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The possibility for helium-induced electronic transitions in a photo-excited atom is investigated using
Ba+ excited to the 6p 2P state as a prototypical example. A diabatization scheme has been designed
to obtain the necessary potential energy surfaces and couplings for complexes of Ba+ with an arbi-
trary number of helium atoms. It involves computing new He–Ba+ electronic wave functions and
expanding them in determinants of the non-interacting complex. The 6p 2P ← 6s 2S photodisso-
ciation spectrum of He· · ·Ba+ calculated with this model shows very weak coupling for a single
He atom. However, several electronic relaxation mechanisms are identified, which could potentially
explain the expulsion of barium ions from helium nanodroplets observed experimentally upon Ba+

photoexcitation. For instance, an avoided crossing in the ring-shaped He7Ba+ structure is shown to
provide an efficient pathway for fine structure relaxation. Symmetry breaking by either helium density
fluctuations or vibrations can also induce efficient relaxation in these systems, e.g., bending vibra-
tions in the linear He2Ba+ excimer. The identified relaxation mechanisms can provide insight into
helium-induced non-adiabatic transitions observed in other systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5022863

I. INTRODUCTION

In recent years, great progress has been made in the study
of impurity atoms and ions in cold helium environments, from
solid to superfluid bulk 4He to 4He nanodroplets and cryo-
genic 4He gas.1–12 One fascinating result of these studies has
been the evidence that exciplexes can be formed upon pho-
toexcitation of alkali metal atoms. These molecular complexes
formed by an alkali atom in an excited state, typically np
state, and one or several ground state He atoms, have been
first invoked to explain the quenching of laser-induced fluores-
cence of light alkalis in liquid and solid helium.13,14 This was
demonstrated for Rb in pressurized liquid He.15 As reviewed
in Ref. 9, they have also been studied from the theoretical
point of view. The photoinduced dynamics of excited alka-
lis have later been extensively investigated using superfluid
He nanodroplets; see Ref. 11 for a review. The weakly inter-
acting alkali atoms are known to reside in a dimple at the
surface of these droplets. The photoexcitation of the surface
located atoms usually leads to their desorption and is often
accompanied by exciplex formation.16–34
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Positive alkali earth ions have an electronic structure
similar to that of alkali atoms, but their charge makes their
interaction with helium more attractive and they tend to be
more solvated. This makes them very interesting systems to
study the influence of helium-induced relaxation on the pho-
toexcitation dynamics. In Ba+, this process was first observed
in a spectroscopic study of 6p 2P Ba+ in liquid, superfluid
helium by Reyher et al.35 They observed three emission bands,
6s 2S1/2 ← 6p 2P1/2 and 5d 2D← 6p 2P1/2 emission from the
6p 2P1/2 “bubble state” and the third one unassigned. Since
both assigned emissions were identical upon D1 (6p 2P1/2) or
D2 (6p 2P3/2) excitation, it implied that the 6p 2P3/2 state had
relaxed to 6p 2P1/2 before fluorescing.

Upon D2 line excitation in cold He gas (T = 3–25 K),
Fukuyama et al.36,37 observed a sharp emission line at the
D1 transition and a broad fluorescence band in the range
of 20 500–21 800 cm�1 (488-459 nm). The D1 line inten-
sity was attributed to fine structure relaxation of the He–Ba+

(6p 2Π3/2) exciplex by collision with another helium atom.
The broadband emission was assigned to direct fluorescence
from excited vibrational levels of the He· · ·Ba+ 6p 2Π3/2

complex.
This study was completed at lower temperature (T = 1.35–

1.7 K) by Moroshkin and Kono.38 As in the preceding study,
they have observed a broad band corresponding to exciplex
emission from a population of vibrationally excited levels of
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the 6p 2Π3/2 state, as confirmed by a theoretical simulation
using the high accuracy potential energy curves of Mella and
Cargnoni.39 In addition, two lines originating from the 6p 2P1/2

state were assigned to collisional fine structure relaxation,
either in the atom or in the exciplex.

Recently, spectroscopic experiments on the 6p 2P← 6s 2S
transition on Ba+ in helium nanodroplets have concluded that
the barium ion is solvated near the center of the droplet,40 based
on the comparison with the corresponding transition in liquid
helium. Excitation of the 6p 2P states makes for a very inter-
esting test case for studying photoexcitation dynamics since
a competition is expected between desorption and rearrange-
ment of the surrounding helium about the excited state orbital.
From the analysis of the time-of-flight mass spectra, it was
concluded that the barium ions were ejected from the helium
droplets as Ba+ or Ba+ Hen, a process that had been predicted
for neon cluster ionization41,42 and observed for molecular
ions.40,43

Analysis of the results from mass spectra and velocity
map imaging revealed that fine structure relaxation cannot
be complete. For instance, Ba+ or HenBa+ ions were ejected
but their translational temperature depended on the initially
excited state, with a maximum of 178 ± 4 K for bare Ba+

ions upon D1 excitation and a leveling off around ∼60 K for
HenBa+ for increasing n. Also, the ejected Ba+ velocity was
much higher than the Landau critical velocity, showing that
the desolvation mechanism differs from that of Ag.27

Mella and Cargnoni have performed a diffusion Monte
Carlo (DMC) study of the relative stability of HenBa+ 2P exci-
plexes, using a diatomics in molecules (DIM) model Hamilto-
nian built from high accuracy ab initio potential energy curves
for He· · ·Ba+ combined with an atomic model for the spin-
orbit interaction. As expected from the shape of the 6p 2Π3/2

orbital, the first two helium atoms for this state are strongly
bound in a linear configuration at a distance of∼3 Å from Ba+,
additional atoms being more loosely bound at larger distances
(∼6 Å). The energetics are more complex for the 6p 2P1/2 state,
with an alternance of weak van der Waals bonds at ∼7 Å (1st
and 3rd atoms) and strong bonds around ∼3.2 Å similar to
those found in alkali exciplexes (n = 2 adopts a linear config-
uration with an evaporation energy of 250.3 cm�1, 4 ≤ n ≤ 7
a ring structure in a plane around the Ba+ ion). The authors
propose He2Ba+ 6p 2P1/2 emission to the ground state as the
origin of the unknown band at 523 nm (19 121 cm�1) in the
Ba+ fluorescence spectrum in superfluid helium.35 However,
it should be accompanied by emission to the 2D3/2 state which
was not observed.

