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The Hamming distance is a well-known measure that is designed to provide insights into the 

similarity between two strings of information. In this study, we use the Hamming distance, the 

optimal deviation model, and the generalized ordered weighted logarithmic averaging 

(GOWLA) operator to develop the ordered weighted logarithmic averaging distance (OWLAD) 

operator and the generalized ordered weighted logarithmic averaging distance (GOWLAD) 

operator. The main advantage of these operators is the possibility of modeling a wider range of 

complex representations of problems under the assumption of an ideal possibility. We study the 

main properties, alternative formulations and families of the proposed operators. We analyze 

multiple classical measures to characterize the weighting vector and propose alternatives to deal 

with the logarithmic properties of the operators. Furthermore, we present generalizations of the 

operators, which are obtained by studying their weighting vectors and the lambda parameter. 

Finally, an illustrative example regarding innovation project management measurement is 

proposed, in which a multi-expert analysis and several of the newly introduced operators are 

utilized.  
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1. INTRODUCTION 

 

Group decision-making (GDM) techniques have increased in relevance in the literature. 

This is mainly due to the possibility of generating rankings of diverse alternatives for specific 

situations while considering multiple scenarios. GDM techniques have been widely combined 

with the theory of aggregation, thereby producing a vast pool of contributions in diverse fields 

of knowledge such as artificial intelligence, fuzzy systems, imaging processing and decision 

sciences. This last field is of special interest in our study, as it provides a basis for combining 

data and obtaining solutions that are constructed based on information that is collected directly 

from decision makers, experts or stakeholders. There are many aggregation operators and 

aggregation functions1–4 that have proven useful in diverse areas, e.g., statistics, economics, 

education, biology, computer science and engineering1,2. A classic example of an operator that 

is designed for the aggregation of information in intelligent systems is the ordered weighted 

average (OWA), which is presented in Yager5. The OWA allows for a descending and 

ascending ordered aggregation mechanism, thereby yielding a result that is between the 

minimum and the maximum of the values to be combined. It also provides a family of 

parameterized operators, which have been adopted in several areas such as expert systems, 

database systems, operational research and fuzzy systems6,7. 

Recently, the use of distance measurement techniques in the field of group GDM has 

gained special relevance. The idea of providing results based on the comparison of information 

that is retrieved from domain experts and an ideal collection of preferences is highly appealing8. 

The current literature has extensively studied several distance measures, such as the Hamming 

distance, the Euclidean distance and the Hausdorff distance9–11. We focus on the Hamming 

distance12, which considers the importance of each deviation value. This distance has become 

very popular and is applied in the field of aggregation operators, e.g., in the ordered weighted 
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distance (OWD) measures13, the ordered weighted averaging distance (OWAD) operators14, the 

linguistic ordered weighted averaging distance (LOWAD) operators15, and the induced ordered 

weighted averaging distance (IOWAD) operators16. These studies have motivated research on 

generating additional applications, such as the intuitionistic fuzzy ordered weighted distance 

(IFOWD) operator17, the fuzzy ordered distance measures that are presented in18, a continuous 

ordered weighted distance (COWD) operator for investment selection problems19, a 

probabilistic ordered weighted averaging distance operator in political management20, the 

linguistic induced ordered weighted averaging distance operators for the selection of 

investments21, distance measures with heavy aggregation operators (HOWAD) for strategic 

management22, a linguistic continuous ordered weighted distance (LCOWD) measure for a 

GDM in an investment selection problem23 and, more recently, the fuzzy linguistic induced 

ordered weighted averaging Minkowski distance (FLIOWAMD), which generalizes the 

Euclidean and Hamming distances for investment strategy decision making24. 

Motivated by the recent work of Zhou and Chen25, which proposes an operator that is 

based on an optimal deviation model and is called the generalized ordered weighted logarithmic 

aggregation (GOWLA) operator, this study introduces the ordered weighted logarithmic 

averaging distance (OWLAD) operator and the generalized ordered weighted logarithmic 

averaging distance (GOWLAD) operator. These operators utilize the Hamming distance 

measure to provide a set of parameterized families between the maximum and the minimum 

values, including the step-OWLAD operator, the NLHD operator, the WLHD operator, the 

olympic-OWLAD, the window-OWLAD operator, the median-OWLAD operator, the 

centered-OWLAD, the WLGAD operator, the OWLHAD operator, the OWLAD operator, the 

OWLQAD operator and the OWLCAD operator. These families enable the assessment of 

complex GDM problems in which a set of optimal preferences must be satisfied while 

considering diverse alternatives, scenarios and preferences. An increasing number of studies 
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are being performed on logarithmic aggregation operators, such as the generalized ordered 

weighted logarithmic proportional averaging (GOWLPA) operator26, the generalized ordered 

weighted exponential proportional aggregation (GOWEPA) operator27, and the generalized 

ordered weighted logarithmic harmonic averaging (GOWLHA) operator28. 

The remainder of the paper is organized as follows. In section 2, we present the 

preliminaries of this study. In section 3, we introduce the OWLAD operators, study their main 

properties and alternative formulations, propose measures to characterize the weighting vector 

and introduce families of the operator. Similarly, section 4 presents the study of the GOWLAD 

operators. Section 5 proposes a decision-making problem in an innovation project management 

application, which is further assessed with a numerical example in section 6. Finally, section 7 

presents our conclusions.  

 

2. PRELIMINARIES 

 

 The ordered weighted averaging (OWA) operator5 describes a parameterized family of 

aggregation operators, which include the maximum, the minimum and the average criteria. 

Applications of this operator have been widely studied in the literature6.  

The Hamming distance12 has become a standard technique to measure the difference 

between two parameters, elements or sets. This metric has been applied in several domains of 

knowledge; some of the most well-recognized are fuzzy sets, artificial intelligence, operations 

research and engineering13.  

Motivated by the application of aggregation operators to calculate the Hamming 

distance, Merigó and Gil-Lafuente14 and Xu and Chen13 present the ordered weighted averaging 

distance (OWAD) operators. The OWAD operators provide a parameterized family of distance 

aggregation operators between the maximum and the minimum values.  
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 The generalized ordered weighted logarithmic aggregation (GOWLA) operator was 

developed by Zhou and Chen25. This operator has as its foundation the next optimal model:  

 𝑚𝑚𝑚𝑚𝑚𝑚𝐽𝐽1 = �𝑤𝑤𝑗𝑗 �(𝑙𝑙𝑚𝑚𝑙𝑙)𝜆𝜆 − �𝑙𝑙𝑚𝑚𝑎𝑎𝑗𝑗�
𝜆𝜆
�
2

,
𝑛𝑛

𝑗𝑗=1

 (1) 

where 𝑙𝑙 is an aggregation operator of dimension 𝑚𝑚 and 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛)𝑇𝑇  an associated 

weighting vector such that 𝑤𝑤𝑗𝑗 ∈ [0,1] for all 𝑗𝑗 and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 = 1. Observe that 𝜆𝜆 ∈ (−∞,∞). By 

calculating the partial derivative respect to 𝑙𝑙 and 𝜕𝜕𝑦𝑦1
𝜕𝜕𝑦𝑦

= 0, we obtain the generalized weighted 

logarithmic averaging (GWLA) operator: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
��𝑤𝑤𝑗𝑗�𝑙𝑙𝑚𝑚𝑎𝑎𝑗𝑗�

𝜆𝜆
𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
. (2) 

By reordering the arguments 𝑎𝑎𝑖𝑖 , we obtain the generalized ordered weighted logarithmic 

averaging (GOWLA) operator, as follows: 

 

