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Schizophrenia constitutes a complex disease. Negative and cognitive symptoms are enduring and debilitating
components of the disorder, highly associated to disability and burden. Disrupted neurotransmission circuits in
dorsolateral prefrontal cortex (DLPFC) have been related to these symptoms. To identify candidates altered in
schizophrenia, we performed a pilot proteomic analysis on postmortem human DLPFC tissue from patients
with schizophrenia (n=4) and control (n=4) subjects in a pool design using differential isotope peptide label-
ling followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). We quantified 1315 proteins
with two or more unique peptides, 116 of which showed altered changes. Of these altered proteins, we selected
four with potential roles on cell signaling, neuronal development and synapse functioning for further validation:
casein kinase I isoform epsilon (CSNK1E), fatty acid-binding protein 4 (FABP4), neurofilament triplet H protein
(NEFH), and retinal dehydrogenase 1 (ALDH1A1). Immunoblot validation confirmed our proteomic findings of
these proteins being decreased in abundance in the schizophrenia samples. Additionally, we conducted immuno-
blot validation of these candidates on an independent sample cohort comprising 23 patients with chronic schizo-
phrenia and 23 matched controls. In this second cohort, CSNK1E, FABP4 and NEFH were reduced in the
schizophrenia group while ALDH1A1 did not significantly change. This study provides evidence indicating
these proteins are decreased in schizophrenia: CSNK1E, involved in circadian molecular clock signaling, FABP4
with possible implication in synapse functioning, and NEFH, important for cytoarchitecture organization.
Hence, these findings suggest the possible implication of these proteins in the cognitive and/or negative symp-
toms in schizophrenia.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Schizophrenia is a complex disorder in which genetic and environ-
mental factors are proposed to interact and contribute to the emergence
of the disease. These factors may converge and impact upon the same
physiopathological pathways in the brain, affecting neuralmicrocircuit-
ry (Harrison and Weinberger, 2005; Sullivan, 2012).

Negative symptoms (e.g. lack of volition, poor social functioning, and
blunted affect) and cognitive impairments (e.g. deficits in executive
functions and working memory) are core symptoms of schizophrenia,
and are the most resilient to currently available treatments (Gold,
tered CSNK1E, FABP4 and NEF
1016/j.schres.2016.04.050
2004; Millan et al., 2014; Stahl and Buckley, 2007). The dorsolateral
prefrontal cortex (DLPFC) is involved in both cognitive deficits (Frith
and Dolan, 1996; Lewis and Moghaddam, 2006; Teffer and
Semendeferi, 2012) and negative symptoms (Semkovska et al., 2001;
Toda and Abi-Dargham, 2007). A dysfunction in this region has been
widely described in functional and structural imaging studies and in
many molecular reports (English et al., 2011; Goldstein et al., 1999;
Konradi, 2005; Wong and Van Tol, 2003). Several neurotransmitter
systems have been implicated in this dysfunction. Hypodopaminergic
activity has been associated with cognitive impairments and negative
symptoms (Kienast and Heinz, 2006; Toda and Abi-Dargham, 2007).
Excitatory glutamatergic and inhibitory GABAergic neurotransmission
systems have also been implicated in these symptoms in schizophrenia
(Krystal et al., 1994; Lewis and Moghaddam, 2006; Moghaddam and
H protein levels in the dorsolateral prefrontal cortex in schizophrenia,
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Javitt, 2012). However, an integrative understanding of commonmolec-
ular pathways affected by these systems is just starting to be unveiled.

Previous proteomic and transcriptomic screenings have reported mi-
tochondrial function, cytoskeleton formation, and oligodendrocytes to
be consistently altered in the DLPFC in schizophrenia (English et al.,
2011; Konradi, 2005; Martins-de-Souza et al., 2010a; Martins-de-Souza
et al., 2009a). These approaches are useful tools that help to provide an
Fig. 1. Experimental strategy for a pilot large scale quantitative proteomic analysis to identify
dorsolateral prefrontal cortex (DLPFC) of controls (n = 4) and schizophrenia patients (SZ, n
were pooled and digested with trypsin. The resultant peptides were labelled with either hy
through a reductive dimethylation reaction. Then, differentially labelled peptides were mixed
trap-Orbitrap mass spectrometer for identification and relative quantification of pair peptid
analysis were performed as described in the experimental procedures section. A panel of 4
immunoblot: first, in a pilot validation in the pooled samples of cohort I (Table 1, n = 8, 4 sam
individual samples (Table 1; n = 46; 23 samples per group).
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overall picture of altered common functions and pathways in human
tissues. However, there is still missing information of altered proteins in
schizophrenia, which could potentially be obtained using alternative
proteomic approaches.

