

TFPs in 16 isolates). Group III was detected in 34 isolates (together other TFPs in 14 isolates). 235 

Group V was present in 12 isolates, being the only TFP in 3 isolates. No isolate carrying the TFP 236 

Group IV was detected (Table 4). 237 

The absence of TFP (p=0.0005) as well as the presence of only the TFP Group II (p=0.0260) was 238 

significantly higher in the isolates from HAL, while the presence of TFP Group I (p=0.0153) and 239 

Group III (p=0.0260) was higher among HNCH isolates. Isolates carrying more than one TFP were 240 

also more frequent in HNCH (p=0.0044).  241 

 242 

TFP and multiresistance    243 

 Analysis of the association between TFP and multidrug resistance showed that 17/26 (65.4%) 244 

isolates with multiple TFP, 57/135 (42.2%) isolates with only one TFP and 11/28 (39.3%) of those 245 

without TFP were MDR. Nonetheless, analysis by TFP groups showed that the presence of only 246 

TFP Group II (25/83 isolates, 30.1%) was associated with the presence of a non-MDR phenotype 247 

(p=0.0014), while the percentages of multidrug resistance among isolates belonging to Groups I 248 

and III were 58.6% and 70.0%, respectively (Table 4, Fig 2a).  249 

 250 

TFP, motility and biofilm 251 

Overall, 14.9% (24/161) of the isolates presenting TFP did not show twitching motility, while 252 

92.9% (26/28) of the isolates in which no TFP group was detected did.  253 



13 
 

On evaluating the relationship between the TFP group and flagellar motility (swarming or 254 

swimming) it was observed: the presence of only TFP Groups I and III were associated with less 255 

swarming (p=0.023/p=0.024); TFP Group III also showed less swimming motility (p=0.022), and 256 

isolates possessing only TFP group I were those with the least twitching motility (p=0.045) (Fig 257 

2b, Table 4). The highest levels of twitching were found among the isolates with TFP Group II and 258 

those without TFP (>90% in both cases).  259 

Overall, the presence of TFP was associated with SBP (p=0.02), but when biofilm formation was 260 

related to the different TFP groups, only Group III showed a significant association with SBP 261 

(p=0.025), while Group II (p=0.025) was associated with non-SBP and those without TFP almost 262 

reached significance (Fig. 2c, Table 4). Similarly, the one-way ANOVA test showed a p=0.058, 263 

bordering the significance breakpoint, when TFP contribution to biofilm biomass was determined 264 

(Fig. 3a). On analyzing the relationship between TFP groups and biofilm biomass with the one-265 

way ANOVA test a significant association was observed (p<0.0001) with Groups I, III and those 266 

with more than one TFP presenting greater biofilm biomass (Fig. 3b). 267 

Swarming motility was associated with non-SBP (p<0.0001) and lower biofilm biomass 268 

(p<0.0001) (Fig. 3c). Similarly the presence of swimming tended to be related to non-SBP 269 

(p=0.058) and significantly associated with lesser biofilm biomass (p<0.0001) (Fig. 3e).  270 

On the other hand, twitching motility was also associated with non-SBP (p=0.0072) and lower 271 

biofilm biomass (p<0.0001) (Fig 3g). On analyzing the specific role of each TFP Group, 272 

irrespective of the type of motility, isolates presenting TFP Groups I and III and those with more 273 

than one TFP presented greater biofilm biomass, while those with TFP Group II or without TFP 274 

presented lower biofilm biomass levels, (Figs. 3d, 3f, 3h). Finally, those isolates without swarming, 275 

swimming or twitching showed higher levels of biofilm biomass (Fig. 4).  276 

 277 

278 
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Discussion 279 

This study was aimed to determine the relationships between specific TFP groups and antibiotic 280 

resistance, biofilm production and bacterial motility. The prevalence of the different TFP groups 281 

observed in the present study are similar to those of other authors in which TFP Group I was 282 

present in 18% (28/159) of human clinical isolates and TFP Group III represented 7% of 244 283 

isolates of P. aeruginosa obtained from a wide range of environments (Kus et al., 2004; Asikyan et 284 

al., 2008). To our knowledge, no specific study has determined the presence of possible 285 

associations of specific TFPs with motility, enhanced biofilm formation or factors favoring the 286 

selection of isolates carrying multiple TFP.  287 

Our results showed a relation between the number of TFP groups and multidrug resistance. Thus, 288 

isolates without TFP showed the lowest levels of multidrug resistance. Nonetheless, although the 289 

reason for this is not clear, around 60% of isolates carrying TFP Group I or III were MDR while 290 

