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Abstract 

  UHPLC-HRMS (Orbitrap) fingerprinting in negative and positive H-ESI mode 

was applied to the characterization, classification and authentication of cranberry-based 

natural and pharmaceutical products. HRMS data in full scan mode (m/z 100-1500) at a 

resolution of 70,000 full-width at half maximum was recorded and processed with 

MSConvert software to obtain a profile of peak intensities in function of m/z values and 

retention times. A threshold peak filter of absolute intensity (10
5
 counts) was applied to 

reduce data complexity. Principal component analysis (PCA) and partial least squares-

discriminant analysis (PLS-DA) revealed patterns able to discriminate the analyzed 

samples according to the fruit of origin (cranberry, grape, blueberry and raspberry). 

Discrimination among cranberry-based natural and cranberry-based pharmaceutical 

preparations was also achieved. Both, UHPLC-HRMS fingerprints in negative and 

positive H-ESI modes, as well as the data fusion of both acquisition modes, showed to 

be good chemical descriptors to address cranberry extracts authentication. Validation of 

the proposed methodology showed a prediction rate of 100% of the samples. Obtained 

data was further treated by partial least squares (PLS) regression to identify frauds and 

quantify the percentage of adulterant fruits in cranberry-fruit extracts, achieving 

prediction errors in the range 0.17-3.86%. 

 

 

Keywords: Non-targeted UHPLC-HRMS fingerprinting; Cranberry-based products; 

Food characterization; Food Authentication; UHPLC; High resolution mass 

spectrometry;  
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1. Introduction 

 Nowadays, it is a common practice worldwide to address the prevention of 

several chronic diseases by employing, together or not with the use of regulated 

medicines, plant-based and/or fruit-based pharmaceutical extracts. This is the case of 

American red cranberry (Vaccinium macrocarpon), a small evergreen shrub from the 

Ericaceae family that grows in acid swamps in humid forests. American cranberry fruits 

are composed mostly of water (>80%), and are a rich source of vitamin C and dietary 

polyphenols, such as flavonols, anthocyanins, organic acids and proanthocyanidins 

(PACs). Cranberries have been used for centuries as a flavoring or by sailors to prevent 

scurvy due to its high vitamin C content. Moreover, their consumption may be 

associated with reduced risk of chronic diseases such as cancer, although strong 

evidences have not been yet established in humans, and several berry-based extracts 

have shown antitumor activities. Cranberry-extracts enriched in polyphenolic contents 

have also shown enhanced antiproliferative activity. These extracts may also play an 

important role in the treatment of oral infections by reducing the pathogenesis of dental 

caries, the protection against cardiovascular diseases, and the prevention of oxidation of 

low density lipoproteins and platelet aggregation.
1–5

  

 Recently cranberries have attracted much attention due to their high content on 

PACs and the capacity of some of them to prevent urinary tract infections (UTIs).  This 

activity is attributed to the inhibition of the adhesion of pathogenic bacteria, such as 

Escherichia coli and Helicobacter pylori, to the cells of the urinary tract tissues, thus 

preventing bacterial colonization and the proliferation of infections.
6–9

 PACs, also 

known as condensed tannins, are flavan-3-ol polymeric structures mainly based on 

(epi)catechin oligomers, called procyanidins, but other forms can have 

(epi)gallocatechin units (i.e. prodelphinidins) or (epi)afzelechin (i.e. propelargonidins) 

units.
10

  

 PACs can be classified according to the linkage between their units. PACs 

linked through C4-C8 or C4-C6 bonds are known as B-type PACs. If these structures 

have an additional ether linkage between C2-C5 or C2-C7 they are known as A-type 

PACs.
11

 As an example, Fig. S1 (electronic supplementary information) shows the 

structure of a trimeric PAC with A-type and B-type linkages. Nevertheless, only A-type 

