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1 Abstract

2 A major dense shelf water cascading (DSWC) event occurred in 2005 downward the Cap de Creus 

3 Canyon (Gulf of Lion, NW Mediterranean Sea), which caused a significant change in 

4 environmental parameters and biological components. Here we describe the effects of this DSWC 

5 event on benthic microbes and on virus-prokaryote interactions, and we explore their implications 

6 on the functioning of the canyon’s ecosystem. We collected sediment samples at increasing depths 

7 inside the canyon and in the adjacent deep continental margin over a period of five years, i.e. during 

8 and after the DSWC event, which led to the deposition of high amounts of fresh and labile organic 

9 matter that stimulated C production by benthic prokaryotes and increased their abundance and 

10 biomass. The enhanced prokaryotic metabolism, still evident 6 months after the DSWC event, was 

11 associated with high viral replication rates and prokaryotic mortality, which released 3.4-6.3 gC m-2 

12 over such a 6 months period. Such values are up to 3-times higher than the yearly C-flux to the 

13 seafloor reported in this area in years without DSWC. We conclude that DSWC can significantly 

14 enhance benthic prokaryotic metabolism and C cycling through viral-induced prokaryotic mortality.

15
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1 1. Introduction

2 Benthic deep-sea ecosystems represent more than 65% of the Earth’s surface and provide goods and 

3 services that are vital for the entire biosphere, including C burial, nutrient cycling and biomass 

4 production (Barbier et al. 2014; Danovaro et al. 2014; Thurber et al., 2014). Biomass in this 

5 environment is dominated by prokaryotes, whose dynamics are dependent on a complex interplay of 

6 factors, including predatory pressure exerted by benthic fauna and virus-induced mortality, and 

7 changes of environmental conditions such as food availability, temperature or salinity (Danovaro et 

8 al., 2016a; Danovaro et al.,2016b, Danovaro et al., 2017a; Danovaro et al.,2017b). Increasing 

9 evidence shows that benthic ecosystems of continental margins are highly dynamic and also 

10 sensitive to environmental changes due to physical forcings and associated processes, like turbidity 

11 currents, open sea convection and dense shelf water cascading (DSWC) events (Liu et al., 2010; 

12 Fernandez-Arcaya et al., 2017). DSWC is an episodic phenomenon driven by atmospheric forcing, 

13 which results in the formation of dense coastal surface waters that generate buoyancy-driven 

14 currents overflowing the shelf edge and descending down the continental slope (Shapiro et al., 

15 2003). 

16 Deep-sea canyons are geomorphological features that can favour or even amplify the effects of 

17 DSWC (Canals et al., 2006; Allen and Durrieu de Madron, 2009). Indeed, submarine canyons can 

18 intercept and convey DSWC currents and the large amounts of materials they typically transport, 

19 thus acting as preferential conduits of mass and energy transfer from the coastal sea to the deep 

20 ocean interior (Canals et al., 2009; Xu, 2011; Fernandez-Arcaya et al., 2017). In this regard, it has 

21 been reported that the down-canyon channelling of DSWC currents can result in a significant 

22 increase of organic matter inputs down to bathyal depths (Canals et al., 2006; Pasqual et al., 2010), 

23 thus profoundly influencing the biodiversity and functioning of deep marine habitats (Durrieu de 

24 Madron et al., 2000; Bianchelli et al., 2008; Company et al., 2008; Pusceddu et al., 2013). As 

25 DSWC, also open ocean convection can potentially enhance biological activity in bathypelagic 

26 waters (Martini et al., 2013; Tamburini et al., 2013), due to deep-sea sediments resuspension 

27 (Durrieu de Madron et al., 2017). However, no information is available to date on the response to 

28 such events of benthic prokaryotic assemblages and the viruses infecting them. 