Here, we designed a pilot quantitative proteomic analysis using
differential isotope peptide labelling followed by liquid chromatogra-
phy fractionation and tandem mass spectrometry (LC-MS/MS) in grey
differentially expressed proteins in schizophrenia. Protein lysates from the postmortem
= 4) from cohort I (Table 1) were processed as depicted. Samples from the same group
drogen (light peptides, control) or deuterium (heavy peptides, schizophrenia) isotopes
1:1, separated by SCX chromatography and analyzed by LC-MS/MS on a hybrid linear ion
e sequences. Subsequently, protein database searches, peptide quantification and data
candidates from significantly regulated proteins was selected for further validation by
ples per group) and then, in an extended independent validation in a larger cohort II in
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matter DLPFC samples from four pooled schizophrenia and four pooled
control individuals with the end goal to discover possible common
altered proteins across patients with schizophrenia for further valida-
tion of selected candidates in a larger cohort of individual samples
(Fig. 1). Thus, after the initial proteomic screen, 23 samples per group
(control and SZ groups) were used in this study for independent
validation of three candidate proteins by immunoblot in individual
patients. Our validation was focused on novel altered protein isoforms
in schizophrenia with a plausible role on cell signaling, neuronal
development and synapse functioning.

2. Materials and methods

2.1. Brain tissue samples

For the pilot proteomic analysis, we used postmortem human brain
tissue from the DLPFC of patients with schizophrenia (1 pool composed
of 4 SZ patients) and control subjects with no history of psychiatric
episodes (1 pool composed of 4 control individuals) from the UPV/EHU
brain collection (see more details in Supplementary material and
Table 1). Samples were obtained at autopsy by forensic pathologists
under research policies with postmortem samples. All deaths were
subjected to retrospective analysis for previous medical diagnosis.
Subjects with antemortem criteria for paranoid schizophrenia according
to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)
that died by suicide were matched to control subjects who died by
accidental causes in a paired design, based on gender, age, and
postmortem delay (PMD). Toxicological screening for antipsychotics,
antidepressants, and other drugs was performed at the National
Table 1
Demographic, clinical and tissue related features of cases.

Cohort I: cases used in the pilot proteomic analysis

Schizophrenia (n = 4)

Gender
Male 100% (n = 4)

Age (years) 42 ± 11
PMD (hours) 8.25 ± 4.50
pH 6.80 ± 0.24
SZ diagnosis

Paranoid 100% (n = 4)
Toxicology

Atypical AP 50% (n = 2)
Drug free 50% (n = 2)

Cohort II: cases used in the independent validation

Schizophrenia(n = 23)

Gender
Male 95.65% (n = 22)

Age (years) 75 ± 9
PMD (hours) 4.71 ± 2.51
pH 6.73 ± 0.37
SZ diagnosis

Chronic residual 69.57% (n = 16)
Chronic paranoid 13.04% (n = 3)
Chronic disorganized 8.70% (n = 2)
Chronic catatonic 4.35% (n = 1)
Simple 4.35% (n = 1)

Age of onset of SZ (years) 25 ± 12
Duration of illness (years) 50 ± 12
Daily AP dose (mg/day)d 567.04 ± 502.86

First generation AP 30.43% (n = 7)
Second generation AP 47.83% (n = 11)
AP-free, not drug naive 21.74% (n = 5)

Mean ± standard deviation or relative frequency are shown for each variable; PMD, postmorte
a Mann-Whitney U is shown for non-parametric variables.
b Frequencies were analyzed by Fisher's exact test.
c T-statistic and degrees of freedom are shown for parametric variables.
d Last chlorpromazine equivalent dose was calculated based on the electronic records of dru
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Institute of Toxicology, Madrid, Spain. We further validated the candi-
dates identified in the quantitative proteomic assay in an independent
set of postmortem human DLPFC of patients with chronic schizophrenia
(n=23) and control individuals with no history of psychiatric episodes
(n = 23) from the collection of neurologic tissues of Parc Sanitari Sant
Joan de Déu (Roca et al., 2008) and the Institute of Neuropathology
Brain Bank (HUB-ICO-IDIBELL Biobank) (Table1). All SZ patients were
institutionalized donors with a long duration of the illness (Table 1)
who had no history of neurological episodes. The study was approved
by the Institutional Ethics Committee of Parc Sanitari Sant Joan de
Déu. We matched schizophrenia and control groups by gender (only
male patients were included), age, postmortem delay and pH.
Experienced clinical examiners interviewed each donor antemortem to
confirm schizophrenia diagnosis according to the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV) and International
Classification of Diseases 10 (ICD-10) criteria. All deaths were due to
natural causes. Neuropathologists from the Institute of Neuropathology
Brain Bank (HUB-ICO-IDIBELL Biobank) examined the contralateral
hemisphere for signs of neurodegenerative disorders in both schizo-
phrenia patients and control. 76.1% of both schizophrenia and control
groups showed low degree of Alzheimer disease-related changes
(Stage ≤ III, Braak and Braak scale (Braak et al., 2006; Braak and Braak,
1991)). The last daily chlorpromazine equivalent dose for the antipsy-
chotic treatment of patients was calculated based on the electronic
records of last drug prescriptions administered up to death as described
previously (Gardner et al., 2010) (Table 1). Patients and controls were
chosen among the collected brains on the basis, whenever possible, of
the following criteria: (a) negativemedical information on the presence
of neurological disorders or drug abuse, (b) accidental or natural cause
Control (n = 4) Statistic p value