DEFINITION 1. A GOWLA operator of dimension 𝑚𝑚 is a mapping 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:Ω𝑛𝑛 → Ω with an 

associated weighting vector 𝑤𝑤 of dimension 𝑚𝑚, such that 𝑤𝑤𝑗𝑗 ∈ [0,1] for all 𝑗𝑗 and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 = 1, 

which includes a parameter 𝜆𝜆  in the range of (−∞,∞) − {0}  and satisfies the following 

formula: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
��𝑤𝑤𝑗𝑗�𝑙𝑙𝑚𝑚𝑏𝑏𝑗𝑗�

𝜆𝜆
𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
, (3) 

where 𝑏𝑏𝑗𝑗  is the 𝑗𝑗 th largest of the arguments 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛 . From 𝑙𝑙𝑚𝑚𝑎𝑎𝑗𝑗 ≥ 0 , it follows that 

𝑒𝑒𝑒𝑒𝑒𝑒�𝑙𝑙𝑚𝑚𝑎𝑎𝑗𝑗� ≥ 𝑒𝑒𝑒𝑒𝑒𝑒(0). Thus, 𝑎𝑎𝑗𝑗 ≥ 1. In the present paper, we follow the original notation 25: 

Ω = {𝑒𝑒|𝑒𝑒 ≥ 1, 𝑒𝑒 ∈ 𝑅𝑅}.  
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 An interesting family of the GWLA operator results when parameter 𝜆𝜆 = 1. In this case, 

we obtain an extension, which is called the weighted logarithmic aggregation (WLA) operator. 

We define the WLA operator as follows: 

 𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑤𝑤𝑖𝑖(𝑙𝑙𝑚𝑚𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑗𝑗=1

. (4) 

 

 

3. ORDERED WEIGHTED LOGARITHMIC AVERAGING DISTANCE 

OPERATORS 

 

3.1 Weighted logarithmic averaging distance operator 

 

The WLAD operator is a distance measure that is based on the optimal deviation model, 

which was proposed by Zhou and Chen25. It uses the Hamming distance to obtain a result that 

is between the minimum and maximum values that are considered in the problem.  

 

DEFINITION 2. A WLAD operator of dimension 𝑚𝑚 is a mapping WLAD: Ω𝑛𝑛 ×  Ω𝑛𝑛 → Ω that 

is defined by an associated weighting vector 𝐺𝐺 such that the sum of the weights is equal to 1 

and 𝑤𝑤𝑗𝑗 ∈ [0,1], according to the following formula: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2, 𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗(𝑙𝑙𝑚𝑚|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|)
𝑛𝑛

𝑗𝑗=1

�, (5) 

where the argument |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| is a variable that is represented in the form of an individual 

distance.  

In this paper, we follow the original definition25 of Ω =  {𝑒𝑒|𝑒𝑒 ≥ 1, 𝑒𝑒 ∈ 𝑅𝑅} . If the 

individual distance |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| = 0, it is not possible to carry out the aggregation process because 



 7 

in logarithmic aggregation, we cannot use values that are less than 1. Therefore, we do not 

consider individual distances that are less than 1 in the aggregation, i.e., they are considered 

empty. 

 

EXAMPLE 1. Assume the following collection of arguments: 𝑋𝑋 = (9, 24, 11, 33) , 𝑌𝑌 =

(12, 15, 28, 23), and 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2). The aggregation has the following result: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑋𝑋,𝑌𝑌) = 𝑒𝑒𝑒𝑒𝑒𝑒{0.4 × (𝑙𝑙𝑚𝑚|9 − 12|) + 0.1 × (𝑙𝑙𝑚𝑚|24 − 15|) + 0.3 × (𝑙𝑙𝑚𝑚|11 − 28|) + 0.2

× (𝑙𝑙𝑚𝑚|33 − 23|)} = 7.1682. 

 

An alternative formulation to this approach is: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗|𝑙𝑙𝑚𝑚(𝑒𝑒𝑖𝑖) − 𝑙𝑙𝑚𝑚(𝑙𝑙𝑖𝑖)|
𝑛𝑛

𝑗𝑗=1

�. (6) 

 

3.2 Ordered weighted logarithmic averaging distance operator 

 

 The OWLAD operator is a generalization of the WLAD operator. The most distinctive 

property is the ordering mechanism of the considered arguments. This order enables the 

introduction of complex decision-making processes. Additionally, it generates the possibility 

of having alternative formulations that depend not only on the ascending or descending 

direction of the ordering mechanism but also on the system that is designed to solve the 

logarithmic distances. The main properties of the OWLAD operator are commutativity, 

idempotency, boundedness, monotonicity and non-negativity. 
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DEFINITION 3. An ordered weighted logarithmic averaging distance (OWLAD) operator of 

dimension 𝑚𝑚 is a mapping OWLAD: Ω𝑛𝑛  ×  Ω𝑛𝑛 → Ω that has an associated weighting vector 𝐺𝐺, 

with ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 = 1 and 𝑤𝑤𝑗𝑗 ∈ [0,1], such that: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚�𝑊𝑊𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�, (7) 

where 𝑊𝑊𝑗𝑗  represents the 𝑗𝑗th largest of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| over all i and |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| is the argument variable, 

which is represented in the form of individual distances.  

 

EXAMPLE 2. Assume the same collection of arguments as was defined in Example 1: 𝑋𝑋 =

(9, 24, 11, 33), 𝑌𝑌 = (12, 15, 28, 23), and 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2). Then, the aggregation will 

yield the following result: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑋𝑋,𝑌𝑌) = 𝑒𝑒𝑒𝑒𝑒𝑒{0.4 × (𝑙𝑙𝑚𝑚|11 − 28|) + 0.1 × (𝑙𝑙𝑚𝑚|33 − 23|) + 0.3 × (𝑙𝑙𝑚𝑚|24 − 15|) +

0.2 × (𝑙𝑙𝑚𝑚|9 − 12|)} = 9.4162.  

 

 From the ordering mechanism perspective, which differentiates this operator from the 

WLAD operator, two formulations can be described: the descending ordered weighted 

logarithmic averaging distance (DOWLAD) operator and the ascending ordered weighted 

logarithmic averaging distance (AOWLAD) operator. The relation between these operators is 

𝑤𝑤𝑗𝑗 = 𝑤𝑤∗
𝑛𝑛+1−𝑗𝑗, where 𝑤𝑤𝑗𝑗is the 𝑗𝑗th weight of the DOWLAD operator and 𝑤𝑤∗

𝑛𝑛+1−𝑗𝑗 is the 𝑗𝑗th 

weight of the AOWLAD operator. 

 In the presence of non-normalization in the arguments, i.e., 𝐺𝐺 = ∑ 𝑤𝑤𝑗𝑗 ≠ 1𝑛𝑛
𝑗𝑗=1  (see 1), 

the OWLAD operator can be expressed as: 
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 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2, 𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 �
1
𝐺𝐺
�𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚�𝑊𝑊𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�, (8) 

where 𝐺𝐺 = ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗 . 

 The ordered weighted logarithmic aggregation operator has the following main 

properties: commutativity, idempotency, boundedness, monotonicity and non-negativity. The 

proofs of these properties are trivial. Therefore, they are omitted. These properties can be 

expressed by the following theorems: 

THEOREM 1. Commutativity, by the ordered weighted aggregation. Let the function 𝑓𝑓 be the 

OWLAD operator. Then, 

 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑓𝑓(〈𝑐𝑐1,𝑑𝑑1〉, … , 〈𝑐𝑐𝑛𝑛,𝑑𝑑𝑛𝑛〉), (9) 

where (〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉)  represents any specified permutation of the arguments 

(〈𝑐𝑐1,𝑑𝑑1〉, … , 〈𝑐𝑐𝑛𝑛,𝑑𝑑𝑛𝑛〉). 

THEOREM 2. Commutativity, by the distance measure. Assume 𝑓𝑓 is the OWLAD operator. 