29 In the Gulf of Lion, three major cascading events occurred in 1999, 2005 and 2006, with maximum 

30 bottom current velocities up to 1 m s−1 or even higher (Canals et al., 2006; Heussner et al., 2006; 

31 Palanques et al., 2012). During the DSWC event of 2005, one of the most intense events ever 

32 recorded in the study area, large amounts of fresh organic material originating from the continental 

33 shelf were transported down Lacaze-Duthiers Canyon and, mainly, Cap de Creus Canyon (CCC) to 

34 the deep margin and basin (Canals et al., 2006; Sanchez-Vidal et al., 2009). This DSWC event 
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1 caused a decrease in the abundance and diversity of benthic deep-sea meiofaunal assemblages, 

2 likely due to the massive disturbance caused by the cascading flows (Pusceddu et al., 2013). The 

3 study presented here aimed at testing the hypothesis that intense DSWC events, such the one in 

4 early 2005, can also have a strong influence on virus-prokaryote interactions with cascade effects 

5 on the functioning of the microbial food webs and biogeochemical processes in benthic deep-sea 

6 ecosystems. To do so, we investigated changes in prokaryotic abundance, biomass and C production 

7 along with viral abundance and production and virus-induced prokaryotic mortality inside CCC, 

8 NW Mediterranean Sea, over a period of five years, during and after the major 2005 DSWC event.

9

10 2. Materials and methods

11 2.1 Study area and sampling sites. The study area is located in the Gulf of Lion, which includes one 

12 of the most intricate networks of submarine canyons of the Mediterranean Sea (Canals et al., 2006, 

13 2013). Some canyons extend for > 100 km, cutting the entire continental slope and reaching depths 

14 in excess of 2000 m (Amblas et al., 2006; Canals et al., 2009). Among these, the Cap de Creus 

15 Canyon (CCC) incises the westernmost Gulf of Lion continental shelf and slope before opening into 

16 the larger Sète Canyon (Lastras et al., 2007). In late winter–early spring 2005, a particularly intense 

17 DSWC occurred with dense waters overflowing the shelf edge and flowing down the continental 

18 slope and CCC down to the deep margin and basin at depths larger than 2000m, causing a sudden 

19 drop in deep-sea temperature (from approximately 13°C down to 10°C at 750 m depth; Canals et 

20 al., 2006). In the CCC, such event was associated with an increase in bottom current speed (with 

21 peaks in excess of 1 m s−1), in water density and in sediment transport, resulting in an estimated 

22 overall organic C export of 0.6 million tons in less than two months (Canals et al., 2006). Sediment 

23 sampling was carried out along the axis of CCC and in the adjacent deep margin during five 

24 oceanographic cruises carried out during (April 2005) and after (October 2005, August 2006, April 

25 2008 and April 2009) the late-winter/early-spring 2005 DSWC event (Figure 1). Sediment samples 

26 were collected with a multicorer at 1000 m and 1800 m depth. Additional samples were obtained at 

27 depths larger than 2100 m in April 2005, October 2005, August 2006 and April 2009. At each 

28 investigated site, the top 1 cm of three independent sediment cores was subsampled and analyzed 

29 for phytopigment concentrations (as a proxy of the most fresh and labile organic matter settling to 

30 the seafloor), prokaryotic abundance, biomass and heterotrophic C production, as well as for viral 

31 abundance, viral production and virus-induced prokaryotic mortality. 

32 2.2 Phytopigment concentration. Chlorophyll-a and phaeopigments were analyzed fluorometrically 

33 according to standard protocols (Danovaro, 2010). Pigments were extracted from triplicate sediment 

34 samples using 90% (vol/vol) acetone (12 h in the dark at 4°C). After centrifugation, the supernatant 
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1 was used to determine chlorophyll-a concentrations and acidified with 0.1 N HCl in order to 

2 determine phaeopigment.concentrations. Total phytopigment concentrations were obtained from the 

3 sum of chlorophyll-a and phaeopigment concentrations (Danovaro, 2010).