More recently Leal et al.44 have used helium time-
dependent density functional theory (He-TDDFT) to charac-
terize the dynamics following photoexcitation of Ba+ 6p 2P in
4He droplets. The experimental excitation spectrum was well
reproduced using Mella and Cargnoni’s He–Ba+ interaction
energy curves.39 But due to the rather deep He–Ba+ 6p 2Π3/2

potential well, excitation did not lead to ejection of the Ba+

ion, in contrast to what experiments suggest. Even assuming
formation of an exciplex followed by fluorescence decay to
the repulsive part of the He–Ba+ interaction in the 5d 2D3/2 or
6s 2S1/2 states, Ba+ remained inside the droplet due to the deep
attraction in the final states. Therefore another mechanism has

to be invoked in order to explain the ejection of Ba+, with or
without helium atoms attached.

The purpose of this study is to investigate the possibil-
ity for electronic relaxation induced by helium in an excited
atom. We design a diabatization procedure which then allows
us to describe the potential energy surfaces and couplings
required to study this process with an arbitrary number of
helium atoms (Sec. II). We first simulate the photodissocia-
tion spectrum of Ba+ excited to the 6p 2P valence band, which
is simple enough to be amenable to high quality ab initio cal-
culations (Sec. III), in order to check that our model gives
excited state lifetimes compatible with the experimental obser-
vation of He· · ·Ba+ excimers (Sec. IV). We then turn to explore
the possibility for helium-induced transitions in HenBa+ con-
figurations involving more helium atoms: linear n = 2 and
ring n = 7 bubble states or exciplexes (Sec. V). Finally, we
summarize the key results and propose outlooks of this work
(Sec. VI).

II. ELECTRONIC STRUCTURE AND DIABATIZATION
A. Determination of the He· · ·Ba+ electronic structure

We first determined ab initio potential energy curves for
He· · ·Ba+ by solving the spin-free electronic Hamiltonian in
the basis of asymptotic (i.e., non-interacting) ground- and
excited-state determinants of the complex. Interaction energies
at finite distances are the same as the ones obtained previ-
ously.39,45 In addition, the present setting makes it possible to
write the He· · ·Ba+ electronic Hamiltonian in the form of a
diabatic Hamiltonian including all the 6s 2S, 5d 2D, and 6p 2P
electronic states and their couplings (diabatization).

In the present section, we briefly summarize the method
used to determine them, focusing on the new points relevant
to the present investigation. The interested reader is referred
to Refs. 39 and 45 for more details.

We recall here that the computations described below
neglect spin-orbit effects, which are included a posteriori as
discussed in Sec. II C. The physics of the He· · ·Ba+ dimer is
quite simple. The ground state potential is essentially dom-
inated by the dispersion interaction between helium and the
outermost electron of the ion, whose reference wave function
is well described by a single determinant. Minor contributions
to the interaction also come from the inner electron shells of
barium. The coupled cluster approach at the CCSD(T) level
(inclusion of single, double, and perturbative triple excita-
tions) adopted in conjunction with high-quality basis sets and
a pseudopotential for the 46 core electrons of the metal atom,
proved adequate to recover an accurate interaction potential.45

To provide a reliable description of the excited He· · ·Ba+ sys-
tem, we first performed test computations on the isolated Ba+

ion. We adopted a Configuration Interaction (CI) strategy and
included in the final wave function up to triple excitations,
correlating the 9 outermost electrons (i.e., the two external
shells) of Ba+.39 Each one among the lowest 2P and 2D states
is dominated by just one single excited determinant, account-
ing for the promotion of the outermost unpaired 6s electron
to the p or the d shells. Further tests proved that this elemen-
tary behavior holds true also upon interaction with helium,
even at highly repulsive He· · ·Ba+ conformations. The final
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wave function for He· · ·Ba+ was therefore built according to
a multi-reference configuration interaction scheme. The pro-
motion of the outermost electron of barium into excited states
is accounted for by the multiple reference, whose active space
is extended up to the 6p and 5d shells. Intramonomer correla-
tion and dispersion interaction between Ba+ and He has been
accounted for by including single and double excitations start-
ing from an active space of 11 electrons: the 1s2 pair of He
plus 9 electrons coming from Ba+ (5s2, 5p6 plus the outer-
most shells electron). Perturbative computations44 proved this
variational scheme to be well grounded. Interaction energies
and wave functions have been computed at 33 internuclear
distances ranging from 1.5 to 10.0 Å, plus the asymptote at
100.0 Å, sampling more finely the regions where the potential
energy surfaces undergo sudden changes.

In order to estimate the perturbation induced by helium
onto the electronic structure of the ion, for all internuclear
separations the eigenvectors of the dimer have been projected
onto the asymptotic ones (computed at the distance of 100.0 Å
at the same level of theory), which closely mimic the exci-
tations of the unperturbed Ba+ monomer. Due to symmetry,
the interaction with helium can induce mixing only between
Ba+ states with the same value of Λ, the projection of the Ba+

orbital electronic angular momentum on the internuclear axis
z. This defines the subsets Σ (Λ = 0), where 6s, 6pz, and 5dz2

are mixed;Π (Λ = ±1), where 6px and 5dxz or 6py and 5dyz are
mixed; and ∆ (Λ = ±2), where 5dxy and 5dx2−y2 are mixed (the
Ba+ states are labeled here by the outermost unpaired electron
orbital). As can be seen in Fig. 1, the eigenstate coefficients
change very smoothly with the internuclear separation, and

FIG. 1. Coefficients of the 6s (black curve, □), 5dz2 (blue curve, ×), and 6pz
(purple curve, +) unperturbed Ba+ monomer states for the Σ eigenstates 1Σ
(bottom, mostly 6s), 2Σ (middle, mostly 5dz2 ), and 3Σ (top, mostly 6pz) states
of He· · ·Ba+ as a function of internuclear distance. [The Ba+ states are labeled
here by the outermost unpaired electron orbital. The coefficients correspond
to the Λ = 0 M̃nLΛ,k(R) coefficients defined in Eq. (3).]

the mixing remains quantitatively quite small but for highly
repulsive dimer conformations at short distances.

B. Diabatization: He· · ·Ba+ electronic Hamiltonian
with He-induced couplings

The electronic states considered here are the lowest
excited states with principal quantum number n = 5 or 6: 5d
2D or 6p 2P; and the ground electronic state is 6s 2S.

The Hamiltonian for the system is given by

H = HM + HSO with HM = Hel(R) + TR, (1)

where R is the distance vector from Ba+ to He and R its mod-
ulus; HM is the molecular Hamiltonian, which is the sum of
the electronic Hamiltonian Hel(R) for a fixed value of R and
the kinetic energy operator TR for the nuclei; and HSO is the
spin-orbit Hamiltonian.