isolates having the TFP Group II were more prone to be non-MDR. Further analyses in clinical 291 

settings from both Peru and other countries are needed to demonstrate this association providing a 292 

rationale to determine the underlying reasons. 293 

The implication of pilA in swarming motility needs to be fully elucidated. Thus, while Shrout et 294 

al., (2006) showed swarming motility was not impaired in a pilA deficient strain and, in some 295 

circumstances even showed hyperswarming motility, Köhler et al., (2000) observed the absence of 296 

swarming in TFP-deficient P. aeruginosa mutants. The present study showed differences in the 297 

association of the TFP groups with swarming and also swimming phenotypes. In agreement with 298 

the association of swimming and swarming with flagellar activity, the presence of TFP in our study 299 

was not correlated with these motilities, with motile and non-motile isolates presenting TFP. 300 

Nonetheless, our data show that the presence of TFP Groups I and III is related to a lower presence 301 

of swarming and swimming ability. This result provides additional information to the previous 302 

description of the impairment of swarming motility related to the presence of TFP (Anyan et al., 303 
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2004) demonstrating the association of this finding with specific TFP groups. Interestingly, 304 

twitching motility was also more frequently present among isolates with TFP Group II and among 305 

those without TFP. Thus, in our study 92.8% (26/28) of the isolates not associated with any TFP 306 

group were twitching phenotype positive. While the presence of other adhesins cannot be ruled out 307 

(Chiang and Burrows, 2003), the presence of polymorphisms on the primers annealing region, and 308 

that of undescribed TFP possessing new arrangements or longer additional complementary genes 309 

leading to long DNA regions which are difficult to amplify with the present PCR conditions and 310 

reagents should also be considered. Similarly, the possible insertion of a mobile element before or 311 

after TFP genes, which does not affect the functionality of the TFP but does impair PCR 312 

amplification, is another possible explanation. On the other hand, isolates possessing TFP but 313 

without twitching motility may be explained by the presence of altered or inactive TFP or by the 314 

lack of or underexpression of other necessary genes (Chiang and Burrows, 2003).  315 

This study suggests an association between specific TFP and levels of biofilm formation. In this 316 

sense, it was of note that the presence of TFP was significantly associated with SBP, and a p value 317 

of 0.058 was observed when the presence of TFP was associated with biomass levels. In this way, 318 

the biofilm formation is classified by categories, while biomass is a numerical data obtained from 319 

the OD which explains this slight difference. Several studies have reported the importance of 320 

bacterial motility to initiate contact with an abiotic surface, biofilm formation and development 321 

(Deligianni et al., 2010; O'Toole et al., 2000). Nonetheless, the associations between the presence 322 

of specific TFP groups and biofilm formation ability remain understudied, although they might be 323 

related to the absence or presence of TFP accessory genes. In this sense, although it has been 324 

shown that a higher twitching level impairs the ability of biofilm formation (Haley et al., 2014), it 325 

has been suggested that twitching is one of the factors involved in the first stages of biofilm 326 

formation (O'Toole et al., 2000), and consequently, in the degree of biofilm biomass (Deligianni et 327 

al., 2010). Furthermore, the presence of TFP accessory genes may be correlated with enhanced 328 
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twitching (Asikyan et al., 2008). Therefore, the presence of accessory genes might positively 329 

influence the biofilm formation. Our results agree with the impairment of biofilm formation related 330 

to the presence of twitching (Haley et al., 2014) and isolates presenting twitching are correlated 331 

with lower levels of biofilm biomass. Furthermore, the higher levels of biomass biofilms were 332 

correlated with the absence of swimming, swarming and twitching, while isolates presenting the 333 

three types of motility were those with lower biofilm biomass. This result highlights the fact that 334 

isolates with lower motility levels are more prone to adhere to surfaces leading to biofilm 335 

formation. Nevertheless, contrary to the proposed correlation between TFP accessory genes and 336 

enhanced twitching (Asikyan et al., 2008), in all the isolates presenting TFP Groups II, the only 337 

TFP Group lacking accessory genes, or without any TFP showed higher levels of motility. 338 