4 2.3 Prokaryotic abundance and biomass. The total prokaryotic abundance was determined by 

5 epifluorescence microscopy according to standard procedures (Danovaro, 2010). Briefly, samples 

6 were sonicated three times with a Branson Sonifier 2200, 60W, for 1 minute, properly diluted with 

7 sterile and 0.2 µm pre-filtered seawater and then 3 ml of each sample were filtered onto 0.2 µm 

8 pore-size Al2O3 Anodisc filters (Whatman). Filters were then stained with SYBR Green I 

9 (Molecular Probes) by adding, on each filter, 20 µl of the stock solution (previously diluted 1:20 

10 with filtered [0.2-µm-pore-size] Milli-Q water), washed twice with 3 ml of sterilized Milli-Q water 

11 and mounted onto microscope slides. Filters were analyzed using epifluorescence microscopy 

12 (Zeiss Axioskop 2MOT, magnification × 1,000). For each filter, at least 20 microscope fields were 

13 observed and at least 400 cells were counted. Data were normalized to sediment dry weight after 

14 desiccation (48 hours at 60°C). For the determination of the prokaryotic biomass, the cell 

15 biovolume obtained from prokaryotic size following inter-calibration with scanning electron 

16 microscopy-based size determinations was converted into C content assuming 310 fg C µm-3 (Fry, 

17 1990) in line with previous studies (Danovaro, 2010 and references therein; Rastelli et al., 2016).

18 2.4 Prokaryotic heterotrophic C production. For the determination of prokaryotic heterotrophic C 

19 production, sediment sub-samples were incubated with 3H-leucine (specific activity, 68 Ci mmol-1; 

20 final concentration, 0.2 µM), previously diluted in virus-free seawater collected from the water-

21 sediment interface, for 1 h in the dark at in-situ temperature. Time-course experiments over 6 h and 

22 concentration-dependent incorporation experiments (from 0.05 μM to 5.0 μM leucine) were also 

23 carried out to define the linearity of the ³H-leucine incorporation and to estimate the leucine 

24 saturation level, respectively. After incubation, samples were supplemented with ethanol (80%), 

25 centrifuged, washed again two times with ethanol (80%), and the sediment was finally re-suspended 

26 in ethanol (80%) and filtered onto polycarbonate filters (0.2 µm pore size; vacuum <100 mm Hg). 

27 Subsequently, each filter was washed four times with 2 ml of 5% TCA, then transferred into a 

28 Pyrex tube containing 2 ml of NaOH (2M) and incubated for 2 h at 100°C. After centrifugation at 

29 800 ×g, 1 ml of supernatant fluid was transferred to vials containing an appropriate scintillation 

30 liquid. Sediment blanks were made by adding ethanol (80%) immediately before the ³H-leucine 

31 addition and processed as described above. The incorporated radioactivity in the sediment samples 

32 was measured with a liquid scintillation counter Packard Tri-Carb 2100 (Luna et al., 2013; Rastelli 

33 et al., 2015). The prokaryotic heterotrophic C production was calculated as follows: 
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1 Prokaryotic heterotrophic C production = LI × 131.2 × (%Leu)-1 × (C/protein) × ID

2 where LI is the leucine incorporation rate (mol g-1 h-1), 131.2 is the molecular weight of leucine, 

3 %Leu is the fraction of leucine in a protein (0.073), C/protein is the ratio of cellular C to protein 

4 (0.86), and ID is the isotope dilution, assumed to be 2 (Simon and Azam, 1989). The isotope 

5 dilution value we used has been largely applied to determine prokaryotic heterotrophic C 

6 production in deep-sea sediments collected worldwide (Danovaro et al., 2008), thus allowing a 

7 proper comparison. 