In this section, we describe the electronic Hamiltonian
Hel used to take into account transitions between electronic
states of Ba+ due to the presence of a helium atom (“non-
adiabatic transitions” or “internal conversion” or “electronic
relaxation”). Spin-orbit couplings due to HSO are discussed in
Sec. II C.

In the electronic structure calculation presented in
Sec. II A, Hel is expanded in a common basis set of isolated
Ba+ determinants for all distances, denoted here as |nLΛ〉, and
then diagonalized (L denotes the electronic orbital angular
momentum quantum number and Λ denotes the one for its
projection onto the He–Ba+ axis). The corresponding eigen-
states ��ϕ̃k

〉
of Hel with eigenvalues Ṽk(R) will be referred to

here as adiabatic,

Hel
��ϕ̃k

〉
= Ṽk(R) ��ϕ̃k

〉
, (2)

��ϕ̃k
〉
=

∑
n

∑
L

∑
Λ

M̃nLΛ,k(R) |nLΛ〉 . (3)

The Ṽk(R) are the adiabatic potential energy curves for the
He–Ba+ interaction in different electronic states, i.e., Hel is
diagonal at each value of R. However, since the eigenvectors
��ϕ̃k

〉
depend parametrically on R, they can be coupled by the

kinetic term TR of the nuclei, therefore inducing transitions
between Ba+ electronic states. These kinetic couplings, also
called “non-adiabatic” couplings, are computationally diffi-
cult to treat because they can exhibit steep variations. Here
we describe a diabatization approach to describe transitions
between Ba+ electronic states without having to deal with
kinetic couplings. The price to pay is that the electronic Hamil-
tonian is no longer diagonal, but its diagonalization gives back
the adiabatic potential energy curves.

A diabatic representation of the Hamiltonian can be
obtained by transforming the (diagonal) matrix Ṽ of the
Ṽk(R) adiabatic potential energy curves to the initial {|nLΛ〉}
basis set using the matrix M̃ of the coefficients defined in
Eq. (3),

V = M̃ṼM̃
−1

. (4)

This representation is perfectly diabatic, i.e., the kinetic cou-
plings are zero, because the basis set used in Sec. II A for
electronic structure calculation does not depend on R.
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Because the configuration interaction of the electronic
structure calculations involved more terms than the minimal
set consisting of the 6s 2S, 5d 2D, and 6p 2P states of interest
here, we truncate the expansion in Eq. (3) to the minimum basis
set, which on the other hand contains the largely dominant
terms.

In order to make the resulting truncated matrix M
orthonormal, the (truncated) vectors are renormalized and
orthogonalized using Schmidt orthogonalization.46 The final
adiabatic basis set is then defined by

|ϕk〉 =

9∑
k′=1

Mk′,k(R) ��k ′
〉

, (5)

where |ϕk〉, k = 1–9, are the truncated and orthogonalized
eigenvectors and |k ′〉, k ′ = 1–9, are the asymptotic eigenvec-
tors of the dimer mimicking the ground and excited states of
isolated Ba+ and corresponding to effective 1-electron orbitals
6s, 6px, 6py, 6pz, 5dxy, 5dyz, 5dz2 , 5dxz, and 5dx2−y2 as described
at the end of Sec. II A. The reduced size diabatic electronic
Hamiltonian matrix W is then obtained as

W =MW̃M−1, (6)

where W̃ denotes the truncated Ṽ diagonal matrix of the
potential energy curves.

As noted at the end of Sec. II A, Λ is a good quantum
number because of cylindrical symmetry. As a result, only sub-
sets of electronic states with the same value of Λ are coupled.
Figure 2 shows the resulting diabatic potential energy curves

FIG. 2. Σ (Λ = 0) diabatic potential energy curves and couplings obtained
from the diabatization procedure described in Sec. II B. Bottom plot: □
(black): ab initio Ṽ6s(R); × (blue): ab initio Ṽ5d

z2 (R); + (purple): ab initio

Ṽ6pz (R). Solid lines: W6s ,6s(R) (black), W5d
z2 ,5d

z2 (R) (blue), and W6pz ,6pz (R)

(purple) diabatic potentials defined as the diagonal elements of W correspond-
ing toΛ = 0 in Eq. (6). The ground bound state wave function is plotted in red
to visualize the Franck-Condon region. Top plot: Couplings between Σ states,
i.e., off-diagonal elements W5d

z2 ,6pz (R) (double dotted-dashed); W6s,6pz (R)

(dashed); and W6s,5d
z2 (R) (dotted) in Eq. (6).

and couplings compared to the original ab initio curves for
Λ = 0. As expected, the couplings are stronger in the repulsive
region of the adiabatic curves. The Λ = ±1 diagonal diabatic
curves are very close to the adiabatic ones and the couplings
are rather small. There are only two Λ = ±2 curves, both
corresponding to d states, and they remain uncoupled.

C. Spin-orbit Hamiltonian

We use the common assumption that spin-orbit interaction
can be approximated by

HSO = gnL L · S =
1
2

gnL (J2 − L2 − S2). (7)

It couples the electronic orbital angular momentum L and
electronic spin S of Ba+ to form the total electronic angu-
lar momentum J. The spin-orbit coupling constants gnL are
extracted from the asymptotic spin-orbit splittings of Ba+: g6P

= (2/3~2) ∆SO(6p 2P) and g5D = (2/5~2) ∆SO(5d 2D). We have
used the values of the atomic state energies47 to calculate ∆SO:
E(5d 2D3/2) = 4873.852 cm�1; E(5d 2D5/2) = 5674.807 cm�1;
E(6p 2P1/2) = 20 261.561 cm�1; E(6p 2P3/2) = 21 952.404
cm�1. The basis set of {|k〉} orbitals [Eq. (5) in Sec. II B] is
doubled to include the two possible projections ±1/2 of the
electronic spin, {|K〉}, K = 1–18, resulting in doubly degen-
erate eigenstates (Kramer’s pairs) for the total Hamiltonian,
Eq. (1),

ψK =

18∑
K′=1

cK′K
��K ′

〉
, K = 1, 18. (8)

Two different basis sets and spectroscopic notations are
used in this work. The first one is Hund’s case (a) or uncoupled
basis set |n, L,Λ, S, Σ〉, whereΛ and Σ are the projections of L
and S onto the interatomic axis, respectively. The second one
is Hund’s case (c) or coupled basis set, which is asymptotically
the basis set of the atomic eigenstates, |n, L, S, J, Ω〉, where
J = L + S and Ω = Λ + Σ is the projection of J onto the inter-
atomic axis (note thatΩ is a good quantum number for both the
electrostatic and the spin-orbit Hamiltonian in cylindrical sym-
metry). At short distances where the energy difference between
states with same L but different values of Λ is larger than the
spin-orbit splitting, the eigenstates can be labeled using case
(a) notation 2S+1ΛΩ. For instance, the states originating from
Ba+ (6p 2P) are 6p 2Π1/2, 6p 2Π3/2, and 6p 2Σ1/2. At long dis-
tances, spin-orbit becomes dominant and the eigenstates are
characterized by the usual atomic case (c) notation 2S+1LJ .