On the other hand, the presence of isolates without TFP classified as SBP and that of isolates with 339 

a very poor adhesion to the microtiter plate despite possessing TFP (including TFP Group III) 340 

agree with the fact that mutants deficient in pili and flagella do not exhibit significant differences 341 

regarding biofilm formation compared to wild type strains (Klausen et al., 2003). Therefore, these 342 

findings point to the possible role of other new adhesins that could participate in the initial stage of 343 

biofilm formation (Otton et al., 2017; Head and Yu, 2004), and highlight the multifactorial nature 344 

of biofilm formation. 345 

In a recent study the development of quinolone resistance was correlated with lower levels of 346 

twitching activity (Ahmed et al., 2018). Thus, as our results showed that isolates presenting lower 347 

motility levels were related to SBP, this finding may be related to the high levels of antibiotic 348 

resistance detected in those isolates being SBP. Accordingly, all isolates deficient for the three 349 

tested motilities were SBP and MDR, and the presence of multidrug resistance was lesser among 350 

those isolates possessing TFP Group II or those without TFP which showed high motility levels. 351 

Our results showed the presence of differences in the prevalence of TFP as well as of TFP groups 352 

and other characteristics among the samples from the two hospitals. This finding suggests the 353 
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presence of differences among both bacterial populations. Nonetheless, no specific reason may be 354 

adduced. 355 

The intraclonal variability of the parameters analyzed must be considered among limitations of this 356 

study, since it prevents analysis corrected by phylogeny. This variability may be related to 357 

horizontal gain or loss of genetic material, or with undetected punctual mutations, insertions or 358 

deletions which affect the final expression levels of key genes. 359 

Overall, the presence of TFP was correlated with enhanced biofilm formation; furthermore, the 360 

presence of specific TFP Groups was correlated with different findings, including MDR (Group 361 

III) /non-MDR (Group II) profiles and levels of swarming / swimming / twitching motility (Group 362 

I and Group III with lower levels of motility, Group II or those without TFP with higher levels of 363 

motility). The present results suggest that isolates with impaired motility are more prone to being 364 

SBP. These findings highlight the need for an in-depth analysis of the underlying differences and 365 

elucidation of the exact relationships between specific TFP groups, biofilm production and the 366 

acquisition of multidrug resistance.  367 
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Legends to Figures 456 

 457 

Fig 1: Biofilm formation and multidrug resistance 458 

HNCH: Hospital Nacional Cayetano Heredia; HAL: Hospital Arzobispo Loayza. SBP: Strong 459 

biofilm producer; MBP: Moderate biofilm producer; WBP: Weakly biofilm producer; NBP: non 460 

biofilm producer. 461 

* p=0.0009 462 

 463 

Fig 2 Distribution of TFP groups according to multidrug resistance, biofilm formation and 464 

bacterial motility.  465 

TFP: Type 4 Pili; MIX Group: isolates possessing more than one group of TFP; None group: 466 

Isolates without any TFP group. 467 

MDR: Multidrug resistance; NBP: Non biofilm producers; WBP: Weak biofilm producers; MBP: 468 

Moderate biofilm producers; SBP: Strong biofilm producers;  469 

Fig 2a: TFP groups according to MDR and non-MDR isolates.  470 

Fig 2b: TFP groups according to motility. 471 

Fig 2c: TFP groups according biofilm formation. 472 

 473 

Fig 3. Box plots showing the association of TFP, swarming or swimming with biofilm 474 

biomass. 475 

For swimming and swarming motility a measurable zone ≥25 mm was considered positive and 476 

twitching, was considered as positive when ≥10 mm (Otton et al., 2017). 477 

Fig. 3a: TFP and biofilm biomass (p = 0.058). 478 

Fig. 3b: Association of each TFP group with biofilm biomass (p< 0.0001).  479 

Fig. 3c: Association of swarming motility with biofilm biomass (p < 0.0001).  480 
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Fig. 3d: Presence (+) / absence (-) of swarming according to TFP groups and biofilm biomass (p < 481 

0.0001).   482 

Fig. 3e: Association of swimming motility with biofilm biomass 483 

Fig. 3f: Presence (+)/ absence (-) of swimming according to TFP groups and biofilm biomass  484 

(p< 0.0001).  485 

Fig 3g: Association of twitching motility with biofilm biomass (p<0.0001) 486 

Fig 3h: Presence (+)/ absence (-) of twitching according to TFP groups and biofilm biomass  487 

(p< 0.0001).  488 

None: represents those isolates without any TFP; mix: shows isolates with more than one TFP. CV: 489 

Crystal Violet. Cercles (°): outliers showing values of biofilm biomass get out range. 490 

 491 

Fig 4 Box plots showing the association of motility with biofilm biomass. 492 

For swimming and swarming motility a measurable zone ≥25 mm was considered positive and 493 

twitching, was considered as positive when ≥10 mm (Otton et al., 2017). 494 

Absence: Lack of swarming, swimming and twitching; Presence: Concomitant presence of 495 

swarming, swimming and twitching; Mixture: Presence of a minimum of one motility type and a 496 

maximum of two motility types. When the different combinations of “Mixture” motility group 497 

were analyzed individually no differences were observed among them.  498 

 499 

 500 



Table 1. Primers used in this study. 