PACs, very abundant in American red cranberries, exhibit the bioactive activity to 

prevent UTIs, while B-type PACs, which are found in other fruits such as grapes and 

blueberries, do not show this activity.
12–14

 Many cranberry-based pharmaceutical 
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preparations have recently appeared in the market to prevent UTIs, and there is the 

suspicion that some of them do not contain the necessary bioactive PACs. The fact that 

only A-type PACs have the required bioactive capacity and that pharmaceutical 

laboratories frequently assess the total content of PACs by non-selective colorimetric 

methods,
15,16

 unable to differentiate among A- and B-type PACs, demonstrates the 

importance on developing analytical methods to characterize cranberry fruit-based 

extracts and pharmaceutical preparations to authenticate the fruit of origin employed in 

these processed extracts and to prevent frauds. Moreover, due to food trade 

globalization and the increased complexity of supply chains, the need for effective 

systems to protect consumers from impure, contaminated and fraudulently presented 

food-processed products has increased. Current food labeling and traceability systems 

cannot strictly guarantee that the food is authentic, of good quality and safe. As a result, 

consumers are demanding verifiable traceability evidences as an important criterion of 

food quality and safety.
17

 

Liquid chromatography coupled to mass spectrometry (LC-MS), tandem mass 

spectrometry (LC-MS/MS) and high resolution mass spectrometry (LC-HRMS), in 

combination with chemometric methods, emerge today as the best analytical tools to 

characterize, classify and authenticate food products.
18–23

 These platforms result in one 

of the best ways to detect fraudulent practices derived from the substitution of the most 

valued components in the fruit-processed extracts by others of lower commercial value, 

with worse organoleptic characteristics, or without the intended beneficial properties for 

human health. Food fingerprinting, the non-targeted chemical analysis of food products 

with multivariate data analysis, is emerging as an innovative approach for food 

authentication.
24–26

 This approach is based on the principle of metabolomics, which 

describes the scientific study of metabolites (small molecules below 1,500 Da), present 

in a biological system with the aim to detect as many components as possible. Although 

the main focus of metabolomics are in the field of pharmacology and toxicology, the 

use of these approaches in food science is gaining acceptance. However, in the food 

field, an important distinction is made between the concepts of food fingerprinting and 

food profiling in accordance to the corresponding definitions of metabolomics.
24,27

 

Researchers coming from the metabolomic field use “profiling” and “fingerprinting” on 

a different way to researchers who are devoted to food science. The arrival of a 

“foodomics” discipline was not enough to allay this terminological problem, since 

authors keep on using the terms with both meanings.
26

 Food profiling focuses on the 
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analysis of a group of known selected metabolic chemicals, or a group of chemicals 

belonging to the same family or with a similar structural feature. The concentrations (or 

peak signals) of these targeted compounds are then used as food features (markers) to 

address food authentication. In contrast, food fingerprinting do not deal with the 

identification of metabolites, but on the recognition of patterns, the so-called 

“fingerprints” of the foodstuff.
28

 After identification and mapping of the patterns to 

individual food matrices, the objective is usually to differentiate between various food 

fingerprints in terms of food features such as botanical species, geographical origin, or 

with respect to possible food adulterations.
24

 

The fact that similar fruit extracts but with different properties are used as the 

ingredients in the preparation of food processed products and pharmaceutical 

preparations increases the difficulty of using targeted methods and may need to employ 

non-targeted approaches in order to obtain specific fingerprints of the original products. 

These so-called food fingerprinting approaches aim to capture as many compounds or 

features as technically possible to gain a comprehensive insight into the composition of 

the sample.
25

 However, a large amount of chemical data is obtained making difficult its 

treatment. In this regard, several chemometric data processing software packages with 

different characteristics and algorithms have been introduced for MS users.
29

 After data 

acquisition and processing, chemometric univariate and multivariate statistical methods 

are then used for sample characterization, classification and authentication.
30,31

 

 The aim of this work was to develop a suitable method to characterize, classify 

and authenticate natural and pharmaceutical cranberry-based products, employing ultra-

high performance liquid chromatography-high resolution mass spectrometry (UHPLC-

HRMS) using a non-targeted fingerprinting approach with a Q-Exactive Orbitrap 

analyzer. Different classes of fruit-based (cranberry, blueberry, raspberry and grape) 

products including the raw fruit extracts, fruit juices and raisins, as well as commercial 

cranberry-based pharmaceutical preparations including raw extracts, powder capsules, 

syrups and sachets were analyzed after a simple sample extraction procedure. The 

hypothesis established in this work is that UHPLC-HRMS fingerprinting data, obtained 

in both positive and negative ESI mode, exploring also the possibility of data-fusion, 

can be considered as a source of potential chemical descriptors to be exploited for the 

characterization and classification of fruit-based natural products and pharmaceuticals 

by unsupervised principal component analysis (PCA) and supervised partial least 

squares-discriminant analysis (PLS-DA). Data was further treated by partial least square 
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(PLS) regression to quantify percentages of fruit extracts (grape, blueberry and 

raspberry) used for adulteration in cranberry extracts.  