D. DIM Hamiltonian

In order to study the potential energies and couplings in
exciplexes with n > 1 helium atoms, we use an extended ver-
sion of the diatomics in molecules (DIM) Hamiltonians used
previously44,48 for the valence electron of Ba+. The total elec-
tronic Hamiltonian for Ba+ interacting with n helium atoms is
written as

Hn
el = HDIM + HSO, (9)

where HSO is the spin-orbit Hamiltonian of Eq. (7) and HDIM

is a sum of electronic Hamiltonians for each pair of atoms,
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HDIM =

n∑
α=1

Hel(RBa+−α) − (n − 1)HBa+

+
∑
α

∑
α′>α

VHe−He(|Rα′ − Rα |). (10)

In this equation, RBa+−α =Rα − RBa+ is the distance vec-
tor from Ba+ with vector position RBa+ to the αth He
atom, with vector position Rα; Hel(RBa+−α) is the electronic
Hamiltonian of the Ba+-αth He atom interaction; VHe-He is
the He–He pair interaction taken from the literature;49 and
HBa+ is the isolated Ba+ electronic Hamiltonian which is
counted n times in the first term of the right-hand side of
Eq. (10).

The overall matrix of HDIM is expressed in the basis set of
the effective Ba+ orbitals |k〉 described in Secs. II B and II C.
In order to do this, a common, space-fixed set of axes is chosen.
The W matrix for each Hel(RBa+−α) Heα–Ba+ interaction was
defined by Eq. (6) with the z axis parallel to the distance vector
RBa+−α. It is rotated to the common axes by a (block-diagonal)
rotation matrix, with each block corresponding to the different
L values. It is then extended to 18 × 18 by replicating the same
matrix as a diagonal block for MS = �1/2 and 1/2. Finally HSO

is added and the total Hamiltonian is diagonalized. The same
notation is used for the resulting eigenvectors as in the diatomic
case [Eq. (8)], ψK , since they are also describing the electronic
structure of Ba+ and in the same basis set. Note that the coeffi-
cients cK′K depend on all the helium atom coordinates RBa+−α.
The eigenvectors are labeled in increasing energy order, with
adiabatic following50 in the case of a crossing.

III. METHODOLOGY FOR He· · ·Ba+

PHOTODISSOCIATION STUDY

We use the potential energy curves and couplings pre-
sented in Sec. II B, to which spin-orbit interaction of Sec. II C
is added, to investigate the photodissociation of the He· · ·Ba+

complex from its ground 6s 2S1/2 to its first excited elec-
tronic states 5d 2D and 6p 2P. The final state-resolved and total
cross sections for photodissociation are determined using the
energy-resolved (coupled-channel equations) approach.51,52

This corresponds to photoexcitation spectra in which the bare
ion is detected (total cross section), with the possibility of
resolving its final electronic state (partial cross sections). All
the final states energetically accessible in the spectral region
of interest are considered: 6s 2S1/2, 5d 2D3/2 and 5d 2D5/2, 6p
2P1/2 and 6p 2P3/2. The weak features appearing in the spectrum
in addition to the strong (6p 2P ← 6s 2S) direct dissociation
peaks are analyzed in terms of electronic predissociation of
the He· · ·Ba+ ion by comparing with quasibound state calcu-
lations. These resonances could play an important role in other
dynamical processes involving the Ba+ ion and a helium atom,
like collisional relaxation of Ba+ by a helium environment.
In particular, experimental investigations on photoexcitation
of helium nanodroplets doped with an alkali-like atom have
shown that exciplexes are formed with the excited atom and
one or a few helium attached to it.17–19,23,30–32,53–56 The cor-
responding exciplex for Ba+ would be characterized by one of
the resonances identified in this work, hence its lifetime could
be determined.

The main aspects of the method are summarized here
for the sake of completeness. In the framework of the first
order perturbation theory for electric dipole transitions, the
partial cross section for photo-exciting the system is given
by

σjE←i(hν) ∝ ���〈ΨjE |~µ · ~E|Ψi〉
���
2
, (11)

where Ψi is the initial (bound) wave function of He· · ·Ba+ in
its ground electronic state with energy Ei and ΨjE is the final
continuum wave function for He + Ba+ (j) in the electronic
state j of the ion, with energy E; ~E is the photon polarization
and hν its energy (hν = E � Ei); and ~µ is the transition dipole
moment.

The bound state wave function for the ground electronic
state and for the quasibound states used in the discussion of the
results is obtained by finite difference followed by Numerov-
Cooley integration57,58 from 1.8 up to 80 Å with interval
0.05 Å for the adiabatic electronic state of interest. The con-
tinuum wave function is expanded in the case (a) or case (c)
electronic basis set using the diabatized Hamiltonian and inte-
grated from 1.5 to 200 Å in steps of 0.002 Å using the De
Vogelaere algorithm.59,60

Finally, the total cross section σE←i(hν) for dissociative
photoionization of He· · ·Ba+ at energy E = Ei + hν and the
final state distributions Pj(hν) of the Ba+ fragments are given
by

σE←i(hν) =
∑

j

σjE←i(hν), (12)

Pj(hν) =
σjE←i(hν)

σE←i(hν)
. (13)

The transition dipole moment ~µ in Eq. (11) is taken as
the one of Ba+. Since the ground electronic state of Ba+ in the
complex has small 6p 2P and 5d 2D components, both the 6p
2P ← 6s 2S and 5d 2D ← 6p 2P transition dipole moments
are needed, the 5d 2D ← 6s 2S one being zero because it
corresponds to a forbidden transition. We have estimated the
ratio of these dipole moments from the ratio of the sum of the
corresponding transition intensities of Ba+ taken from Ref. 47.
The calculations were performed for the most abundant isotope
of barium, 138Ba (M = 137.905 247 2(5)u61).