Then, 

 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉). (10) 

THEOREM 3. Monotonicity. Let 𝑓𝑓 be the OWLAD operator. If |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| ≥ |𝑐𝑐𝑖𝑖 − 𝑑𝑑𝑖𝑖| for all 𝑚𝑚, 

then 

 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛〉) ≥ 𝑓𝑓(〈𝑐𝑐1,𝑑𝑑1〉, … , 〈𝑐𝑐𝑛𝑛,𝑑𝑑𝑛𝑛〉). (11) 

THEOREM 4. Boundedness. Assume the function 𝑓𝑓 is the OWLAD operator. Then, 

 𝑚𝑚𝑚𝑚𝑚𝑚{|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|} ≤ 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) ≤ 𝑚𝑚𝑎𝑎𝑒𝑒{|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|}. (1) 

THEOREM 5. Idempotency. If the function 𝑓𝑓 is the OWLAD operator and |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| = 𝑎𝑎𝑖𝑖 for 

all 𝑚𝑚, then 

 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑎𝑎. (2) 

THEOREM 6. Non-negativity. Let the function 𝑓𝑓 to be the OWLAD operator. Then, 
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 𝑓𝑓(〈𝑒𝑒1,𝑙𝑙1〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) ≥ 0. (3) 

 

3.3 Alternative formulations of the OWLAD operators 

 

 Depending on the ordering of the arguments in the aggregation process, four alternative 

formulations can be generated for the OWLAD operator: 

 

1) The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼  operator can be obtained by solving |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|, calculating the natural 

logarithm of the difference, and ordering the arguments in a descending direction, according to 

the following formula: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚�𝑊𝑊𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�, (4) 

where 𝑊𝑊𝑗𝑗  represents the 𝑗𝑗th largest of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| over all i and |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| is the argument variable, 

which is represented in the form of individual distances. Note that this alternative formulation 

is equivalent to Eq. (10). 

 

2) The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 operator is generated by finding the natural logarithm of each argument, 

i.e., 𝑙𝑙𝑚𝑚(𝑒𝑒𝑖𝑖) and 𝑙𝑙𝑚𝑚(𝑙𝑙𝑖𝑖); finding the absolute difference of the obtained results; and ordering the 

arguments in a descending direction, according to the following formula: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗�𝑆𝑆𝑗𝑗 − 𝐵𝐵𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�, (5) 

where 𝑆𝑆𝑗𝑗 represents the 𝑗𝑗th largest of 𝑙𝑙𝑚𝑚(𝑒𝑒𝑖𝑖) over all i and 𝐵𝐵𝑗𝑗 represents the 𝑗𝑗th largest of 𝑙𝑙𝑚𝑚(𝑙𝑙𝑖𝑖) 

over all i. Both arguments are ordered in a descending way.  
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3) The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼  operator is obtained when we order arguments 𝑒𝑒𝑖𝑖  and 𝑙𝑙𝑖𝑖  in a 

descending way, calculate the absolute difference of the ordered arguments, and calculate the 

natural logarithm of the results. This sequence of steps can be formulated as:  

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚��𝐸𝐸𝑗𝑗 − 𝑀𝑀𝑗𝑗��
𝑛𝑛

𝑗𝑗=1

�, (17) 

where 𝐸𝐸𝑗𝑗  represents the 𝑗𝑗 th largest of 𝑒𝑒𝑖𝑖  over all i and 𝑀𝑀𝑗𝑗  represents the 𝑗𝑗 th largest of 

𝑙𝑙𝑖𝑖 over all 𝑚𝑚. Both arguments are ordered in a descending way.  

 

4) The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 operator is obtained when we order arguments 𝑒𝑒𝑖𝑖 and 𝑙𝑙𝑖𝑖 in a descending 

way, calculate the natural logarithm of the ordered arguments, and find the distance of the 

results. This mechanism can be formulated as:  

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉)

= 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑤𝑤𝑗𝑗��𝑙𝑙𝑚𝑚�𝐸𝐸𝑗𝑗�� − �𝑙𝑙𝑚𝑚�𝑀𝑀𝑗𝑗���
𝑛𝑛

𝑗𝑗=1

�, 
(18) 

where 𝐸𝐸𝑗𝑗 represents the 𝑗𝑗th largest of 𝑒𝑒𝑖𝑖 over all i and 𝑀𝑀𝑗𝑗 represents the 𝑗𝑗th largest of 𝑙𝑙𝑖𝑖 over 

all i. Both arguments are ordered in a descending way.  

 

EXAMPLE 3. Following the same arguments as in Example 1, the results for each alternative 

formulation of the OWLAD operator are described in Table I. 

_______________________________ 

Insert Table I about here 

_______________________________ 

 

 

3.4 Characterization of OWLAD operators 
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 Multiple approaches have been proposed in the literature to measure and thus 

characterize the weights of aggregation functions. The classical methods include, e.g., the 

degree of orness5, the dispersion measure5,29, the balance and the divergence. In the case of the 

OWLAD operator, additional measures must be developed, as the logarithmic properties of the 

aggregation limit the consideration of numbers between 0 and 1. Motivated by this, we propose 

a general characterization of the weighting vector and a transformation of the OWA measures 

into the R-scale.  

 

3.4.1 General characterization of the aggregation 

 

 Since logarithms do not work in the scale [0,1], we must find additional measures to 

characterize the aggregation. A general approach to characterize the descending aggregation 

(CDA) is formulated as follows: 

 𝐶𝐶𝑊𝑊𝐺𝐺 =
𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑛𝑛
𝑏𝑏1 − 𝑏𝑏𝑛𝑛

, (19) 

where 𝑏𝑏𝑗𝑗  is the result of the OWLAD operator and 𝑏𝑏1and 𝑏𝑏𝑛𝑛  are the largest and smallest 

arguments of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| , respectively. This approach requires the aggregation results to be 

ordered in a descending way. Furthermore, the dual version of this formulation can be 

represented as: 

 

𝐶𝐶𝑊𝑊𝐺𝐺 + 𝐶𝐶𝑊𝑊𝐺𝐺∗ = 1. 

Then,  

𝐶𝐶𝑊𝑊𝐺𝐺∗ = 1 −
𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑛𝑛
𝑏𝑏1 − 𝑏𝑏𝑛𝑛

. 

 

 

(6) 

If the aggregation results are ordered in an ascending way, the formula for the 

characterization of the ascending aggregation (CAA) needs to be changed to the following: 
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 𝐶𝐶𝐺𝐺𝐺𝐺 =
𝑏𝑏𝑗𝑗 − 𝑏𝑏1
𝑏𝑏𝑛𝑛 − 𝑏𝑏1

, (7) 

where 𝑏𝑏𝑗𝑗  is the result of the OWLAD operator and 𝑏𝑏1and 𝑏𝑏𝑛𝑛  are the largest and smallest 

arguments of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|, respectively. As presented for the descending formulation, the dual 

version of this representation can be obtained as:  

 𝐶𝐶𝐺𝐺𝐺𝐺∗ = 1 −
𝑏𝑏𝑗𝑗 − 𝑏𝑏1
𝑏𝑏𝑛𝑛 − 𝑏𝑏1

. (8) 

EXAMPLE 4. We utilize the values that were defined in Example 2: 𝑋𝑋 = (9, 24, 11, 33), 𝑌𝑌 =

(12, 15, 28, 23) , and 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2) . The general characterization results of the 

aggregation and their dual versions are presented in Table II. 

_______________________________ 

Insert Table II about here 

_______________________________ 

 

3.4.2 Transformation of the OWA measures into the R-scale 

 

 An interesting mechanism for characterizing the weighting vector, including the 

logarithmic properties of the weighted logarithmic aggregation operators, is the transformation 

of the OWA measures into the R-scale. The proposed procedure can be realized by the 

following steps. 

 Let Z be the transformation of the aggregation arguments according to the following 

expression: 

 𝑍𝑍 = 𝑚𝑚𝑚𝑚𝑚𝑚 + {𝑚𝑚𝑎𝑎𝑒𝑒 −𝑚𝑚𝑚𝑚𝑚𝑚} �
𝑚𝑚 − 𝑗𝑗
𝑚𝑚 − 1

�. (23) 
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Observe that the use of 𝑍𝑍  enables the transformation of the [0,1]  scale into a 

logarithmically consistent one. Motivated by the result of this procedure, we propose using the 

𝑍𝑍 transformation to study the degree of orness of the OWLA operator. 