 

2. Experimental 

2.1. Chemicals 

 Unless otherwise specified, the reagents and chemicals used were always of 

analytical grade. LC-MS grade water, methanol, acetonitrile, formic acid (98-100 %) 

and acetone were purchased from Sigma-Aldrich (Steinhein, Germany), and 

hydrochloric acid (98%) from Merck (Seelze, Germany).  

 

2.2. Instrumentation and methods 

 The chromatographic fingerprints were obtained with an Accela UHPLC system 

(Thermo Fisher Scientific, San José, CA, USA) consisting of a quaternary pump and an 

Accela AS autosampler, coupled to a Q-Exactive Orbitrap HRMS system (Thermo 

Fisher Scientific) mass spectrometer equipped with a heated electrospray ionization 

source (HESI-II) operated in positive and negative ionization mode by means of two 

runs, respectively. Nitrogen (purity >99.98 %) was used as the nebulizer and 

desolvation gas. Specific parameters were as follows: sheath gas, 60 a.u. (arbitrary 

units); sweep gas, 0 a.u.; auxiliary gas, 10 a.u.; capillary temperature, 320 ºC; HESI-II 

probe temperature, 350 ºC; electrospray voltage, 2.5 kV; S-lens RF level, 50 V. Q-

Exactive Orbitrap HRMS system was tuned and calibrated using Thermo Fisher 

calibration solutions every three days in both negative and positive modes to ensure a 

working mass accuracy error lower than 5 ppm. Mass spectra were acquired in full 

MS scan mode employing two runs, in both positive and negative, respectively, at a 

resolution of 70,000 full-width at half maximum (FWHM) at m/z 200 with a scan range 

of 100-1,500 m/z. The automatic gain control (AGC) target was set at 10
6
 and the 

maximum injection time (IT) was 200 ms.  

 A porous-shell Ascentis® Express C18 reversed-phase column (150 × 2.1 mm, 

2.7 µm particle size) provided by Supelco (Bellefonte, PA, USA) was used for the 

separation. Gradient elution was performed with 0.1% formic acid aqueous solution 

(solvent A) and 0.1% formic acid in acetonitrile (solvent B) at a constant flow rate of 

0.3 mL/min with the following gradient program: 0-1 min at 10% B; 1-20 min from 10 

to 95% B; 20-23 min at 95% B, 23-24 min back to initial conditions at 10% B; and 

column re-equilibration for 6 min at initial conditions. Injection volume was 10 µL.  
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2.3. Sample treatment 

 A total of 106 natural and pharmaceutical products were analyzed in this work. 

Natural products from different brands were purchased from Barcelona markets and 

pharmaceutical preparations and raw extracts were provided by Deiters S.L. Company 

(Barcelona, Spain). The samples included 22 commercial pharmaceutical berry-based 

products (11 capsules, 2 syrups, 4 sachets and 5 extracts), 33 cranberry-based products 

(4 fruit samples, 8 raisin samples and 21 juice samples), 29 grape-based products (4 

fruit samples, 8 raisin samples and 17 juice samples), 12 blueberry-based products (6 

fruit samples and 6 juice samples) and 10 raspberry-based fruit samples. All fruits and 

raisins were grinded using an Ika Ultra-Turrax machine (Staufen, Germany) with 

different applicators. Water, in a 1:1 sample:water ratio, was added to raisins to improve 

the crushing. Then, all analyzed samples (10 g for solid sample, and 25 mL for juices 

and syrups) were freeze-dried to achieve fully lyophilized products. For this purpose, 

samples remained 24 h inside a lyophilizer (Telstar LyoQuest, Terrasa, Spain) with a 

gradient temperature ramp from -80 ºC to room temperature and then were kept for 6.5 

h at 40 ºC. Once lyophilized extracts were obtained, sample treatment was carried out 

using a method previously described.
18,19

 Briefly, 0.1 g of lyophilized sample were 

dispersed in 10 mL of an acetone:water:hydrochloric acid (70:29.9:0.1 v/v/v) solution by 

sonication for 10 min. Then, the samples were centrifuged for 15 min at 3500 rpm, and 

the supernatant extracts separated from the solid and stored at -4 ºC until analyzed. 