IV. RESULTS: PHOTO-DISSOCIATION SPECTRA

There are three bound states for He· · ·Ba+ in its ground
electronic state with the potential used. The ground state v = 0
is at E0 = �12.704 cm�1 from the dissociation threshold. This
is the only level populated at the droplet temperature of 0.4 K
and consequently, it is the one used in the calculations for the
He· · ·Ba+ photodissociation spectrum.

A. Total photodissociation spectra

The calculated photodissociation cross section for
He· · ·Ba+ in the vicinity of the 6p 2P ← 6s 2S transition is
shown in Fig. 3. As expected from the adiabatic potential
energy curves of He· · ·Ba+ shown as the top plot in Fig. 4,
the 6p 2P ← 6s 2S photodissociation spectrum is dominated



144302-6 Vindel Zandbergen et al. J. Chem. Phys. 148, 144302 (2018)

FIG. 3. Oscillator strength for the photo-dissociation spectrum of He· · ·Ba+

in the vicinity of the Ba+ 6p 2P1/2 ← 6s 2S1/2 and 6p 2P3/2 ← 6s 2S1/2
transitions. The vertical red lines show the atomic ion excitations: 20 261 cm�1

for Ba+ 6p 2P1/2 and 21 952 cm�1 for Ba+ 6p 2P3/2.62,63 The intensity scale
is in arbitrary units.

by direct photodissociation to the He + Ba+ continuum: one
lower energy peak corresponding to 2Π1/2 excitation of the
dimer which leads to He + Ba+ 6p 2P1/2 and one higher energy
peak corresponding to 2Π3/2 and 2Σ1/2 excitation which leads to
He + Ba+ 6p 2P3/2 (the Franck-Condon region extends roughly
between 4 and 7 Å; see the wave function in Fig. 2 or in the
top plot of Fig. 4).

There is also a weak spectrum in the vicinity of the 5d 2D
← 6s 2S transition. It appears because of intensity borrowing

FIG. 4. Potential energy curves for He· · ·Ba+ (top plot); linear He–Ba+–He
(middle plot); ring-shaped He7Ba+ (bottom plot). In the case of the linear
He–Ba+–He excimer, the r coordinate is the symmetric elongation of the
HeBa+ distance. In the case of the ring-shaped He7Ba+ excimer, the seven
helium atoms are set equidistant on a ring of radius r around Ba+. The bound
state wave function of He· · ·Ba+ is also represented in the top plot in order
to visualize the Franck-Condon region.

from electronic state mixing by the helium atom. It is shown
in the supplementary material.

B. Lifetime of the He· · ·Ba+ exciplex

Both the 6p 2Π1/2 and 6p 2Π3/2 potential energy curves
contain several vibrational levels. They are called quasibound
states in the following since they can in principle decay to the
ground or one of the 5d 2D states because of helium induced
electronic couplings. Their lifetime depends on the existence
and intensity of these couplings. In the photodissociation spec-
tra, they appear as resonances (corresponding to Feshbach
resonances in He–Ba+ collisions) with a linewidth inversely
proportional to their lifetime. Their intensity depends also on
Franck-Condon factors with the ground state, but their central
energy and linewidth are intrinsic properties that are accurately
determined in our calculations. Even if they do not show in
the photodissociation spectrum because of their weak inten-
sities, they may be involved in collisional relaxation or other
processes.

These resonances are analyzed in the supplementary
material and show good agreement when compared with
bound state energies calculated by Moroshkin and Kono.38

All their widths were found to be smaller than 10�10 cm�1,
which implies lifetimes longer than 50 ms. This is much
longer than the Ba+ 6p 2P fluorescence lifetime64 of 6.32 ns
(6p 2P3/2) or 7.92 ns (6p 2P1/2). Hence if a He· · ·Ba+ excimer
is formed in the course of the dynamics, it is likely to fluoresce
before relaxing to a lower electronic state by helium-induced
transition.

Similar resonances are observed when exciting in the
region of the 5d 2D states; see the supplementary material.

V. HELIUM-INDUCED ELECTRONIC COUPLINGS
IN HenBa+ EXCIPLEXES

As explained in the Introduction, helium-induced elec-
tronic relaxation has been invoked several times in the con-
text of excimers in superfluid bulk helium and helium nan-
odroplets. These excimers are generally located inside a “bub-
ble” and have He–Ba+ distances of ∼3.2 Å, i.e., shorter than
the distance between Ba+ and the helium atoms forming the
“bubble” around the ion (see Sec. V C). Hence they are good
candidates to explore the possibility for helium-induced elec-
tronic transitions because the corresponding couplings are
usually stronger at short distances.

In this section, we study the potential energy curves and
electronic mixing coefficients for two structures that can lead to
excimers,39,45 i.e., linear He2Ba+ and ring-shaped He7Ba+, in
order to explore the possibility for helium-induced electronic
transitions.

A. HenBa+ exciplexes’ potential energy curves

Figure 4 displays the potential energy curves for
He· · ·Ba+ (top), linear He–Ba+–He (middle), and ring-shaped
He7Ba+ excimers (bottom). These potential energy curves
are obtained by diagonalizing the DIM+SO Hamiltonian
obtained as described in Refs. 39 and 44, except that here the
DIM Hamiltonian includes S-P-D couplings as described in

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-014813
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-014813
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-014813
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-014813
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Sec. II D. On the scale of the drawing, they are the same
as the ones obtained without these couplings.50 This is not
surprising since they were obtained from the same ab initio
curves.

The He· · ·Ba+ complex has a deep minimum of 486 cm�1

at 2.885 Å in the 6p 2Π3/2 curve, corresponding to excimer
formation with no barrier. The other two 6p 2P states exhibit a
flat van der Waals well at long distances (∼7 Å) with the rest of
the 6p 2Σ1/2 curve repulsive and the 6p 2Π1/2 curve exhibiting
a small well at ∼3 Å, separated from the van der Waals well
by a barrier.

The linear He–Ba+–He configuration has similar potential
energy curves, with deeper wells in the 6p 2Π3/2 and 6p 2Π1/2

curves. Note that the highest 5d 2D curve crosses all the 6p 2P
curves at short distances.

The ring n = 7 configuration has a deep well in the low-
est p curve. Caution should be taken in labeling the curves in
this case. The natural quantization axis, taken as the z axis, is
the one perpendicular to the plane of the helium atoms (C7

symmetry axis). In the case of the n = 1 or 2 complexes,
the quantization z axis was running from Ba+ to one of the
helium atoms. Hence a Σ curve is repulsive for n = 1 or 2
(apart from the long distance van der Waals well), whereas
it is attractive and carries the deep exciplex well at short
distances for the n = 7 ring structure. This is not merely a
question of notation since as explained in Sec. V B it leads to
an avoided crossing which can be responsible for fine structure
relaxation.