 

STEP 1. Calculate 𝑅𝑅 − 𝛼𝛼(𝑤𝑤) , which includes the 𝑍𝑍  transformation, using the following 

equation: 

 𝑅𝑅 − 𝛼𝛼(𝑤𝑤) = 𝑒𝑒 ��𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚�𝑍𝑍𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

�, (24) 

where 𝑍𝑍 is the transformation of the arguments in the aggregation. The complete formulation 

can be expressed as: 

 𝑅𝑅 − 𝛼𝛼(𝑤𝑤) = 𝑒𝑒 ��𝑤𝑤𝑗𝑗𝑙𝑙𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖) + {𝑚𝑚𝑎𝑎𝑒𝑒(𝑎𝑎𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)} �
𝑚𝑚 − 𝑗𝑗
𝑚𝑚 − 1

��
𝑛𝑛

𝑗𝑗=1

�, (25) 

where 𝑎𝑎𝑖𝑖 is the argument |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| of the aggregation. 

 

STEP 2. The final step is to convert the result 𝑅𝑅 − 𝛼𝛼(𝑤𝑤) using the following expression: 

 𝑒𝑒 =
𝑙𝑙 −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)

�𝑚𝑚𝑎𝑎𝑒𝑒(𝑎𝑎𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)�
, (26) 

where 𝑙𝑙 is the result of 𝑅𝑅 − 𝛼𝛼(𝑤𝑤) and 𝑒𝑒 ∈ [0,1]. The minimum is attained when 𝑒𝑒 = 0, and the 

maximum, when 𝑒𝑒 = 1. We can obtain the dual of this operation by applying the following 

formulation. 

 Let 𝑒𝑒∗ be the dual of 𝑒𝑒. Then, 
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𝑒𝑒 + 𝑒𝑒∗ = 1. 

It follows that  

𝑒𝑒∗ = 1 −
𝑙𝑙 −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)

�𝑚𝑚𝑎𝑎𝑒𝑒(𝑎𝑎𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)�
=

𝑚𝑚𝑎𝑎𝑒𝑒(𝑎𝑎𝑖𝑖) − 𝑙𝑙
𝑚𝑚𝑎𝑎𝑒𝑒(𝑎𝑎𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖)

. 

 

 

 

 

(27) 

 

EXAMPLE 5. We utilize the arguments that are defined in Example 2: 𝑋𝑋 = (9, 24, 11, 33), 

𝑌𝑌 = (12, 15, 28, 23) , and 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2) . Then, the degree of orness in the 

logarithmic scale is as follows: 

 

𝑅𝑅 − 𝛼𝛼(𝑤𝑤) = 𝑒𝑒{0.4[𝑙𝑙𝑚𝑚(3 + 14(1))] + 0.1[𝑙𝑙𝑚𝑚(3 + 14(0.6667))] + 0.3[𝑙𝑙𝑚𝑚(3 + 14(0.3333))]

+ 0.2[𝑙𝑙𝑚𝑚(3 + 14(0))]} = 9.1642. 

 

Therefore, 

𝑒𝑒 =
9.1642 − 3

(17 − 3) = 0.4403, 

and  

𝑒𝑒∗ =
17 − 9.1642

17 − 3
= 0.5597. 

 

 It is interesting to study the families of the OWLAD operators, as they represent 

particular cases that can be selected in accordance with specific problems that we are assessing. 

For the case of the OWLAD operator, several parameterized families can be described, 

depending on the conformation of the weighting vector30. These particular families include the 

maximum and minimum distances, the step-OWLAD operator, the normalized logarithmic 

Hamming distance (NLHD), the weighted logarithmic Hamming distance (WLHD), the 



 16 

olympic-OWLAD, the window-OWLAD operator, the median-OWLAD operator, and the 

centered-OWLAD31 operator. Note that all the alternative formulations that were described 

previously are also applicable to the families that are presented here32–34. 

 

 

4. GENERALIZED ORDERED WEIGHTED LOGARITHMIC DISTANCE 

OPERATORS 

 

4.1 Generalized weighted logarithmic averaging distance operator 

 

The GWLAD operator is a generalization of the OWLAD operator. Therefore, it shares 

the same properties and characteristics. The GWLAD operator includes a 𝜆𝜆 parameter, which 

allows for a wider representation of complex problems. Many interesting families of the 

GWLAD can be developed, depending on the 𝜆𝜆 value.  

 

DEFINITION 4. A GWLAD operator of dimension 𝑚𝑚 is a mapping GWLAD:  Ω𝑛𝑛  ×  Ω𝑛𝑛 → Ω 

with an associated weighting vector 𝐺𝐺 of dimension 𝑚𝑚 such that the sum of all 𝑤𝑤𝑗𝑗 is equal to 1, 

and 𝑤𝑤𝑗𝑗 ∈ [0,1]. It is expressed by the following formula: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉)

= 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
��𝑤𝑤𝑗𝑗(𝑙𝑙𝑚𝑚|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|)𝜆𝜆

𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
, 

(28) 

where |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| is an argument variable, which is represented in the form of an individual 

distance, and 𝜆𝜆 is a parameter such that 𝜆𝜆 ∈ (−∞,∞) − {0}.  
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If 𝑤𝑤𝑗𝑗 = 1
𝑛𝑛
 for all 𝑗𝑗, we obtain the generalized logarithmic averaging distance operator 

(GLAD), which is formulated as follows: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
�

1
𝑚𝑚
�(𝑙𝑙𝑚𝑚|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|)𝜆𝜆
𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
. (29) 

EXAMPLE 6. We utilize the arguments that were defined in Example 2, namely, 𝑋𝑋 =

(9, 24, 11, 33), 𝑌𝑌 = (12, 15, 28, 23), and 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2), as well as parameter 𝜆𝜆 = 2. 

The aggregation yields: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑋𝑋,𝑌𝑌) = 𝑒𝑒𝑒𝑒𝑒𝑒 �[0.4 × (𝑙𝑙𝑚𝑚|9 − 12|)2 + 0.1 × (𝑙𝑙𝑚𝑚|24 − 15|)2 + 0.3 × (𝑙𝑙𝑚𝑚|11 − 28|)2

+ 0.2 × (𝑙𝑙𝑚𝑚|33 − 23|)2]1 2� � = 8.2130. 

 

Additionally, parameter 𝜆𝜆 in the GWLAD operator enables the study of particular cases. Table 

III presents special cases that are interesting for analysis.  

_______________________________ 

Insert Table III about here 

_______________________________ 

EXAMPLE 7. We utilize the arguments that were defined in Example 2. The results for each 

family of the GWLAD operator are shown in Table IV. 

_______________________________ 

Insert Table IIV about here 

_______________________________ 
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4.2 Generalized ordered weighted logarithmic averaging distance operator 

 

The GOWLAD operator adds an ordering mechanism to the GWLAD operator. 

Therefore, as a generalization of the GWLAD operator, it shares the same properties. The 

ordering mechanism allows for the modeling of a wider range of more complex problems. 

Additionally, it introduces the possibility of additional alternative formulations and families, 

depending on the value of 𝜆𝜆.  

 

DEFINITION 5. A GOWLAD operator of dimension 𝑚𝑚 is a mapping GOWLAD: Ω𝑛𝑛 ×  Ω𝑛𝑛 →

Ω that is defined by an associated weighting vector 𝐺𝐺 of dimension 𝑚𝑚 such that the sum of the 

weights is equal to 1 and 𝑤𝑤𝑗𝑗 ∈ [0,1], according to the following formula: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(〈𝑒𝑒1,𝑙𝑙1〉, 〈𝑒𝑒2,𝑙𝑙2〉, … , 〈𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛〉) = 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
��𝑤𝑤𝑗𝑗�𝑙𝑙𝑚𝑚𝑏𝑏𝑗𝑗�

𝜆𝜆
𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
, (30) 

where 𝑏𝑏𝑗𝑗  is the |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|  value of GOWLAD 〈𝑒𝑒𝑖𝑖,𝑙𝑙𝑖𝑖〉 , in decreasing order of the value of 

|𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|. The argument |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| is a variable that is represented in the form of an individual 

distance, and 𝜆𝜆 is a parameter that satisfies 𝜆𝜆 ∈ (−∞,∞) − {0}.  