Before injection, extracts were filtered through 0.45 µm nylon filters (Whatman, 

Clifton, NJ, USA). Besides, a quality control (QC) consisting of a mixture of 50 µL of 

each sample extract was prepared and injected every 10 samples to evaluate the 

repeatability of the method and the robustness of the chemometric results.  

For authentication studies by PLS regression, three cases were evaluated in 

which cranberry extracts were adulterated with different amounts of grape, blueberry or 

raspberry, respectively. For such a purpose, 3 cranberry, 3 grape, 3 blueberry- and 3 

raspberry-fruit sample extracts were processed as indicated above. These series of 

extracts were used to prepare standard and unknown samples to be used for calibration 

and prediction sets. Hence, apart from those pure extracts, mixtures of cranberry and the 

adulterant fruits were prepared as follows: 50% adulterant (5 samples), 20% adulterant 

(3 samples), 12% adulterant (3 samples), 10% adulterant (3 samples), 7% adulterant (3 

samples), 6% adulterant (3 samples), 5% adulterant (3 samples), 2.5% adulterant (3 

samples), and 2% adulterant (3 samples), for each adulterant fruit. 2% adulterant was 
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established as the minimum adulterant level that can be quantified with the proposed 

methodology. 

 

2.4. Data analysis 

 The data treatment for the untargeted analysis was carried out with R  

software (R Foundation, Vienna, Austria). Data chemometric analyses with PCA, PLS-

DA and PLS regression were carried out with the Stand Alone Chemometrics Software 

(Solo), provided by Eigenvector Research Inc. (Manson, WA, USA).
32

 A detailed 

description of the theoretical background of these chemometric methods is given 

elsewhere.
33

 

The X-data matrices to be treated by PCA and PLS-DA consisted of the 

UHPLC-ESI-q-Orbitrap fingerprints (peak intensities as a function of retention times 

and m/z values) obtained in both H-ESI(+) and H-ESI(-), as well as the data-fusion 

combination of the two ionization modes. The Y-data matrix in the PLS-DA models 

consisted of the sample classes. Scatter plots of scores and loadings of the principal 

components (PCs), in PCA, and of the latent variables (LVs), in PLS-DA, were used to 

investigate the structure of maps of samples and variables, respectively. The 

quantification of the percentage of fruit-extract used for adulteration (grape, blueberry 

or raspberry extracts) in the adulterated cranberry-based extracts analyzed was based on 

PLS regression. Samples available were distributed among training and test sets as 

follows. Training set: 100% adulterant (3 samples), 50% adulterant (5 samples), 20% 

adulterant (3 samples), 10% adulterant (3 samples), 7% adulterant (3 samples), 5% 

adulterant (3 samples), 2% adulterant (3 samples), and 100% cranberry-fruit (3 

samples). The remaining samples considered as unknown (12% adulterant, 6% 

adulterant, 2.5% adulterant, 3 samples each) were used for validation and prediction 

purposes.  

 

3. Results and discussion 

3.1. UHPLC-HRMS fingerprinting 

In this work, a non-supervised UHPLC-HRMS fingerprinting analysis of fruit-

based products and cranberry-based pharmaceuticals was evaluated in order to obtain 

proper chemical descriptors for sample classification and authentication. For that 

purpose, 106 samples were processed with a simple sample extraction method and the 

obtained extracts were analyzed with a C18 reversed-phase UHPLC-HRMS method 
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(see experimental section). The fingerprint of a fruit-based product will depend on both 

the fruit variety genotype and the product phenotype (food attributes determined by 

ambient conditions, agricultural practices, food-processing procedures, etc.). Thus, it is 

expected that these fingerprints will provide good chemical descriptors to achieve 

sample characterization and classification by means of chemometric methods. 

Accordingly, an untargeted strategy relied on UHPLC-HRMS fingerprints consisting of 

intensity peaks recorded as a function of m/z and retention time. Data was then 

registered in both negative and positive HRMS full scan mode (m/z 100-1500). As an 

example, Fig. 1 shows the total ion chromatograms (TIC) obtained in negative H-ESI 

mode for the four types of fruits analyzed (raspberry (a), grape (b), blueberry (c), and 

cranberry (d)). The figure also shows, as an arbitrary example, the full scan HRMS 

spectra obtained for each fruit extract at a retention time of 6.61 min. As can be seen, 

important differences in peak signals and abundances in both total ion chromatograms 

and HRMS spectra were obtained. Cranberry- and blueberry-based samples seemed to 

provide richer fingerprints (more signals), while those belonging to grape-based 

products were simpler.   