B. Ba+ fine structure relaxation in the ring exciplex

In this section, we show that Hen–Ba+ interaction in a
ring configuration can induce fine structure relaxation of Ba+

6p 2P3/2.
The 6p 2P potential energy curves of the n = 7 ring isomer

are shown in more detail in Fig. 5. There are several interesting
points to note. First, all the P energy curves have a long range
van der Waals well. The one having the best overlap with the
ground electronic state is the lowest of the two curves leading to
Ba+ 6p 2P3/2, but all three have a non-negligible possibility for
direct bound-bound excitation. Second, the curve leading to 6p
2P1/2 exhibits a barrier between the region accessed by Franck-
Condon excitation and the deep excimer well. Hence upon 6p
2P1/2 excitation the well can only be accessed from the tail of
the ground bound state wave function or by tunneling. Third, it
is surprising at first glance that the deep excimer potential well
should be carried by the lowest curve of the p states. It is due to
the avoided crossing introduced in Sec. V A and similar to the
one noted by Moroshkin et al.9 for alkalis in solid helium. It is
visualized by plotting the diagonal matrix elements of the total
Hamiltonian in the asymptotic (i.e., atomic) basis set as dashed
lines in Fig. 5. The change in character of the corresponding
electronic states is evidenced in the top plot of that figure. At
long distances where spin-orbit interaction is dominant, the
eigenstates are the spin-orbit eigenstates of the isolated Ba+.
Hence the lowest one is 6p 2P1/2 Kramer’s pair of levels which
is a linear combination of 2/3 of p±1 and 1/3 of p0 and the
next higher one is the 6p 2P3/2 pair with |Ω| = 1/2, which is a
linear combination of 2/3 of p0 with 1/3 of p±1. The other 6p

FIG. 5. Top: Squared overlap |〈ψK′ (r∞) |ψK (r)〉 |2 of the lowest P energy
eigenstate ψK (r), K = 13, with the asymptotic 6p 2P1/2 (ψK′ (r∞), K′ = 13)
and 6p 2P3/2, |Ω| = 1/2 (ψK′ (r∞), K′ = 15) states for the ring-shaped He7Ba+

excimer. ψK′ (r) are the electronic eigenvectors defined at the end of
Sec. II D, and r∞ is taken as 10 Å. Bottom: Focus on the P potential energy
curves of the ring-shaped He7Ba+ complex as a function of the He–Ba+

distance. The dotted lines are the diagonal matrix elements of the total
Hamiltonian in the asymptotic (i.e., atomic) basis set, in order to visualize
the avoided crossing. Note that the one corresponding to the 6p 2P3/2 state
with |Ω| = 3/2 is superimposed with the highest energy curve.

2P3/2 pair corresponds to |Ω| = 3/2 and is purely p±1. At short
distances where the difference between Π and Σ interactions
is larger than the spin-orbit splitting, the eigenstates are close
to the ones of the HDIM electrostatic Hamiltonian. The lowest
ones in energy are the pz (p0) state pair which are strongly
attractive, all the He atoms being in the nodal plane. Both p±1

(or px, py) orbitals give a repulsive curve since they both lie
in the molecular plane. Hence the character of the lowest p
curve changes from the asymptotic region where it is 2/3 Π
in the He7Ba+ axes to the inner well region where it is mostly
Σ. It corresponds to an avoided crossing between the Σ curve
exhibiting the deep well at short distances and going asymp-
totically to 6p 2P3/2 and theΠ curve going asymptotically to 6p
2P1/2. This is illustrated in the upper plot of Fig. 5, which shows
the overlap of the lowest P eigenstate with the eigenstates in
the asymptotic region (R = 10 Å). The two states exchange at
R ' 3.75 Å. The mixing starts being visible around 5 Å, which
is the minimum of the well in the ground electronic state. As a
result, the curve leading to exciplex formation exhibits a max-
imum at 4.55 Å, which represents a barrier of 180 cm�1 above
the asymptotic energy. The excimer well at 2.9 Å is 2271 cm�1
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deep, whereas the van der Waals well at 6.4 Å is of 49.8 cm�1.
By contrast, the other two higher curves only have a van der
Waals well.

Hence it can be expected that upon excitation to the
lower 6p 2P3/2 curve there will be a transition to the curve
corresponding to the 6p 2P1/2 asymptotic state, leading to
excimer formation and resulting in fine structure relaxation.
The importance of this mechanism will have to be confirmed
by a dynamics study. It could be quite frequent since the
bubble configuration in the ground electronic state can pro-
vide ring configurations for almost any orientation of the
excitation.

C. Ba+ fine structure relaxation in the linear
n = 2 exciplex

Many possible couplings between electronic states are
forbidden by the high symmetry of the exciplexes. However,
these exciplexes are formed at rather long distances since the
Franck-Condon region for their excitation corresponds to the
bubble state of the ground electronic level. As shown by Fiedler
et al.,65 Leal et al.,66 and more recently by Batulin et al.,67

the bubble radius is about 4.5 Å, and DFT calculations44,65,66

show that it is surrounded by a high density shell structure.
This would locate the Franck-Condon region for Ba+ in liquid
helium at about the same He–Ba+ distance as for the He· · ·Ba+

dimer, 4 to 8 Å with a maximum at ∼5.2 Å, as materialized by
the wave function in Figs. 2 and 4. The energies correspond-
ing to these excited configurations are substantially larger than
the well minima at shorter distances. Hence the exciplexes are
formed with a lot of initial internal, i.e., vibrational, energy.
Many of the excited vibrational modes can break the cylin-
drical symmetry of the system. We show here as an example
how the bending mode of the n = 2 excimer can induce fine
structure relaxation.

The minimum energy structure of the n = 2 excimer is
linear. Assuming that it is created from the spherical bubble
of the ground electronic state, it is expected that the internal
energy will be distributed among the stretching modes and the
bending mode. The bending mode breaks cylindrical symme-
try and hence makes it possible to mix the 6p 2Π3/2 state with
the 6p 2Π1/2 state.