8 2.5 Viral abundance, production and virus-induced prokaryotic mortality. Viral abundance was 

9 determined after the detachment of viruses from the sediment using pyrophosphate (final 

10 concentration, 5 mM) and ultrasound treatment (Danovaro, 2010). Samples were diluted 100-500-

11 fold with sterile and virus-free water (filtered through 0.02-µm-pore-size filters), treated with 

12 DNases (to remove extracellular DNA) and filtered onto 0.02 µm pore size filters (Anodisc Al2O3, 

13 25 mm diameter). The filters were stained using SYBR Green I (10000× in anhydrous dimethyl 

14 sulfoxide, Molecular Probes-Invitrogen), incubated in the dark for 20 min and mounted on glass 

15 slides with a drop of 50% phosphate buffer (6.7 mmol L-1; pH 7.8) and 50% glycerol containing 

16 0.5% ascorbic acid. Viral counts were performed under epifluorescence microscopy, by examining 

17 at least 10 fields per slide and counting at least 400 viral particles per filter. Viral production was 

18 determined by time-course experiments of sediment samples previously diluted with virus-free 

19 seawater (0.02 µm pre-filtered), collected at the sediment-water interface of each benthic site 

20 (Dell’Anno et al., 2009; Rastelli et al., 2016). A standard dilution of sediment samples with virus-

21 free seawater was used (sediment to virus-free seawater 1:10 vol:vol). Replicate samples (n=3) for 

22 viral counts were collected immediately after dilution of the sediments and after 3, 6 and 12 h of 

23 incubation in the dark at in-situ temperature. Subsamples were then analyzed as reported for the 

24 determination of viral abundance. In all of the samples, the viral production was determined from 

25 linear regression analyses of the increase of viral abundances versus time. Prokaryotic burst size 

26 (BS, i.e, the number of viruses released by each cell lysed due to viral infection) was estimated from 

27 time-course experiments of viral production following Mei and Danovaro (2004), and using the 

28 equation: BS = VP / Pkilled where VP is the number of viruses produced g-1 h-1, determined as 

29 described above for the assessment of viral production rates by epifluorescence microscopy, and 

30 Pkilled is the number of prokaryotic cells killed g-1 h-1. Pkilled was estimated as follows:

31 Pkilled = (Pstart + Pprod) - (Pend)

32 where Pstart is the prokaryotic abundance at start of incubations as determined by epifluorescence 

33 microscopy (see methods above); Pprod is the number of prokaryotic cells produced in the interval of 

34 incubation calculated as prokaryotic C production (determined by the radiotracer incubation 
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1 experiments as described above) divided by prokaryotic biomass per cell (see methods above for 

2 details on biomass estimates); and Pend is the number of prokaryotes actually counted after the 

3 incubation interval by epifluorescence microscopy (Mei and Danovaro, 2004; Danovaro et al., 

4 2008). The amount of C released by viral lysis during the period from April 2005 to October 2005 

5 (i.e., over the 6 months following the major cascading event) was estimated as the C of the overall 

6 Pkilled over that period. For comparison with POC fluxes at the seafloor (Gogou et al., 2014), the 

7 amount of C released by viral lysis has been expressed per square meter by assuming a sediment 

8 density of 1.8 and 50% water content (Dell’Anno and Danovaro 2005).

9 The virus-induced prokaryotic mortality was calculated following Rastelli et al., 2016 as: 

10 (Pkilled / Pprod) × 100

11 which is dividing the number of cells killed by viruses g-1 h-1 by the total number of prokaryotes 

12 produced g-1 h-1, and multiplying per 100 to express the value as percentage.

13

14 2.6 Statistical analyses. To test the responses of prokaryotes and viruses to the DSWC event, we 

15 used both uni- and multivariate permutational non-parametric analyses of variance 

16 (PERMANOVA; Anderson, 2001; McArdle and Anderson, 2001). We determined the effects of the 

17 cascading on each variable separately. The multivariate design included two orthogonal factors: 

18 sampling time (5 fixed levels) and water depth (2 fixed levels: 1000 m and 1800m depth). Pairwise 

19 comparison tests were also carried out to discriminate the effects of DSWC at each depth. Since the 

20 information for the deep margin did not include data from April 2008, to avoid unbalanced designs 

21 a separate one-way test (with sampling time as the unique source of variation with 4 fixed levels, 

22 April 2005, October 2005, August 2006 and April 2009) was carried out to ascertain the effects of 

23 cascading at >2100 m depth in the deep margin. All statistical tests were carried out using the 