 

3.2. Exploratory principal component analysis study 

 The obtained UHPLC-HRMS fingerprint raw data was processed with 

MSConvert software to obtain a profile of peak intensities in function of m/z values and 

retention times. In order to reduce the data complexity, a threshold peak filter of 

absolute intensity 10
5
 was applied. The converted data was then processed with R 

software to obtain a data matrix including the UHPLC-HRMS fingerprints of the 106 

samples analyzed and the QCs. The dimension of the obtained data matrices were 118 × 

469 for positive H-ESI mode and 118 × 641 for negative H-ESI mode. PCA required 5 

and 6 principal components (PCs), for negative and positive H-ESI, respectively, to 

explain most of the variance observed within the analyzed samples. As an example, Fig. 

2 shows the score plots that provided the best sample differentiation: (a) PC2 vs PC4 

when using UHPLC-HRMS fingerprints in positive H-ESI mode and (b) PC1 vs PC3 

when using UHPLC-HRMS fingerprints in negative H-ESI mode. As can be seen, 

complete discrimination between all the analyzed types of samples was not obtained. 

Nevertheless, samples tend to be grouped according to the fruit of origin. In general, 

UHPLC-HRMS fingerprinting in negative ionization mode seem to provide more 

discriminant chemical descriptors among samples which allow to concentrate the 
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samples in smaller regions within the score plot (see for instance the distribution of 

cranberry-based and, especially, for raspberry-based natural products). Although at this 

point complete discrimination among the four fruit types was not achieved, for example 

blueberry- and grape-based natural products tend to be overlapped in both score plots, 

cranberry-based natural products were completely separated from the other three types 

of fruits when using both positive and negative UHPLC-HRMS fingerprints. This is an 

interesting result because cranberry natural products should be the specific source of the 

raw extracts employed in the preparation of pharmaceuticals, and thus susceptible to 

adulteration with other fruit extracts as commented in the introduction. 

 Finally, in Fig. 2 it can also be observed that cranberry-based samples (both 

natural products and pharmaceutical preparations) tend to be grouped, more or less, in 

the same region of the score plots, although with certain discrimination depending on 

the pharmaceutical form (raw extract, capsules, syrups and sachets), and in some cases 

clearly differentiated from cranberry-based natural products. This is probably due to the 

fact that purification and preconcentration procedures followed by pharmaceutical 

companies in the preparation of raw extracts from cranberry-fruits enriched with 

bioactive compounds in comparison to non-treated cranberry-fruit natural products, thus 

providing different patterns even though the fruit of origin is the same. 

Taking into account that raspberry, blueberry and grape extracts are expected to 

be used as potential adulterant of cranberry extracts, independent PCA among 

cranberry-based natural products and the other three fruit families were also evaluated. 

In this case, the dimensions of the obtained data matrices were 84 × 469 for positive H-

ESI mode and 84 × 641 for negative H-ESI mode. As an example, Fig. 3 shows the 

score plots that provided the best sample differentiation: (a) PC1 vs PC2 in positive H-

ESI mode and (b) PC1 vs PC3 in negative H-ESI mode. It can be observed that, except 

for some outliers that are expected when working with natural products, samples tend to 

be grouped in both cases according to the fruit of origin, although more overlapping 

between groups was observed in positive ionization mode. Up to this point, it seems that 

UHPLC-HRMS fingerprinting in negative ionization mode provided better 

discrimination among cranberry-fruit products and other adulterant fruits, as can be seen 

in Fig. 3b. PC1 clearly differentiated cranberry-based fruit products (clustered at the 

right of the plot) from those obtained with other fruits (distributed at the left of the plot).   

It was thus concluded from PCA that samples were reasonably distinguished as a 
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function of fruits of origin. Hence, data was expected to be of interest to tackle further 

classification studies by PLS-DA. 