This is illustrated in Fig. 6, which shows the eigenenergies
and the squared overlaps of the p eigenvectors with the ones
at the linear configuration, as a function of the bending angle
φb (He–Ba+–He). The He–Ba+ distance is taken as that of the
minimum energy configuration of the 6p 2Π3/2 state, 2.88 Å.
At the minimum energy configuration (φb = π), the top three
eigenstates labeled in increasing energy order as P1, P2, and
P3, are mostly 6p 2Π1/2, 6p 2Π3/2, and 6p 2Σ1/2, respectively,
with the exciplex corresponding to the Π3/2 curve. For a pure
p state in the linear configuration, the Π3/2 eigenvector cannot
mix with the other two since it is both an eigenstate of the
electronic Hamiltonian (Λ = ±1) and of the spin-orbit Hamil-
tonian (Ω = ±3/2). This situation changes when the exciplex
is no longer linear. With the amount of internal energy of the
order of the 6p 2Π3/2 excimer well depth, 980 cm�1, the bend-
ing angle can deviate from π down to 2.5 rad. What is very
interesting is that the lowest two eigenstates start mixing as

FIG. 6. Top plot: Potential energy curves of the P states of He2Ba+ [ψK
defined at the end of Sec. II D, labeled P1 (K = 13), P2 (K = 15), P3 (K
= 17) in increasing energy order] as a function of the bending (He–Ba+–He)
angle φb for r = 2.88 Å (equilibrium distance in the exciplex). Lower three
plots: Squared overlap |〈ψK′ (π) |ψK (φb)〉 |2 of the He2Ba+ P3 (K = 17, top
plot), P2 (K = 15, middle plot), P1 (K = 13, bottom plot), with the Σ (ψ17(π)),
Π3/2 (ψ15(π)), and Π1/2 (ψ13(π)) eigenvectors of the linear configuration as
a function of φb for r = 2.88 Å.

soon as it deviates from π, whereas the highest energy state
remains mostly Σ in character up to φb = π/2. Hence excitation
of the bending vibration, or even the zero-point amplitude of
the bending angle, can induce fine structure relaxation from
6p 2Π3/2 to 6p 2Π1/2.

D. Electronic couplings between different Ba+

states in exciplexes

In this section, we analyze the mixing of the P, D, and S
states of Ba+ induced by the helium atoms in different configu-
rations, in order to identify possible pathways for non-radiative
relaxation of Ba+ 6p 2P3/2 or 6p 2P1/2 to the lower electronic
states (5d 2D or 6s 2S). The eigenstates of Ba+ in interaction
with helium are labeled as explained at the end of Sec. II D.
They are denoted as S̃, P̃, and D̃ to differentiate them from the
S, P, and D states of the isolated Ba+.

The potential energy curves of HenBa+ in the n = 2 lin-
ear and n = 7 ring configurations already presented in Fig. 4
are completed by the mixing coefficients presented in Fig. 7.
These coefficients characterize the contribution of the bare
Ba+ 6s 2S, 5d 2D, and 6p 2P states to the corresponding states
of the excimers. They are defined as follows:

CL̃,L′ =
∑

K

∑
K′
|cK′K |

2, (14)

where cK′K are the coefficients of eigenstate K in the basis
functions |ψK′〉 as introduced at the end of Sec. II D. K runs
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FIG. 7. Mixing coefficients for He· · ·Ba+, linear He2Ba+, and ring-shaped
He7Ba+. The bottom, middle, and top plots give the decomposition of the
adiabatic ground 6S̃ and excited 5D̃ and 6P̃ states, into Ba+ electronic states
6S (purple curves), 5D (green curves), and 6P (red curves), respectively [CS̃L′ ,
CD̃L′ , and CP̃L′ defined in Eq. (14)]. Given the degeneracy of the S, D,
and P states, the asymptotic value of CS̃S , CD̃D, and CP̃P is 2, 10, and 6,
respectively.

over all the eigenstates |ψK 〉 corresponding to L̃ (i.e., S̃, P̃, or
D̃) and K ′ runs over the basis functions corresponding to state
L′ of Ba+ (S, P, or D).

Helium-induced electronic transitions should occur in
regions where potential energy curves are close to each other,
usually in the repulsive part or in the so-called avoided cross-
ings. Note that the n = 2 and n = 7 excimers have an additional
plane of symmetry containing the barium ion so that curves
belonging to different symmetry classes of their symmetry
point group (D∞h for n = 2, D7h for n = 7) can cross without
mixing. This is the case for curves originating from p orbitals,
which have no common irreducible representation with the s
or d orbitals.68 Hence in Fig. 4 the crossing of the highest D̃
state with the P̃ ones for n = 2 and of the three higher of D̃
states with the lower P̃ one for n = 7 are “real crossings” and
do not induce electronic relaxation.

In the case of the n = 1 excimer, there is no obvious avoided
crossing in Fig. 4. However, examination of the mixing coef-
ficients in the left column of Fig. 7 reveals some mixing of
the states in the 2.0 ≤ r ≤ 3.2 Å range. The minimum of the
P̃ wells is at 2.94 Å (�30.3 cm�1) for the lowest and 2.88 Å
(�485.9 cm�1) for the intermediate state (the highest one only
has a van der Waals well). Hence if the He· · ·Ba+ 6P̃ exci-
plex is formed in the course of the photodissociation, there is a
small probability that it will dissociate to the lower 5D̃ and 6S̃
states. As concluded above in the study of the resonances in the
photodissociation spectrum of He· · ·Ba+, the bound states in
the 6p 2P3/2 well are therefore predissociated, but their lifetime
is quite long.

The linear n = 2 excimer potential energy curves reveal
several interesting features. First, the highest D̃ curve inter-
sects all three P̃ curves and notably the two lower ones which

are mostly Π in the region of their well. However, because of
symmetry reasons evoked earlier, this cannot result in predis-
sociation of the P̃ states. Hence the P̃ states remain 100% P,
as evidenced from the CP̃,P coefficient which remains equal to
six for all distances. This situation can change if symmetry is
broken; see Sec. V E.

Another interesting feature is the avoided crossing
between the 6S̃ and the lower 5D̃ curves in the vicinity of
r = 2.12 Å. It is clearly seen in the decomposition of the
6S̃ He2Ba+ states in Fig. 7, which switches from 6S at long
distances to 5D for r = 2 Å. Since this is in the repulsive
region for both curves, it could only become important in the
case of dissociative dynamics occurring at energies close to
that of the avoided crossing, V = 11 900 cm�1. This is possi-
ble if the exciplex was initially created in one of the 6P̃ states
which could then be predissociated to the highest D̃ state in an
inhomogeneous environment (to break cylindrical symmetry).