 

Amplified product Primer Sequence ( 5' → 3' ) Amplicon size (bp) Reference 

TFP and accessory genes 

 

TFP 

 
 

Group Ia ( 2821 )    

Kus et al., 2004 

  Group Ib ( 2797 ) 

pilB TCC AGC AGC ATC TTG TTG ACG AA Group II  ( 1370 ) 

tARN
Thr

 CGA ATG AGC TGC TCT ACC GAC AGA GCT Group III ( 2185 )    

  Group IV ( 4452 ) 

  
Group V  ( 2289 ) 

 
   

This study 

tfpOa 
tfpOa  - F TCT ATT ATT GCT GAT AAG TAT TC  

1113 
tfpOa  - R GCC AAT ACG GTC TGG GTG AA 

    
tfpOb 

tfpOb
  
- F CAC TGC TAT TCC TGA TAG CAG 

713 
tfpOb

  
- R GAA ATA GAG CGC CAG TCC GA 

    
tfpW 

tfpW - F TGC TCT GCC TAT GTA TGG CG 
582 

tfpW - R CAA GGA ATG CTA AGG GGG CA 

    
tfpX 

tfpX -  F GGG AAA ATG GTA TCC GCC CC  
314 

tfpX -  R CTC CGG AGG CGA ACT CTA CT  

    
tfpY 

tfpY -   F TAG TGC GTG ACT TGG GTG TC  
288 

tfpY -   R CCA ATT GGG TCT GTA GCG GT 

    
tfpZ 

tfp Z -  F  ATT AGG GCG TTC GCT GTT CA  
594 

tfp Z -  R GGT ACC TAC CAA CTG CCA CC 
  

Clonal relationships 

      

BOX-PCR  CTA CGG CAA GGC GAC GCT GAC G Variable Mitov et al., 2010 

 

TFP: Type IV pili; F: Forward; R: Reverse; bp: base pair 

 

 



Table 2: Antimicrobial resistance (%) of Pseudomonas aeruginosa isolates according to the strong biofilm producer phenotype. 

Antimicrobial  

Total (n=190)  HNCH(n=112)  HAL(n=78) 

Overall 
SBP 

(n=78) 
Non-SBP 
† (n=112) 

p value 
p 

adjusted 

 
Overall 

SBP  
(n=57) 

Non-SBP † 
(n=55) 

p 
value 

p 
adjusted 

 
Overall 

SBP 
 (n=21) 

Non-SBP † 
(n=57) 

p 
value 

p 
adjusted 

CAZ 38.4 50.0 30.4 0.006 0.0179  39.3 49.1 29.1 0.03 0.0754  37.2 52.4 31.6 0.091 0.2123 

FEP 42.6 53.8 34.8 0.009 0.0195  43.8 54.4 32.7 0.02 0.0754  41.0 52.4 36.8 0.215 0.2541 

ATM 45.8 55.1 39.3 0.031 0.0491  49.1 56.1 41.8 0.129 0.1524  41.0 52.4 36.8 0.215 0.2541 

IMI 50.5 62.8 42.0 0.005 0.0179  53.6 63.2 43.6 0.038 0.0754  46.2 61.9 40.4 0.090 0.2123 

MER 46.3 59.0 37.5 0.003 0.0179  47.3 56.1 38.2 0.057 0.0754  44.9 66.7 36.8 0.018 0.2123 

GM 46.8 55.1 41.1 0.057 0.0741  43.8 52.6 34.5 0.053 0.0754  51.3 61.9 47.4 0.254 0.2752 

TO 46.8 56.4 40.2 0.027 0.0491  43.8 52.6 34.5 0.053 0.0754  51.3 66.7 45.6 0.098 0.2123 

AK 42.1 53.8 33.9 0.006 0.0179  41.1 50.9 30.9 0.031 0.0754  43.6 61.9 36.8 0.047 0.2123 

PTZ 34.7 42.3 29.5 0.067 0.0792  38.4 49.1 27.3 0.017 0.0754  29.5 23.8 31.6 0.504 0.5040 

CIP 51.1 60.3 44.6 0.034 0.0491  49.1 57.9 40.0 0.058 0.0754  53.8 66.7 49.1 0.168 0.2541 

LVX 53.2 60.3 48.2 0.101 0.1094  51.8 57.9 45.5 0.187 0.2026  55.1 66.7 50.9 0.213 0.2541 

OFX 56.3 62.8 51.8 0.131 0.1310  55.4 59.6 50.9 0.352 0.3520  57.7 71.4 52.6 0.136 0.2526 

MDR 44.7 56.4 36.7 0.0069 0.0179  44.6 54.3 34.5 0.0347 0.0754  44.9 61.9 38.6 0.064 0.2123 

 