 

EXAMPLE 8. We utilize the arguments that were defined in Example 2: 𝑋𝑋 = (9, 24, 11, 33) 

and 𝑌𝑌 = (12, 15, 28, 23) . Assuming 𝐺𝐺 = (0.4, 0.1, 0.3, 0.2)  and 𝜆𝜆 = 2 , the aggregation 

yields: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑋𝑋,𝑌𝑌) = 𝑒𝑒𝑒𝑒𝑒𝑒 ���0.4 × (𝑙𝑙𝑚𝑚|11 − 28|)�
2

+ �0.1 × (𝑙𝑙𝑚𝑚|33 − 23|)�
2

+ �0.3 ×

(𝑙𝑙𝑚𝑚|24 − 15|)�
2

+ �0.2 × (𝑙𝑙𝑚𝑚|9 − 12|)�
2
�
1
2� = 10.2820.  
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The descending order of arguments 𝑏𝑏𝑗𝑗 depends on the result of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|. 

In addition, the GOWLAD operator is a generalization of the OWLAD operator. Thus, 

it also has the properties of commutativity, monotonicity, boundedness and idempotency. 

 Similarly to the OWLAD operator, the GOWLAD operator exhibits four alternative 

formulations that depend on the ordering of the arguments. Note that obtaining these 

formulations is straightforward based on section 3.4. 

EXAMPLE 9. Following the data that were presented in Examples 7 and 8, the results for each 

alternative formulation of the GOWLAD operator are described in Table V. 

_______________________________ 

Insert Table V about here 

_______________________________ 

Several particular families of the GOWLAD operator can be delimitated by the values 

of the parameter 𝜆𝜆. Table VI presents some representative cases of the GOWLAD operator 

families, including the ordered weighted logarithmic geometric averaging distance 

(OWLGAD) operator, the ordered weighted logarithmic harmonic averaging distance 

(OWLHAD) operator, the ordered weighted logarithmic aggregation distance (OWLAD) 

operator, the ordered weighted logarithmic quadratic aggregation distance (OWLQAD) 

operator, the ordered weighted logarithmic cubic aggregation distance (OWLCAD) operator, 

the maximum and the minimum. 

_______________________________ 

Insert Table VI about here 

_______________________________ 
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5. GROUP DECISION-MAKING IN INNOVATION PROJECT MANAGEMENT 

 

The GOWLAD operator, which is based on the Hamming distance mechanism, is 

applicable to a wide range of problems in decision-making procedures. This operator can also 

be applied to statistical analysis, operations, engineering and economic studies1,2,4,35. 

This paper presents a decision-making36-37 application in the field of innovation project 

management38. The main motivation for using the GOWLAD operator in this area is the 

possibility of retrieving the opinions of several experts to select the most efficient solution for 

a company when managing new projects. Commonly, project management performance has 

been measured in terms of cost, duration and return over investment38,39. However, the 

GOWLAD operator opens the option to evaluate uncertain and subjective factors such as the 

extent of internal communication of the implicated areas when developing a new product40 and 

the collaborations with suppliers41 and customers42, as they have been identified as sources that 

contribute to the innovation process. The general process to assess a multi-person decision-

making situation using the GOWLAD operator can be described as follows: 

 

STEP 1. Let 𝐺𝐺 = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑚𝑚} be a set of limited options, and 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚}, a set of 

finite options or alternatives. Both sets form a matrix (𝑒𝑒ℎ𝑖𝑖)𝑚𝑚×𝑛𝑛. Let 𝐸𝐸 = �𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑞𝑞� be a 

finite set of decision makers. Assume that the decision makers have diverse levels of 

importance, where 𝑉𝑉 = �𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑝𝑝� represents the weighting vector of importance, which 

satisfies ∑ 𝑣𝑣𝑘𝑘 = 1𝑝𝑝
𝑘𝑘=1  and 𝑒𝑒𝑘𝑘 ∈ [0,1]. At that point, each decision maker must deliver a pay-off 

matrix (𝑒𝑒ℎ𝑖𝑖)𝑘𝑘𝑚𝑚×𝑛𝑛.  

 

STEP 2. Ideal characteristics must be set for the ideal project to be developed; see Table VII. 

In this case, 𝑃𝑃  is the ideal project, which is represented by a subset; 𝐶𝐶𝑖𝑖  represents the 𝑚𝑚 th 
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considered characteristic; 𝑙𝑙𝑖𝑖 ∈ [1,100]; and 𝑚𝑚 = 1,2, … ,𝑚𝑚 is a number between 1 and 100. Each 

decision maker must provide an ideal project 𝑙𝑙𝑖𝑖𝑘𝑘. 

_______________________________ 

Insert Table VII about here 

_______________________________ 

STEP 3. Apply the weighted average (WA) to aggregate the information of the decision makers 

𝐸𝐸  by using the weighting vector 𝑉𝑉 . The result will be the collective payoff matrix 

(𝑒𝑒ℎ𝑖𝑖 − 𝑙𝑙ℎ𝑖𝑖)𝑚𝑚×𝑛𝑛 . Therefore, 𝑒𝑒ℎ𝑖𝑖 − 𝑙𝑙ℎ𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘
𝑝𝑝
𝑘𝑘=1 �𝑒𝑒ℎ𝑖𝑖𝑘𝑘 − 𝑙𝑙ℎ𝑖𝑖𝑘𝑘 � . Note that more complex 

aggregations can be developed if the experts’ opinions are aggregated with a different method 

than WA, e.g., the OWA operator. 

 

STEP 4. Solve for the GOWLAD operator, as described in Eq. 43. The value of 𝜆𝜆 is usually set 

to 1; however, any of the families that are described in section 4.4 can be used, depending on 

the problem that is being assessed. 

 

STEP 5. Establish a ranking of the evaluated options, compare the results for the problem that 

is being assessed and develop a decision-making approach.  

 

To summarize this aggregation mechanism, we propose the utilization of the following 

aggregation operator, which is named the multi-person-GOWLAD (MP-GOWLAD) operator: 

 

DEFINITION 6. An MP-GOWLAD operator is an aggregation operator with an associated 

weighting vector 𝑉𝑉 of dimension 𝑒𝑒 such that the sum of the weights is 1 and 𝑣𝑣𝑘𝑘 ∈ [0,1], and a 

weighting vector 𝐺𝐺of 𝑚𝑚 dimension such that ∑ 𝑤𝑤𝑗𝑗 = 1𝑛𝑛
𝑗𝑗=1  and 𝑤𝑤𝑗𝑗 ∈ [0,1]: 
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𝑀𝑀𝑃𝑃 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊 ��𝑒𝑒11, … , 𝑒𝑒1
𝑝𝑝�, �𝑙𝑙11, … ,𝑙𝑙1

𝑝𝑝�, … , �𝑒𝑒𝑛𝑛1, … , 𝑒𝑒𝑛𝑛
𝑝𝑝�, �𝑙𝑙𝑛𝑛1, … ,𝑙𝑙𝑛𝑛

𝑝𝑝��  

= 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
��𝑤𝑤𝑗𝑗�𝑙𝑙𝑚𝑚𝑏𝑏𝑗𝑗�

𝜆𝜆
𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆

⎭
⎬

⎫
, 

(31) 

where 𝑏𝑏𝑗𝑗 is the |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| value of the MP-GOWLAD (𝑒𝑒𝑖𝑖,𝑙𝑙𝑖𝑖) in decreasing order of the values 

of the argument |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|. The argument |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| = �∑ 𝑣𝑣𝑘𝑘�𝑒𝑒𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖𝑘𝑘�
𝑝𝑝
𝑘𝑘=1 �, where �𝑒𝑒𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖𝑘𝑘� are 

variables that correspond to the opinions of each expert in the form of individual distances and 

𝜆𝜆 is a parameter that satisfies 𝜆𝜆 ∈ (−∞,∞) − {0}. The MP-GOWLAD operator shares the 

properties of the GOWLAD operator. 