 

3.3. Supervised partial least squares-discriminant analysis study 

 

UHPLC-HRMS fingerprints obtained in both H-ESI negative and positive 

acquisition modes were here evaluated as chemical descriptors to address sample 

classification by PLS-DA. For that purpose, no further data treatment from the 

employed PCA data matrices was required. Therefore, the same X-data matrix 

employed in PCA was submitted in PLS-DA, while the Y-data matrix coded the 

belonging of the samples to their corresponding classes (i.e., cranberry products, 

cranberry-based nutraceuticals, and grape, blueberry and raspberry products). Fig. 4 

shows the 3D-scatter plots of scores of LV1 vs LV2 vs LV3 from UHPLC-HRMS 

fingerprints in negative H-ESI (Fig. 4a) and in positive H-ESI (Fig. 4b). In addition, 

data fusion of both negative and positive fingerprints were also evaluated as chemical 

descriptors for PLS-DA, and the obtained 3D-scatter plot of score of LV1 vs LV2 vs 

LV3 is depicted in Fig. 4c. As seen in the figures, in general very acceptable 

discrimination among the analyzed sample groups (samples tend to be grouped 

according to the fruit of origin) was obtained independently of the H-ESI acquisition 

mode employed, as well as when data fusion of both ionization modes was considered. 

In addition, cranberry-based products are differentiated into two groups, namely: fruit-

based and pharmaceutical-based products, in agreement with purification and 

preconcentration procedures followed applied to nutraceuticals, as previously 

commented. Nevertheless, both sample groups tend to be distributed on the same area of 

the 3D-scatter plots of scores and opposed to the grape-, blueberry- and raspberry-fruit 

based samples. Therefore, either individual data sets from negative or in positive H-ESI 

mode, or even the data fusion set of both fingerprints, are adequate, a priory, for the 

characterization and authentication of cranberry-based natural products and 

pharmaceutical preparations. 

In order to validate the proposed methodology, and taking into consideration that 

raspberry, blueberry and grape extracts are expected to be used as potential adulterants 

of cranberry extracts, PLS-DA models using UHPLC-HRMS fingerprints in negative H-

ESI mode were built by pairs (cranberry vs grape, cranberry vs blueberry and cranberry 

vs raspberry). The optimum number of latent variables of each PLS-DA model was 
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stablished cross validation classification error average, being approximately the first 

minimum point the most appropriate one (Fig. S2, electronic supplementary 

information). As a good classification was obtained for the three studied pairs. Models 

were built by using a 70% of each group of samples as the calibration set and were 

validated with the remaining 30% of the samples. Fig. 5 depict the obtained PLS-DA 

plots of scores projected on LV1 vs LV2 as well as  the classification plot of  cranberry 

vs raspberry (a), blueberry (b) and grape (c), respectively. As seen in the figures, all 

samples were correctly assigned to its corresponding class, thus reaching a prediction 

rate of 100% in each studied case.  

 

3.4. Adulteration studies by partial least square regression 

 UHPLC-HRMS fingerprints in negative H-ESI acquisition mode were also here 

considered for the authentication and quantitation of fraud levels of fruit extract 

adulterants in cranberry-based extracts. Thus, a cranberry fruit-extract was adulterated 

at different levels (from 2 to 50%) of the other three fruits studied (blueberry, raspberry 

and grapes). Adulterated samples were then processed with the proposed sample 

treatment procedure and the obtained extract solutions were analyzed by UHPLC-

HRMS to obtain the corresponding fingerprints as chemical data for partial least square 

regression. A data set of calibration as indicated in the experimental section was first 

employed in order to establish the PLS model. The number of latent variables (LV) used 

for the assessment of the PLS model was estimated by venetian blinds cross validation 

considering 2 data splits. The PLS model was further applied to quantify the percentage 

of adulteration in the samples belonging to the test set. Fig. 6 shows the obtained PLS 

results when grape (a), blueberry (b), and raspberry (c) were the adulterants, showing 

the good performance of the obtained PLS models. Calibration errors were in all cases 

below 0.01% and, in general, small prediction errors were also obtained in the 

validation study, with values of 0.17% and 0.47% when grape and blueberry were used 

as adulterants, respectively, except when raspberry was used as adulterant where the 

prediction error increased up to 3.86%. However, taking into consideration that 

adulteration levels in nutraceuticals are expected to be high if an economical profit is 

intended, the proposed methodology showed a good performance for the authentication 

and quantitation of frauds, even at low adulteration levels.  