HNCH: Hospital Nacional Cayetano Heredia; HAL: Hospital Arzobispo Loayza; CAZ: Ceftazidime, FEP: Cefepime, ATM: 

Aztreonam, IMI: Imipenem, MER: Meropenem, GM: Gentamicin, TO: Tobramicin, AK: Amikacin, PTZ: Piperacillin/Tazobactam, 

CIP: Ciprofloxacin, LVX: Levofloxacin, OFX:  Ofloxacin. MDR: Multidrug resistant 

 SBP: Strong biofilm producers.  



† “Non-SBP” represents MBP (moderate biofilm producers) + WBP (weak biofilm producers) + NBP (non-biofilm producers) 

isolates. 

 p: significant differences between SBP vs. non-SBP. 

All isolates were susceptible to colistin. 

 

 



Table 3. Distribution of TFP groups in MDR and non-MDR isolates.  

MDR isolates 
 

Non-MDR isolates 

TFP groups n = 85 
 TFP 

groups 
n = 104 

Ia 14
 
  Ia 6

 
 

Ib 2  Ib 1 

II 25 
 

 II 58  

III 14
 
  III 6

 
 

V 1  V 2 

Ia - Ib 1  Ia - Ib 5 

 Ia - II 1  Ia - II 2 

Ia - III 3  Ia - V 1 

II -  III 4  II - V 1 

II - V 1  III - V 1 

III - V 1  Ia - Ib - II 2 

 Ia - Ib -II  2   Ia - II - III 1 

 Ia - II - III 1  II - III - V 1 

 Ia - II - V 1  none 17 

II - III - V 1    

Ia -  Ib - II - III 1    

Ia -  Ib - II - V 1    

none  11      
TFP: Type IV Pili; MDR: Multidrug resistant 

  



Table 4. Distribution of pilin alleles among analyzed isolates  

 

Pilin allele No  I II III IV V 
More than one 

TFP group 
Not TFP

 

Accesory gene (s)   tfpO None tfpY tfpWX tfpZ Mixture --- 

Number of isolates 189  29 (15.3 %) 83 (43.9%) 20 (10.6%) 0 (0.0%) 3 (1.6%) 26 (13.7%) 28 (14.8%) 
          

HNCH 112  24 (82.8 %)  41 (49.4 %) 17 (85.0%) 0  (0.0%)   3 (100%) 23 (88.4%) 4 (14.3%) 

HAL  77  5 (17.2%) 42 (50.6%) 3 (15.0%) 0 (0.0%) 0 (0.0%) 3 (11.5%) 24 (85.7%) 

HNCH vs HAL   P value 0.0051 0.0146 0.0132 ND ND 0.0011 <0.0001 

  P adjusted 0.0153 0.0260 0.0260 ND ND 0.0044 0.0005 
          

Bonchial secretions 72  14 (48.3%) 31 (37.3%) 7 (35.0%) 0 (0.0%) 2 (66.6%) 9 (34.6%)  9 (32.1%) 

  P value  0.2198 0.8518 0.76308 ND ND 0.6940 0.4822 
          

Wounds/Abcesses 33  4 (13.8%) 15 (18.0%) 3 (15.0%) 0 (0.0%) 0 (0.0%) 4 (15.4%) 7 (25.0%) 

  P value 0.5718 0.8445  0.7592 ND ND 0.7640  0.2548 
          

Urine 55  6 (20.7%) 26 (31.3%) 4 (20.0%) 0 (0.0%) 1 (33.3%) 8 (30.8%) 10 (35.7%) 

  P value 0.278 0.551 0.343 ND ND 0.840 0.403 
          

Other  29  5 (17.2 %) 11 (13.3%) 6 (30.0%) 0 (0.0%) 0 (0.0%) 5 (19.2%) 2 (7.1%) 

  P value  0.7580  0.4803  0.0545 ND ND 0.5538  0.1920 
          

MDR 85  17 (58.6%) 25 (30.1%) 14 (70.0%) 0 (0.0%) 1 (33.3%) 17(65.4%) 11 (39.3%) 

  P value 0.1084 0.0003 0.0173 ND ND 0.024 0.512 

  P adjusted 0.260 0.0014 0.0680 ND ND 0.0720 0.520 
          

SBP 78  16 (55.1%) 25 (30.1%) 14 (70.0%) 0 (0.0%) 2 (66.6%) 15 (57.6%) 6 (21.4%) 