24 PRIMER6+ software.

25

26 3. Results and discussion

27 There is evidence that the amount and distribution of organic matter in continental margin 

28 sediments are highly variable. They depend not only on particle settling from overlying waters, but 

29 also on a wide array of processes, including down-canyon/slope advective transport; stirring, re-

30 suspension and re-sedimentation of particles; and episodic events such as gravity-driven sediment 

31 flows and DSWC (Canals et al., 2006; Heussner et al., 2006; de Stigter et al., 2007; Dell’Anno et 

32 al., 2013). In this study, we report significant spatial and temporal changes of photosynthetically-

33 produced organic matter in the uppermost layer of seafloor sediments from CCC and the adjacent 

34 deep margin (Figure 2). We found a significant increase of phytopigment concentrations in deep 
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1 basin the sediments and depletion at 1000 m depth associated with the 2005 DSWC event. Such a 

2 pattern reinforces previous findings obtained from the same area showing an enhanced export of 

3 fresh and labile organic materials originating from the seasonal spring phytoplankton bloom in 2005 

4 towards the deep margin and basin (Canals et al., 2006; Pusceddu et al., 2013). These findings 

5 suggest that submarine physiography and high-energy hydrodynamic processes exert an important 

6 control on the pelagic-benthic coupling in continental margin systems.   

7 In food-limited ecosystems, such as the deep sea, the amount of labile organic materials deposited 

8 on the seafloor profoundly influences the abundance, biomass and metabolism of benthic 

9 prokaryotes (Dell’Anno and Danovaro 2005; Jorgensen and Boetius 2007; Danovaro et al., 2014). 

10 Our results show that, during the 2005 DSWC event, benthic prokaryotic abundance, biomass and 

11 heterotrophic C production were significantly higher in surface sediments at >2100 m water depth 

12 compared with values at shallower water depths and such an effect was still evident 6 months after 

13 the end of the event (i.e. in October 2005; Figure 3A-C). An enhanced prokaryotic standing stock 

14 and metabolism were also observed in April 2005 compared to the other periods at 1800 m of water 

15 depth, despite relatively low food availability on the seafloor at that time.

16 The positive effect of DSWC on microbial assemblages was opposite to what had been previously 

17 reported in the same study sites for the abundance and diversity of meiofauna, which dropped 

18 significantly in April 2005 at all depths (Pusceddu et al., 2013). These results suggest that intense 

19 DSWC events, increasing food availability (bottom-up effect) and decreasing predatory pressure 

20 exerted by benthic metazoans (top-down effect), amplify the responses of the benthic microbial 

21 food webs, even on a relatively long time scale (i.e. months).

22 In benthic deep-sea ecosystems, viral infections exert a major control on prokaryotic dynamics 

23 (Danovaro et al., 2008; Danovaro et al., 2016a). In this study, viral abundances (Figure 4A) 

24 displayed the same spatial and temporal patterns than prokaryotic abundances, indicating, for the 

25 first time, a tight virus-host interaction in dynamic and physiographically complex benthic deep-sea 

26 ecosystems, such as the submarine canyon and adjacent deep continental margin investigated here. 

27 The values of viral abundances in the sediments of the deep margin during the major 2005 DSWC 

28 event were among the highest reported so far in deep seabed surface sediments worldwide 

29 (Danovaro et al., 2008; Danovaro et al., 2015; Danovaro et al., 2016a; Rastelli et al., 2016) and 

30 comparable to those found in highly productive coastal areas (Parikka et al., 2016). 