 The MP-GOWLAD operator can be reduced to a series of particular cases by following 

the methodology that is presented in section 3. Interesting cases include the multi-person-

normalized logarithmic Hamming distance (MP-NLHD) operator, the multi-person-weighted 

logarithmic Hamming distance (MP-WLHD) operator, the multi-person-OWLAD (MP-

OWLAD) operator, the multi-person-OWLA (MP-OWLA) operator, and the multi-person 

WLA (MP-WLA) operator. 

 

6. NUMERICAL EXAMPLE 

 

This section presents an illustrative example of a strategic decision-making procedure 

in innovation project management that uses a multi-person analysis and the GOWLAD 

operator. Observe that additional business-decision-making applications can be assessed, 

especially in the area of innovation management, which has been widely described as an 

uncertain and subjective topic. Thus, it is an interesting area for expert decision-making 

procedures. 
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STEP 1. Assume that a real-estate construction company must select the most adequate project 

to develop from their portfolio of six potential projects: 

• 𝐺𝐺1 Industrial park  

• 𝐺𝐺2 Small multi-family housing 

• 𝐺𝐺3 Residential building 

• 𝐺𝐺4 City villas 

• 𝐺𝐺5 Commercial building 

• 𝐺𝐺6 Luxury apartments 

To select the project to be developed, the company chooses diverse experts to evaluate 6 

key characteristics: 

• 𝑆𝑆1 Cost of the project 

• 𝑆𝑆2 Duration 

• 𝑆𝑆3 Return on investment (ROI) 

• 𝑆𝑆4 Expertise 

• 𝑆𝑆5 Internal communication 

• 𝑆𝑆6 External communication 

 A total of three experts are asked for their opinions. The results for each of the projects 

are shown in Tables VIII–X. All valuations are expressed in terms of numbers between 1 and 

100, where 100 is the maximum valuation.  

 

STEP 2. Representing the objectives of the decision makers, each of the experts constructs the 

ideal project to be developed. The results of this process are shown in Table XI. 
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STEP 3. The weighting vector that represents the importance of each expert in the analysis is 

𝑉𝑉 = (0.5, 0.25, 0.25). With this information, we use the weighted average to aggregate the 

information into a collective matrix. The results are shown in Table XII. 

 

STEP 4. We apply some of the GOWLAD operator families, aggregate the collective 

information and obtain the final results. Tables XIII and XIV show the results of the 

aggregations. 

 

STEP 5. To generate a complete picture of the aggregations, we must establish a ranking of the 

performance of each project that is based on the preferences of the decision makers. The 

ordering of alternatives is presented in Table XV. The symbol "}" denotes “preferred to”. 

Moreover, for each of the selected aggregation operators, a different ranking can be generated. 

Therefore, distinct decision-making processes will result from that operation. 

_______________________________ 

Insert Table VIIVIII–XV about here 

_______________________________ 

 

 The ranking changes depending on the aggregation mechanism of the chosen operator. 

In our example, based on the opinions of three experts, the closest options to an ideal project 

are 𝐺𝐺5 (Commercial building) and 𝐺𝐺3 (Residential building). It is inferred that the company has 

more experience in developing these real-estate constructions. Moreover, it is implied that the 

innovative characteristics of the company align in an adequate way with the preferences of the 

firm.  
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7. CONCLUSIONS 

 

This paper introduces a new family of ordered weighted logarithmic averaging distance 

operators, including the ordered weighted logarithmic averaging distance (OWLAD) operator 

and the generalized ordered weighted logarithmic averaging distance (GOWLAD) operator. 

The foundation of this approach is the optimal deviation model, which is based on the GOWLA 

operator. Therefore, it shares the same properties. The main motivation is the extension of its 

characteristics to consider a wider range of complex problems. The main advantage of the 

ordered weighted logarithmic averaging distance operators is the introduction of distance 

measures, specifically the Hamming distance, to consider an optimal set of preferences and 

compare them to the options or alternatives that are selected by the decision makers.  

The OWLAD and GOWLAD operators have diverse properties such as commutativity, 

idempotency, boundedness, monotonicity, non-negativity and reflexivity. We have studied 

different classical measures to characterize the weighting vector including the degree of orness, 

dispersion, balance and divergence measures. Moreover, motivated by the observation that 

these measures fail to work with numbers that are between 0 and 1, we propose additional 

measures to characterize the aggregation, including a transformation of the OWA measures into 

the R-scale. We have also presented four alternative formulations of the OWLAD and 

GOWLAD operators, which can be utilized depending on the ordering of the arguments to be 

aggregated.  

Several particular cases of the ordered weighted logarithmic averaging distance 

operators have been analyzed. First, depending on the conformation of the weighting vector, 

the OWLAD operator can be reduced to the maximum and minimum distances, the step-

OWLAD operator, the NLHD operator, the WLHD operator, the olympic-OWLAD, the 

window-OWLAD operator, the median-OWLAD operator, and the centered-OWLAD. Second, 
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by analyzing the parameter 𝜆𝜆,  the GOWLAD operator is found to correspond to specific 

families, including the maximum and the minimum, the OWLGAD operator, the OWLHAD 

operator, the OWLAD operator, the OWLQAD operator and the OWLCAD operator. 

The OWLAD and GOWLAD operators, including their particular cases and families, 

are designed to aid group decision-making processes. Engineering, statistics and economics are 

some of the scientific areas to which this new approach could be applied. To exemplify the use 

of the OWLAD and GOWLAD operators, we present a multi-person group decision-making 

problem in the area of innovation project management. The main advantage of this method is 

the utilization of several experts to assess a complex decision-making procedure that involves 

objective and subjective factors. Innovation management has been described as an uncertain 

series of steps and procedures; this makes the topic interesting and viable to analyze. The results 

in the illustrative example represent different combinations of options and alternatives that 

depend on the complex attitudinal characteristics of the decision makers among an ideal series 

of characteristics and enable the comparison among the possible projects to realize.  

Additional research is needed to address the main limitations of this study, which are 

the multifaceted properties of the logarithms, which complicate the development of 

characterization measures for the weighting vector. In addition, complex decision-making 

processes such as innovation management require the development of new and robust 

techniques that consider uncertain information such as fuzzy numbers43, linguistic variables37, 

and interval numbers, as well as heavy aggregations of other complex formulations.  

 

 

Acknowledgements 

 



 27 

 The first author expresses his gratitude to the Mexican Council of Science and 

Technology (CONACYT) for the financial support that was given to this research project with 

scholarship no. 381436 for graduate studies. The research was supported by “Red 

Iberoamericana para la Competitividad, Innovación y Desarrollo” (REDCID) project number 

616RT0515 in “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo” 

(CYTED). The second author acknowledges support from the Chilean Council of Science and 

Technology (CONICYT) through the Fondecyt Regular program (project number 1160286). 

 

References 

 

1.  Beliakov G, Pradera A, Calvo T. Aggregation Functions: A Guide for Practitioners. 

Vol 221. Springer Berlin Heidelberg; 2007. 

2.  Torra V, Narukawa Y. Modeling Decisions: Information Fusion and Aggregation 

Operators. Springer Science & Business Media; 2007. 

3.  Yager RR, Kacprzyk J, Beliakov G, eds. Recent Developments in the Ordered 

Weighted Averaging Operators: Theory and Practice. Vol 265. Springer-Verlag Berlin 

Heidelberg; 2011. 