  

4. Conclusions 
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 A non-targeted UHPLC-HRMS fingerprinting method was employed for the 

characterization and classification of fruit-based natural products and cranberry-based 

pharmaceutical preparations. PCA results using both UHPLC-HRMS fingerprints in 

negative and positive H-ESI mode provided a reasonable discrimination among 

cranberry-based natural products and pharmaceuticals when compared to those obtained 

from other fruit extracts. Results improved when using PLS-DA, achieving an 

acceptable discrimination between the groups of samples analyzed both when using 

UHPLCHRMS fingerprints in negative and in positive acquisition mode, as well as 

when combining both acquisition modes in a data fusion matrix. The proposed methods 

were also able to distinguish among pharmaceutical preparations against cranberry-fruit 

based samples, probably due to the enhancement or reduction in bioactive compounds 

because of different extraction and purification steps used by the pharmaceutical 

companies when preparing their raw extracts. 

 PLS-DA models using UHPLC-HRMS fingerprints in H-ESI negative mode as 

chemical descriptors of cranberry-fruit based products against possible adulterant fruit 

extracts (grape, blueberry and raspberry) showed good discrimination among samples 

depending on the fruit of origin, with a prediction rate of 100% in each case study when 

30% of the samples were employed as validation set. Moreover, the proposed chemical 

descriptors were also useful to achieve adulterant level quantification by PLS 

regression, showing calibration errors below 0.01% and prediction errors in the range of 

0.17-3.86%. 

 As hypothesized in the introduction section, the results obtained in this work 

demonstrate that non-targeted UHPLC-HRMS fingerprinting methodology can be 

applied to the characterization, classification and authentication of cranberry-based 

products and pharmaceuticals adulterated with more economic fruit-based products such 

as grape, blueberry and raspberry extracts. Moreover, PLS results showed that 

adulterant levels below 2.5% can be quantified successfully with low enough calibration 

and validation errors. 

 Finally, the proposed methodology will allow to obtain in a fast way fingerprint 

chemical descriptors with lower data processing in comparison to targeted UHPLC-

HRMS profiling approaches in which a known family of bioactive compounds need to 

be characterized, detected and their signal confirmed and quantified by employing 

standards. This will make non-targeted UHPLC-HRMS fingerprinting methods cheaper 



14 
 

than targeted approaches as chemical standards are not required to perfectly achieve 

sample classification.  
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Figure captions 

Fig. 1. (a) UHPLC-HRMS total ion chromatograms of the four fruit sample types 

analyzed in negative ionization mode. (b) HRMS full scan spectra (m/z 100-1500) 

obtained for the four fruit sample types obtained at the retention time of 6.61 min. 

Fig. 2. PCA score plots of (a) PC2 vs PC4 when using UHPLC-HRMS fingerprints of 

all the analyzed samples (fruit-based products and pharmaceutical preparations) in 

positive H-ESI mode, and (b) PC1 vs PC3 when data was acquired in negative H-ESI 

mode. 

Fig. 3. PCA score plots of (a) PC1 vs PC2 when using UHPLC-HRMS fingerprints of 

natural fruit-based products in positive H-ESI mode, and (b) PC1 vs PC3 when data was 

acquired in negative H-ESI mode. 

Fig. 4. 3D-scatter plots of scores of LV1 vs LV2 vs LV3 for the analyzed samples when 

using UHPLC-HRMS fingerprints in (a) H-ESI negative acquisition mode, (b) H-ESI 

positive acquisition mode, and (c) data fusion of both H-ESI negative and positive 

acquisition modes as sample chemical descriptors. 

Fig. 5. PLS-DA plots of scores projected on LV1 vs LV2 as well as classification plots 

for cranberry vs (a) raspberry, (b) blueberry, and (c) grape, respectively. Dark and clear 

symbols correspond to calibration and validation sets, respectively. Dashed lines 

indicated the classification thresholds separating the classes.  

Fig. 6. Quantitation of (a) grape-, (b) blueberry-, and (c) raspberry-fruit percentages on 

cranberry-fruit extracts adulterated when using UHPLC-HRMS fingerprints in negative 

H-ESI mode by PLS.  
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Figure 2
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Figure 5
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Figure 6
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Electronic Supplementary Information 

Fig. S1. Structure of a trimeric proanthocyanidin with A-type and B-type linkages. 
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Fig. S2. Latent variable number vs CV classification error average plots for the built PLS-DA 

models of: (a) cranberry vs raspberry, (b) cranberry vs blueberry, and (c) cranberry vs grape.
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