Helium induced transitions are also encountered in the
case of the n = 7 ring isomer. In this case only the lowest 6P̃
state has a well, but it is deeper: 2272 cm�1 at r = 2.9 Å. It
is intersected by the three highest 5D̃ curves going asymp-
totically to the 5d 2D5/2 level. For the same symmetry reason
as in the linear n = 2 excimer, this does not induce transition
unless symmetry is broken by the environment. In addition,
there is also an avoided crossing. As can be seen by looking
at the 6S̃ He7Ba+ states in Fig. 7, they switch from 6S at long
distances to 5D at shorter distances, and this crossing occurs
at longer distances than for He2Ba+: ∼3 Å, which makes the
5d 2D→ 6s 2S relaxation even more probable in the exciplex
configuration where He–Ba+ distances are ∼2.9 Å.

E. Influence of exciplex vibrations
on electronic couplings

As concluded in Sec. V D, many possible couplings
between electronic states are forbidden by the high symme-
try of the exciplexes. In the case of the linear n = 2 excimer,
for instance, the two 6P̃ states are mostly |Λ| = 1, while the
highest 5D̃ state is mostly Λ = 0, hence the system has to get
out of cylindrical symmetry for the P-D coupling to become
efficient. This could occur if the helium environment becomes
inhomogeneous and/or upon excitation of a non-symmetric
vibration. As an example, Fig. 8 shows the S-P-D electronic
state coefficients CL as a function of the bending angle (φb

= π at equilibrium) for selected eigenstates which exhibit some
degree of mixing. The CL are defined as

CL =
∑

K

∑
K′
|cK′K |

2, (15)

where cK′K was introduced at the end of Sec. II D, K runs
over Kramer’s pair of the Kramer’s pair of eigenvectors, and
K ′ runs over the basis functions corresponding to state L of
Ba+ (S, P, or D). Both the highest state, corresponding to
6p 2Σ1/2 at the linear configuration, and the intermediate state,
corresponding to 6p 2Π3/2, start showing some mixing with
D states as soon as the bending angle gets away from the lin-
ear configuration. The effect is even larger at shorter distances
(not shown here), which can be accessed in the case where the
excimer is formed with a lot of internal energy. In this case,
even the lower P state shows some mixing with the D states.
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FIG. 8. Electronic state coefficients CL [defined in Eq. (15)] as a function
of the bending (He–Ba+–He) angle φb at r = 2.88 Å for selected He2Ba+

eigenstates ψK (in parentheses their assignment at φb = π): K = 1 (6s 2Σ1/2);
9 (5d 2∆5/2); 11 (5d 2Σ1/2); 15 (6p 2Π3/2); and 17 (6p 2Σ1/2) in increasing
energy order. If the state is “pure,” like most of them at φb = π, the result is
2 for the corresponding L and 0 for the others.

These shorter distances, at which interelectronic state cou-
plings are stronger and can induce predissociation, can be
accessed in the course of the dynamics following Ba+ 6p 2P
photoexcitation. As already mentioned, exciplexes are initially
formed with a lot of internal energy. In addition, if fine structure
relaxation occurs, additional energy is brought into the system.
For instance, if it occurred at the minimum energy distance of
the 6p 2Π3/2 curve of the n = 2 excimer, this would corre-
spond to 1200 cm�1 of additional energy. With this amount of
kinetic energy, the classical turning point in the Π1/2 state is
2.475 Å. At this distance, the couplings between different elec-
tronic states of Ba+ are much stronger. In a complex already
distorted because of the amount of internal energy with which
it was initially formed, this could lead radiationless transitions
from 6p 2P to 5d 2D and then 5d 2D to 6s 2S.

VI. SUMMARY AND OUTLOOK

We have designed a model for the Hen–Ba+ electronic
Hamiltonian in order to explore the possibility for helium-
induced electronic transitions of Ba+ excited to a 6p 2P state.
Application of this Hamiltonian to the calculation of the pho-
todissociation of He· · ·Ba+ gives excited bound state lifetimes
exceeding by far the radiative lifetime. However, using this
Hamiltonian in configurations of Ba+ with more than one
He has revealed the possibility for helium induced transitions
even in symmetric environments, like the fine structure relax-
ation in the n = 7 ring configuration. In addition we have

shown that bending vibrations can induce fine structure or
other electronic relaxation (“internal conversion”) by break-
ing cylindrical symmetry. We believe that the large amount
of kinetic energy released in these processes could be partly
transferred to the impurity, which could explain the ejection
of Ba+ or excimers from the droplet.

These mechanisms for fine structure relaxation and inter-
electronic state relaxation are shown here for Ba+, but the
model could in principle be applied to any one-electron sys-
tem such as other alkali-earth ions and alkali atoms in solid or
liquid helium and in droplets. For instance, electronic relax-
ation was reported for cesium in solid helium.9 Note that
even in cold (T = 1.35 to 30 K) helium gas where density is
low, fine structure relaxation has been observed and attributed
to collisional relaxation of the He· · ·Ba+ exciplex.36–38 In
helium droplets, the other alkali-earth ions should exhibit elec-
tronic relaxation processes similar to those presented here
for Ba+.

In the case of neutral alkali (Ak) atoms, there is an impor-
tant difference due to their localization at the surface of the
droplet, which makes the formation of a linear or ring excimer
or even bubble configuration unlikely. As shown in He-DFT
and He-TDDFT simulations, only one of the two minima of
the potential well of the np 2Π3/2 state, the one closer to the
droplet surface, is populated, the other one being on the other
side of the alkali with respect to the droplet. Thus only the
1-atom HeAk np 2Π3/2 excimer can be formed.12 This is in
full agreement with quantum Monte Carlo calculations car-
ried out for Rb atoms.69 Hence if electronic relaxation due to
helium occurs in these excited atoms, it could only be due to
the non-symmetric helium environment.

Very recently, a combined experimental and theoretical
study has shown that spin-orbit relaxation is indeed impor-
tant for alkalis on 4He droplets.70 The experiment showed
that 2Π3/2 excitation of a Rb atom bound to a droplet leads
to the formation of a stable RbHe exciplex which detaches
from the droplet. The accompanying theoretical He-TDDFT
study also showed the formation of an exciplex, but only
by invoking 2Π3/2 →

2Π1/2 relaxation could detachment be
explained.

The electronic Hamiltonian model presented in this work
provides a tool for studying electronic relaxation in a wide
range of helium environments. The couplings responsible for
fine structure and inter-electronic state relaxation need to be
confirmed by a dynamics study, which is currently under way
in our laboratories.

SUPPLEMENTARY MATERIAL

See supplementary material for the 5d 2D ← 6s 2S pho-
todissociation spectrum which is induced by electronic mixing
in He· · ·Ba+, as well as details on the 6p 2P ← 6s 2S and
5d 2D← 6s 2S spectra: final state resolved cross sections and
resonance energies compared to quasibound state energies.
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