4.  Beliakov G, Bustince H, Calvo T. A Practical Guide to Averaging Functions. Vol 329. 

Springer International Publishing; 2016. 

5.  Yager RR. On ordered weighted averaging aggregation operators in multicriteria 

decisionmaking. IEEE Trans Syst Man Cybern B. 1988;18(1):183-190. 

6.  Yager RR, Kacprzyk J, eds. The Ordered Weighted Averaging Operators: Theory and 

Applications. Springer US; 1997. 

7.  Emrouznejad A, Marra M. Ordered weighted averaging operators 1988-2014: A 

citation-based literature survey. Int J Intell Syst. 2014;29(11):994-1014. 



 28 

8.  Gil-Aluja J. Elements for a Theory of Decision in Uncertainty. Vol 32. Springer US; 

1999. 

9.  Kacprzyk J. Multistage Fuzzy Control: A Model-Based Approach to Fuzzy Control and 

Decision Making. 1st ed. Wiley; 1997. 

10.  Zwick R, Carlstein E, Budescu D V. Measures of similarity among fuzzy concepts: A 

comparative analysis. Int J Approx Reason. 1987;1(2):221-242. 

11.  Xu ZS, Chen J. An overview of distance and similarity measures of intuistonistic fuzzy 

sets. Int J Uncert Fuzz Knowledge-Based Syst. 2008;16(4):529-555. 

12.  Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 

1950;29(2):147-160. 

13.  Xu ZS, Chen J. Ordered weighted distance measure. J Syst Sci Syst Eng. 

2008;17(4):432-445. 

14.  Merigó JM, Gil-Lafuente AM. New decision-making techniques and their application 

in the selection of financial products. Inf Sci. 2010;180(11):2085-2094. 

15.  Merigó JM, Casanovas M. Decision making with distance measures and linguistic 

aggregation operators. Int J Fuzzy Syst. 2010;12(3):190-198. 

16.  Merigó JM, Casanovas M. Decision-making with distance measures and induced 

aggregation operators. Comput Ind Eng. 2011;60(1):66-76. 

17.  Zeng SZ, Su WH. Intuitionistic fuzzy ordered weighted distance operator. Knowledge-

Based Syst. 2011;24(8):1224-1232. 

18.  Xu ZS. Fuzzy ordered distance measures. Fuzzy Optim Decis Mak. 2012;11(1):73-97. 

19.  Zhou LG, Chen HY, Liu JP. Continuous ordered weighted distance measure and its 

application to multiple attribute group decision making. Group Decis Negot. 

2012;22(4):739-758. 

20.  Merigó JM, Xu YJ, Zeng SZ. Group decision making with distance measures and 



 29 

probabilistic information. Knowledge-Based Syst. 2013;40:81-87. 

21.  Zeng SZ, Wei L, Merigó JM. Extended induced ordered weighted averaging distance 

operators and their application to group decision-making. Int J Inf Technol Decis Mak. 

2013;12(4):789-811. 

22.  Merigó JM, Casanovas M, Zeng SZ. Distance measures with heavy aggregation 

operators. Appl Math Model. 2014;38(13):3142-3153. 

23.  Zhou LG, Wu JX, Chen HY. Linguistic continuous ordered weighted distance measure 

and its application to multiple attributes group decision making. Appl Soft Comput. 

2014;25:266-276. 

24.  Xian SD, Sun WJ, Xu SH, Gao YY. Fuzzy linguistic induced OWA Minkowski 

distance operator and its application in group decision making. Pattern Anal Appl. 

2016;19(2):325-335. 

25.  Zhou LG, Chen HY. Generalized ordered weighted logarithm aggregation operators 

and their applications to group decision making. Int J Intell Syst. 2010;25(7):683-707. 

26.  Zhou LG, Chen HY, Liu JP. Generalized logarithmic proportional averaging operators 

and their applications to group decision making. Knowledge-Based Syst. 2012;36:268-

279. 

27.  Zhou LG, Chen HY, Liu JP. Generalized weighted exponential proportional 

aggregation operators and their applications to group decision making. Appl Math 

Model. 2012;36(9):4365-4384. 

28.  Zhou LG, Tao ZF, Chen HY, Liu JP. Generalized ordered weighted logarithmic 

harmonic averaging operators and their applications to group decision making. Soft 

Comput. 2015;19(3):715-730. 

29.  Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(July 

1928):379-423. 



 30 

30.  Yager RR. Families of OWA operators. Fuzzy Sets Syst. 1993;59(2):125-148. 

31.  Yager RR. Centered OWA operators. Soft Comput. 2007;11(7):631-639. 

32.  Blanco-Mesa F, Merigo JM, Kacprzyk J. Bonferroni means with distance measures and 

the adequacy coefficient in entrepreneurial group theory. Knowledge-Based Syst. 

2016;111:217-227. 

33.  Zeng S, Su W, Chen J. Fuzzy decision making with induced heavy aggregation 

operators and distance measures. J Intell Fuzzy Syst. 2014;26(1):127-135. 

34.  Merigó JM, Yager RR. Generalized Moving Averages, Distance Measures and OWA 

Operators. Int J Uncert Fuzz Knowledge-Based Syst. 2013;21(4):533-559. 

35.  Calvo T, Kolesárová A, Komorníková M, Mesiar R. Aggregation operators: properties, 

classes and construction methods. Aggreg Oper New Trends Appl. 2002;97(1):3-104. 

36.  Blanco-Mesa F, Merigó JM, Gil-Lafuente AM. Fuzzy decision making: A 

bibliometric-based review. J Intell Fuzzy Syst. 2017;32(3):2033-2050. 

37.  Yu D, Li DF, Merigó JM, Fang L. Mapping development of linguistic decision making 

studies. J Intell Fuzzy Syst. 2016;30(5):2727-2736. 

38.  Adams R, Bessant J, Phelps R. Innovation management measurement: a review. Int J 

Manag Rev. 2006;8(1):21-47. 

39.  Chiesa V, Coughlan P, Voss CA. Development of a technical innovation audit. J Prod 

Innov Manag. 1996;13(2):105-136. 

40.  Damanpour F. Organizational innovation: a meta-analysis of effects of determinants 

and moderators. Acad Manag J. 1991;34(3):555-590. 

41.  Bessant J. High-Involvement Innovation: Building and Sustaining Competitive 

Advantage through Continuous Change. Wiley; 2003. 

42.  Von Hippel E. Lead users: an important source of novel product concepts. Manage Sci. 

1986;32(7):791-805. 



 31 

43.  Merigó JM, Gil-Lafuente AM, Yager RR. An overview of fuzzy research with 

bibliometric indicators. Appl Soft Comput. 2015;27:420-433. 

 



 32 

Table I. Results for the alternative formulations of the OWLAD operator 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 

9.4162 1.7978 3.5944 1.2468 

 

 
Table II. OWLAD operator general characterization of the aggregation 

Measure CDA CDA* CAA CAA* 

Result 0.4583 0.5417 0.7287 0.2713 

 

Table III. Families of GWLAD operators  

𝜆𝜆 Families Acronym 

𝜆𝜆→0 Weighted logarithmic geometric averaging distance operator WLGAD 

𝜆𝜆 = -1 Weighted logarithmic harmonic averaging distance operator WLHAD 

𝜆𝜆 = 1 Weighted logarithmic aggregation distance operator WLAD 

𝜆𝜆 = 2 Weighted logarithmic quadratic aggregation distance operator WLQAD 

𝜆𝜆 = 3 Weighted logarithmic cubic aggregation distance operator WLCAD 

𝜆𝜆 →∞ Largest of the |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| Max 

𝜆𝜆 →-∞ Lowest of the |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| Min 

 

Table IIV. Families of the GWLAD operator 

𝜆𝜆 → 0 -1 1 2 3 ∞ −∞ 

Aggregation 6.1353 5.2601 7.1682 8.2130 9.1541 → 17 → 3 
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Table V. Results for the alternative formulations of the GOWLAD operator 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼 