  P value 0.098 0.0059 0.0058 ND ND 0.067 0.0209 

  P adjusted 0.134 0.025 0.025 ND ND 0.134 0.063 
          

Twitching positive 163  21 (72.4%) 78 (94.0%) 16 (80.0%) 0 (0.0%) 1 (33.3%) 21 (80.8%) 26 (92.9%) 

  P value  0.0188  0.0063 0.3913 ND ND  0.3829 0.2710 

  P adjusted 0.045 0.023 0.491 ND ND 0.491 0.450 
          

Swarming positive 109  10 (34.5%) 58 (69.9%) 6 (30.0%) 0 (0.0%) 2 (66.6%) 13 (50.0%) 20 (71.4%) 

  P value 0.006  0.0026 0.0081 ND ND 0.3939 0.1104 

  P adjusted 0.023 0.022 0.024 ND ND 0.491 0.206 
          

Swimming positive 157  23 (79.3%) 74 (89.2%) 12 (60%) 0 (0.0%) 3 (100%) 21 (80.7%) 24 (85.7%) 

  P value 0 .5575  0.0483  0.0036 ND ND 0.7364 0.6859 

  P adjusted 0.642 0.102 0.022 ND ND 0.736 0.733 

 

No: Number; TFP: Type IV Pili; I: TFP Group I, II: TFP Group II; III: TFP Group III; IV: 

TFP Group IV; V: TFP Group V; None: absence of accessory gene; More than one TFP 

group: concomitant presence of different TFPs in the same isolate; Not TFP: Absence of 

TFP; HNCH: Hospital Nacional Cayetano Heredia; HAL: Hospital Arzobispo Loayza, 

MDR: Multidrug Resistant; SBP: Strong Biofilm Producer 

Significant differences in bold and highlighted in grey. 
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Twitching Swarming  Swimming

Catheter CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ none ‐ ‐ ‐

Bronchial Secretion ‐ Ia + ‐ ‐

Bronchial Secretion ‐ none ‐ ‐ ‐

2 1 A Sputum ‐ 1 III ‐ + ‐

3 1 A Tracheal secretion ‐ 2 II + ‐ ‐

Sputum CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ  2 III + ‐ ‐

Feces  CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ 1 II ‐ III + ‐ ‐

Feces  CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ  1 III + ‐ +

Wounds/abscess CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ  1 III + ‐ +

Wounds/abscess ‐ 2 Ia + + +

5 1 A Feces ‐ 2 none + + ‐

A Urine CAZ,FEP,ATM,MER,GM,TO,AK,CIP,LVX,OFX 2 II + + +

A Bronchial secretion ‐ 2 II ‐ III ‐ V ‐ + +

B Urine CAZ,FEP,ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX 1 none + + +

B Wounds/abscess ATM,IMI,MER,GM,TO,AK,CIP,LVX,OFX,PTZ 1 II + + +

B Urine CAZ,FEP,ATM,IMI,MER,GM,TO,CIP,LVX,OFX 1 II + + +

B Urine ‐ 2 II + + +

B Urine ‐ 3 ND ND* ND ND

A Tracheal secretion Ia + ‐ +

B Urine Ib + + +

B Tracheal secretion none + + +

8 1 B Sputum  ‐ 2 II ‐ Ia + + +

Urine  CAZ,FEP,ATM,TO,AK,CIP,LVX,OFX 1 II + + +

Sputum IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 II + ‐ +

Wounds/abscess ‐ 2 none + + +

Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ II + + +

Urine ‐ none + + ‐

Urine ‐ none + + +

A Urine 1 III + ‐ +

B Urine 3 II + + +

12 1 A Bronchial secretion ‐ 2 II + + +

A Sputum  ‐ Ia ‐ + +

B Urine FEP,ATM,GM,TO,AK,CIP,LVX,OFX none + ‐ +

A Bronchial secretion CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX 1 Ia + ‐ +

A Bronchial secretion ‐ 2 Ia‐Ib + + +

A Not specified ‐ 3 II + + +

B Urine CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 none + ‐ +

B Sputum CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 Ia + ‐ +

B Urine ‐ 3 II + + +

B Urine ‐ 2 II + + +

B Sputum ‐ 1 none + + +

B Sputum ‐ 2 II + ‐ +

B Bronchial secretion ‐ 1 II + + +

B Tracheal secretion ‐ 2 II + + +

B Urine ‐ 1 II + + +

B Bronchial secretion ‐ 1 none + + +

B Urine ‐ 3 II + ‐ +

A Body fluid CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  2 Ia ‐ III + ‐ +