31 Viral abundances in the sediments depend on the balance between viral production and decay rates 

32 (Corinaldesi et al., 2010; Dell’Anno et al., 2015). Here, we provide evidence of a major increase of 

33 benthic viral production associated with the 2005 DSWC event both at 1800 m depth and in the 
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1 deep basin (Figure 4B). Such an increase indicates the occurrence of fast viral replication rates 

2 sustained by the enhanced metabolism of the benthic prokaryotic hosts (Figure 3C). We also found 

3 that during the DSWC event, virus-induced prokaryotic mortality was very high and the effects 

4 were evident also 6 months after the end of the event (i.e., in October 2005; Figure 4C). We 

5 estimated that prokaryotic mortality induced by viral lysis in the deep Gulf of Lion caused the 

6 release of 3.4-6.3 gC m-2 over only 6 months (from April 2005 to October 2005). This C amount 

7 released by prokaryotic mortality is up to three times higher than the yearly C-flux to the seafloor 

8 reported for this area in years without cascading (Gogou et al., 2014). This finding suggests that this 

9 process should be included in the C budget at regional scale. 

10 The high virus-induced prokaryotic mortality can have additional ecological consequences:  on one 

11 hand, the higher viral infections, by diverting a larger fraction of prokaryotic biomass into organic 

12 detritus, can represent an additional important trophic resource able to sustain the growth of 

13 uninfected microbes, thus accelerating C cycling (Danovaro et al., 2008, Danovaro et al., 2016a; 

14 Rastelli et al., 2016, Rastelli et al., 2017). On the other hand, it can significantly reduce the transfer 

15 of energy and material to the higher trophic levels. 

16 Overall, our findings indicate that DSWC events, conveying large amounts of trophic resources 

17 mainly along submarine canyons to the deep sea and reducing metazoan components, can 

18 significantly stimulate benthic microbial assemblages and viral infection processes, thus strongly 

19 influencing C and nutrient cycling in the deep seafloor. The Mediterranean Sea is a semi-enclosed, 

20 so-called “miniature ocean”, which is particularly sensitive to the effects of climate change 

21 (Lejeusne et al., 2010; Philippart et al., 2011). Here, as well as in other mid- and high-latitude 

22 regions of the world, the intensity and frequency of extreme weather events are expected to increase 

23 due to climate change (Somot et al., 2006; Coma et al., 2009; Thomsen et al., 2012). Therefore, an 

24 intensification of the frequency and intensity of DSWC events can be predicted along with a 

25 possible extension of deep-sea regions affected by this phenomenon (Canals et al., 2006; Pusceddu 

26 et al., 2013). The results of the present study provide additional insights into the analysis of the 

27 ecological effects of DSWC events on the functioning of benthic deep-sea ecosystems. Although 

28 our study was conducted on a single canyon and adjacent deep margin and, therefore, it does not 

29 allow inferring the response of all deep-sea ecosystems impacted by DSWC, the effects of the 

30 alteration of benthic microbial processes on C storage and cycling in deep-sea benthic ecosystems 

31 could be highly relevant and deserve further investigations elsewhere.
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1 Figure captions

2 Figure 1. Location of sampling sites in the Cap de Creus Canyon and the deep adjacent margin. 

3 Diamonds represent the stations investigated during different sampling periods. April 2005 is 

4 highlighted in red to indicate intense DSWC occurrence (i.e. in late winter-early spring 2005). 

5 Reported are also sampling times for each investigated site. Contours in meters. 

6 Figure 2. Spatial and temporal changes of phytopigment concentrations in surface sediments of the 

7 Cap de Creus Canyon and the deep adjacent margin. Reported are mean and standard deviations. 

8 Red columns indicate intense DSWC occurrence in 2005.

9 Figure 3. Spatial and temporal changes of prokaryotic abundance (A), biomass (B) and 

10 heterotrophic C production (C) in surface sediments of the Cap de Creus Canyon and in the deep 

11 adjacent margin. Reported are mean and standard deviations. Red columns indicate intense DSWC 

12 occurrence in 2005.

13 Figure 4. Spatial and temporal changes of viral abundance (A), production (B) and virus-induced 

14 prokaryotic mortality – VIPM (C) in surface sediments of the Cap de Creus Canyon and the deep 

15 adjacent margin. Reported are mean and standard deviations. Red columns indicate intense DSWC 

16 occurrence in 2005.
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