10.2820 1.9220 3.9026 1.2680 
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Table VI. Families of GOWLAD operators  

𝜆𝜆 Family Acronym Formula  

𝜆𝜆→0 
Ordered weighted logarithmic geometric 

averaging distance operator 
OWLGAD 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒 ���𝑙𝑙𝑚𝑚�𝑏𝑏𝑗𝑗��

𝑤𝑤𝑗𝑗
𝑛𝑛

𝑗𝑗=1

� (9) 

𝜆𝜆 = -1 
Ordered weighted logarithmic harmonic 

averaging distance operator 
OWLHAD 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒 �

1

∑ �
𝑤𝑤𝑗𝑗
𝑙𝑙𝑚𝑚𝑏𝑏𝑗𝑗

�𝑛𝑛
𝑗𝑗=1

� (10) 

𝜆𝜆 = 1 
Ordered weighted logarithmic aggregation 

distance operator 
OWLAD 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑤𝑤𝑗𝑗�𝑙𝑙𝑚𝑚𝑏𝑏𝑗𝑗�
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𝜆𝜆 = 2 
Ordered weighted logarithmic quadratic 

aggregation distance operator 
OWLQAD 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒
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𝜆𝜆 = 3 
Ordered weighted logarithmic cubic aggregation 

distance operator 
OWLCAD 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒
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⎫
 (13) 

𝜆𝜆→∞ Largest of the 𝑏𝑏𝑗𝑗, for 𝑗𝑗 = 𝑚𝑚 Max 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛, 𝑙𝑙𝑛𝑛) = 𝑚𝑚𝑎𝑎𝑒𝑒�𝑏𝑏𝑗𝑗� (14) 

𝜆𝜆→-∞ Lowest of the 𝑏𝑏𝑗𝑗, for 𝑗𝑗 = 𝑚𝑚 Min 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑊𝑊(𝑒𝑒𝑛𝑛,𝑙𝑙𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏𝑗𝑗� (15) 

Note that for all cases, 𝑏𝑏𝑗𝑗 is the |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖| value of GOWLAD 〈𝑒𝑒𝑖𝑖,𝑙𝑙𝑖𝑖〉, in decreasing order of values of |𝑒𝑒𝑖𝑖 − 𝑙𝑙𝑖𝑖|.
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Table VII. Ideal project 

 𝐶𝐶1 𝐶𝐶2 … 𝐶𝐶𝑖𝑖 … 𝐶𝐶𝑛𝑛 

𝑃𝑃 𝑙𝑙1 𝑙𝑙2 … 𝑙𝑙𝑖𝑖 … 𝑙𝑙𝑛𝑛 

 

 

Table VIII. Characteristics of the project: valuations from expert 1 

 
𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 

𝐺𝐺1 88 56 59 95 90 64 

𝐺𝐺2 68 88 69 96 97 96 

𝐺𝐺3 95 62 85 99 82 79 

𝐺𝐺4 79 62 100 72 67 79 

𝐺𝐺5 86 82 100 96 72 58 

𝐺𝐺6 60 93 53 59 87 73 

 

Table IVIII. Characteristics of the project: valuations from expert 2 

 
𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 

𝐺𝐺1 79 88 76 83 61 85 

𝐺𝐺2 63 61 86 68 76 74 

𝐺𝐺3 77 86 69 86 71 88 

𝐺𝐺4 74 76 66 89 65 62 

𝐺𝐺5 61 65 65 84 78 80 

𝐺𝐺6 86 73 61 81 85 68 
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Table IX. Characteristics of the project: valuations from expert 3 

 
𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 

𝐺𝐺1 75 54 75 59 39 35 

𝐺𝐺2 33 35 50 92 96 56 

𝐺𝐺3 93 63 64 71 38 48 

𝐺𝐺4 48 42 70 70 55 77 

𝐺𝐺5 61 74 94 61 49 88 

𝐺𝐺6 77 90 86 78 35 39 

 

Table X. Ideal investment 

 
𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 

𝐸𝐸1 70 80 100 100 60 80 

𝐸𝐸2 90 80 100 90 70 90 

𝐸𝐸3 80 90 100 70 50 80 

 

Table XI. Collective results in the form of individual distances 

 
𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 

𝐺𝐺1 5 19 32.75 7 10 20.5 

𝐺𝐺2 19.5 14.5 31.5 2 31.5 2 

𝐺𝐺3 12.5 14.25 24.25 1.25 8.25 9 

𝐺𝐺4 7.5 22 16 14.25 3.5 8.25 

𝐺𝐺5 4 6.75 10.25 5.75 7.75 11.5 

𝐺𝐺6 6.75 4.75 36.75 20.75 13.5 19.25 
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Table XII. Aggregated results 1  

 
Max Min NLHD WLHD Step (k=3) WLAD 

𝐺𝐺1 32.7500 5.0000 2.5519 2.7613 3.4889 15.8196 

𝐺𝐺2 31.5000 2.0000 2.3218 2.4974 3.4500 12.1508 

𝐺𝐺3 24.2500 1.2500 2.1502 2.3586 3.1884 10.5759 

𝐺𝐺4 22.0000 3.5000 2.3164 2.2806 2.7726 9.7830 

𝐺𝐺5 11.5000 4.0000 1.9771 2.1007 2.3273 8.1718 

𝐺𝐺6 36.7500 4.7500 2.6108 2.8433 3.6041 17.1724 

 

Table XIII. Aggregated results 2 

 
GOWLAD -1 GOWLAD 1 GOWLAD 2 GOWLAD 3 median olympic 

𝐺𝐺1 1.0594 11.8888 3.1291 2.1189 13.7840 12.8499 

𝐺𝐺2 1.0407 8.3796 2.9116 2.3097 16.8152 11.5528 

𝐺𝐺3 1.0270 7.6037 2.6840 1.9969 10.6066 10.7240 

𝐺𝐺4 1.0532 9.4683 2.8235 1.9785 10.8426 10.8984 

𝐺𝐺5 1.0471 6.7485 2.3457 1.8549 7.2327 7.4516 

𝐺𝐺6 1.0611 12.2402 3.1545 2.2880 16.1206 13.8125 
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Table XIV. Ranking of the performances of the concepts to be developed 

Ranking  Ranking 

Max 𝐺𝐺5}𝐺𝐺4}𝐺𝐺3}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6  GOWLAD (λ=-1) 𝐺𝐺3}𝐺𝐺2}𝐺𝐺5}𝐺𝐺4}𝐺𝐺1}𝐺𝐺6 

Min 𝐺𝐺1}𝐺𝐺6}𝐺𝐺5}𝐺𝐺4}𝐺𝐺2}𝐺𝐺3  GOWLAD (λ=1) 𝐺𝐺5}𝐺𝐺3}𝐺𝐺2}𝐺𝐺4}𝐺𝐺1}𝐺𝐺6 

NLHD 𝐺𝐺5}𝐺𝐺3}𝐺𝐺4}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6  GOWLAD (λ=2) 𝐺𝐺5}𝐺𝐺3}𝐺𝐺4}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6 

WLHD 𝐺𝐺5}𝐺𝐺4}𝐺𝐺3}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6  GOWLAD (λ=3) 𝐺𝐺5}𝐺𝐺4}𝐺𝐺3}𝐺𝐺1}𝐺𝐺6}𝐺𝐺2 

Step (k=3) 𝐺𝐺5}𝐺𝐺4}𝐺𝐺3}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6  Median 𝐺𝐺5}𝐺𝐺3}𝐺𝐺4}𝐺𝐺1}𝐺𝐺6}𝐺𝐺2 

WLAD 𝐺𝐺5}𝐺𝐺4}𝐺𝐺3}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6  Olympic 𝐺𝐺5}𝐺𝐺3}𝐺𝐺4}𝐺𝐺2}𝐺𝐺1}𝐺𝐺6 
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