A Sputum CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 Ia + + +

A Wounds/abscess CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  2 Ia + ‐ ‐

A Bronchoalveolar lavage CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX 2 Ia + + +

B Urine CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  2 II + + +

A Sputum CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 Ia ‐ ‐ +

A Tracheal secretion ‐ 2 II‐Ia‐Ib + + +

B Urine ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 III + + +

B Urine ‐ 2 II + + +

Urine CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 none  + ‐ +

Bronchial secretion ‐ 3 II + + +

Urine CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX 1 Ia ‐ III + ‐ +

Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX 1 Ia + ‐ +

Sputum  ‐ 2 none  + + +

Bronchial secretion ‐ 1 II + + +

Bronchial secretion ‐ 2 II ‐ + +

Urine 1 ‐ + +

Bronchial secretion 2 + + +

Wounds/abscess CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 Ia ‐ Ib + ‐ +

Urine ATM,IMI,MER,CN,TO,AK,OFX,PTZ 3 II ‐ Ia ‐  Ib ‐ III + ‐ +

Wounds/abscess ‐ 1 II ‐ Ia ‐ III + ‐ ‐

Urine ‐ 1 Ia ‐ + ‐

Urine FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ II ‐  Ia ‐ Ib + ‐ +

Urine FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX II + ‐ +

Urine ‐ II‐Ia‐Ib + + +

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX  2 II + + ‐

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX  1 II ‐ Ia ‐V + + +

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX 1 II + + +

A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,CIP,LVX,OFX,PTZ 1 II + ‐ +

A Not specified CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 3 II + + +

A Not specified CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX 2 III ‐ V + + +

A Wounds/abscess ‐ 2 III + + +

A Bronchoalveolar lavage ‐ 3 II + + +

B Wounds/abscess ‐ 3 II + ‐ ‐

23 1 A Not specified ‐ 2 II

B Wounds/abscess IMI,MER,CN,TO,CIP,LVX,OFX 2 II + ‐ +

A Bronchoalveolar lavage ATM,CN,TO,CIP,LVX,OFX,PTZ 2 II + ‐ +

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 II ‐ V + + +

Blood CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 Ia ‐ ‐ ‐

Bronchial secretion ‐ 2 II + + +

Blood CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 Ia ‐ ‐ ‐

24 3

25 2 A

26 2 A

21 3 A 1

22 9

19 2 A ‐ Ia‐Ib

20 4 A

17 2 B

18 5 B

14 14

15 5

16 4

11 2 ‐

13 2 2

‐ 2

3 B

10 3 B 2

9

4 5 A

6 7

7 3

Motility

1 3 A 2

Genotypes Total no. isolates  Hospital A/B Pattern of Resistance (no. of isolates) Biofilm Producing  TFP groupsKind of samples 



Not specified CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 Ia ‐ ‐ ‐

Bronchial secretion ‐ 2 II + + +

Sputum ‐ 2 II + + +

28 1 B Wounds/abscess CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 II + ‐ +

29 1 A Catheter CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 Ia + ‐ +

A Catheter ‐ 1 II‐Ia + + +

B Urine  ‐ 4 II + + +

31 1 B Wounds/abscess ‐ 2 II + + +

Wounds/abscess CAZ,FEP,IMI,CN,CIP,LVX,OFX none + + +

Bronchial secretion ‐ II + + +

33 1 B Wounds/abscess ‐ 3 none + + +

A Bronchial secretion 2 II + + +

A Bronchial secretion 1 II + + +

A Not specified 3 II + + +

A Not specified 2 II + + +

B Bronchial secretion 1 none  + + +

Blood 1 II ‐ ‐ ‐

Sputum 1 II ‐ ‐ +

Urine  2 II + + +

Urine  1 II + ‐ +

Urine  1 II ‐ + +

A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,CIP,LVX,OFX 1 II + + ‐

B Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 II + ‐ +

Tracheal secretion ‐ II + ‐ +

Urine ‐ II + + +

38 1 A Urine CAZ,FEP,ATM,CN,TO,AK,CIP,LVX,OFX,PTZ 2 II ‐  Ia ‐  Ib ‐ V + ‐ +

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 V + + +

A Wounds/abscess ‐ 2 II + + ‐

B Urine ‐ 2 II + + +

A Body fluid CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 III ‐ ‐ ‐

A Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III ‐ ‐ ‐

A Urine AK,CIP,LVX,OFX 1 Ia ‐ ‐ +

A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 II ‐ III ‐ ‐ ‐

A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 Ia ‐ III ‐ ‐ ‐

A Catheter CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III + ‐ ‐

A Sputum  CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 II ‐ III + ‐ +

A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III + + +

A Bronchoalveolar lavage CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III + ‐ +

B Catheter CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 III + ‐ ‐

A Sputum  ‐ 1 II + ‐ ‐

A Bronchial secretion ‐ 1 III + + ‐

41 1 A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 II ‐ III ‐ ‐ +

42 1 A Wounds/abscess ‐ 2 II + ‐ +

43 1 A Not specified CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ  1 II ‐ Ia ‐ III ‐ ‐ ‐

Wounds/abscess CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 3 II + + +

Wounds/abscess CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 none  + ‐ +

Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 III + ‐ ‐

Bronchial secretion ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 4 II + ‐ +

Bronchial secretion ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 II + + +

A Tracheal secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III + ‐ +

B Urine FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX 3 II + + +

A Wounds/abscess ‐ 1 III‐V + + +

B Bronchial secretion ‐ 1 II + ‐ +

48 1 B Bronchial secretion ‐ 2 none + + +

Body Fluid ‐ 1 III + + +

Blood ‐ 2 Ia ‐ ‐ +

50 1 A Wounds/abscess ‐ 2 II + + +

Wounds/abscess FEP,ATM,IMI,MER,CN,AK,LVX,OFX,PTZ 2 II ‐ III ‐ V + + +

Bronchial secretion ‐ 1 V + + +

Body fluid ‐ 1 II + + +

Wounds/abscess ‐ 1 III + + +

52 1 A Urine ATM,IMI,MER,CN,TO,AK,OFX,PTZ 1 II ‐ Ia ‐Ib + + +

A Bronchial secretion ‐ 3 II ‐ ‐ +

B Wounds/abscess ‐ 2 none + + +

54 1 A Wounds/abscess CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 Ia + ‐ +

55 1 A Bronchoalveolar lavage CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 Ia + ‐ +

56 1 A Urine ‐ 1 Ia‐Ib + ‐ +

Wounds/abscess ‐ II + + +

Sputum ‐ none + + +

Wounds/abscess ‐ II + ‐ +

B Bronchial secretion CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX II  ‐ Ia + ‐ +

A Urine 2 II + ‐ ‐

B Urine 2 II + + +

A Wounds/abscess 2 II ‐ V + + +

A Catheter 1 II + + ‐

B Urine 1 II + + +

B Wounds/abscess 3 none + + +

A Wounds/abscess ATM,CN,TO,AK,CIP,LVX,OFX 3 II + + +

B Urine ATM,IMI,MER,TO,AK,CIP,LVX,OFX 1 Ib + ‐ +

B Urine ‐ 2 none + + +

Bronchial secretion FEP,ATM,CN,TO,AK,CIP,LVX,OFX,PTZ 2 Ib + + +

Bronchial secretion ‐ 4 none + + +

62 1 A Sputum  ‐ 1 V ‐ + +

Bronchial secretion CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 none + + +

60 3

61 2 B

63 2 B

58 2 ‐

59 4 ‐

53 2

57 4
A

1

47 2

49 2 A

51 4 A

B

45 3 B

46 2

39 3

40 12

44 2

36 2

37 2 A 1

2

34 5 ‐

35 5 A ‐

27 2 B

30 2

32 2 B

26 2 A



Urine ‐ 2 II + + +

Bronchial secretion CAZ,FEP,ATM,CN,TO,CIP,LVX,OFX,PTZ 2 II + + +

Urine CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX 1 none + ‐ ‐

Wounds/abscess ‐ 3 none + + +

65 1 B Urine CAZ,FEP,ATM,CN,TO,CIP,LVX,OFX 2 II + + +

66 1 B Urine CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 2 none  + + +

67 1 B Wounds/abscess CAZ,FEP,ATM,CN,TO,LVX,OFX,PTZ 3 II + + +

Tracheal secretion ‐ II ‐ ‐ +

Body Fluid  ‐ II + ‐ ‐

69 1 B Wounds/abscess ‐ 4 II + + +

70 1 B Blood CAZ,FEP,IMI,MER,CN,TO,AK,CIP,LVX,OFX 3 II + + +

Catheter CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III + + +

Sputum  2 Ia ‐ V ‐ + +

Bronchial secretion 1 Ia‐Ib + + +

Wounds/abscess 3 II + + +

Tracheal secretion 4 II + + +

Not specified 2 II + + +

72 1 A Bronchial secretion CAZ,FEP,ATM,IMI,MER,CN,TO,AK,CIP,LVX,OFX,PTZ 1 III ‐ ‐ +

2

71 6 A
‐

64 3 B

68 2 A

63 2 B
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