100% (n = 4) N/A N/A
42 ± 12 7.50a 1.000
13.25 ± 7.59 4.50a 0.384
6.68 ± 0.47 7.50a 1.000
N/A N/A N/A

N/A N/A N/A

Control (n = 23) Statistic p value

95.65% (n = 22) N/A 1.000b

71 ± 11 1.31; 44c 0.197
5.45 ± 1.72 201.5a 0.170
6.78 ± 0.50 0.42; 44c 0.675
N/A N/A N/A

N/A N/A N/A
N/A N/A N/A
N/A N/A N/A

m delay; SZ, schizophrenia; AP, antipsychotics; N/A, not applicable

g prescriptions of the patients as described (Gardner et al., 2010).

H protein levels in the dorsolateral prefrontal cortex in schizophrenia,
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of death that does not compromise the integrity of the region of interest,
and (c) brain pHhigher than 6. Sampleswere codified by the brain bank
staff according to data protection procedures.

2.2. Protein extraction

Specimens of the DLPFC (Brodmann area 9), extending from the pial
surface to white matter and only including grey matter were dissected
from coronal slabs stored at −80 °C using a standard human brain
atlas (Mai et al., 1997). Due to collection methods in each institution,
left dorsolateral prefrontal cortex from schizophrenia patients was
pairedwith the contralateral hemisphere from controls. Protein extracts
were prepared from tissue samples using NP40 lysis buffer as described
previously (Pinacho et al., 2011). Protein concentrationwas determined
by Bradford assay (Biorad, Hercules, CA, USA).

2.3. Mass spectrometry analysis

500 μg of total protein extracts from control and schizophrenia ly-
sates (one pool per group composed of four samples, 125 μg of protein
per sample) were each reduced with 5 mM dithiothreitol at 56 °C for
30 min in 50 mM Tris pH 8, alkylated with 15 mM iodoacetamide in
the dark at room temperature for 30min and quenched with additional
5 mM dithiothreitol for 15 min. Each extract was digested with 5 ng/μL
trypsin in 50 mMTris, 1 mMCaCl2 pH 8 at 37 °C for 16 h. Peptides were
desalted by reversed-phase in a Sep-Pak tC18 cartridge (100mg,Waters
Associates, Milford, MA, USA). Peptide mixtures were resuspended in
500 μL of 1 M HEPES pH 7.5 and subjected to a reductive dimethylation
reaction as described previously (Khidekel et al., 2007). The light and
heavy dimethylated peptide solutions were mixed 1:1. Peptides were
desalted by reversed-phase in a Sep-Pak tC18 cartridge and subjected
to strong cation exchange chromatography on a polysulfoethyl A col-
umn. Twelve fractions were collected over 48-min in a gradient of KCl
in 5mMpotassium phosphate, 30% ACN, and dried by vacuum centrifu-
gation. Peptide fractions were resuspended in 1 mL 0.1% trifluoroacetic
acid, desalted by reversed-phase in a Sep-Pak tC18 cartridge and dried
by vacuum centrifugation. Peptides were resuspended in 5% ACN and
4% formic acid for LC-MS/MS analysis. Each peptide fraction was
separated by reverse phase chromatography on a capillary C18 column
and analyzed online on a hybrid linear ion trap Orbitrap (LTQ-Orbitrap
XL, Thermo Fisher Scientific, San Jose, CA, USA) mass spectrometer.
For each cycle, one full MS scan acquired at high mass resolution (AGC
target = 1 × 106, maximum ion injection time = 1000 ms) in the
Orbitrap analyser was followed by 10MS/MS spectra on the linear ion
trap (AGC target = 5 × 103, maximum ion injection time = 120 ms)
for the ten most abundant precursor ions. Fragmented precursor ions
were dynamically excluded from further selection for 35 s. Ions were
also excluded if their charge was either b2 or unassigned. All spectra
were acquired in centroid mode.

2.4. Protein database searches, peptide quantification and data analysis

Raw files were converted to mzXML format using ReadW version
4.3.1 using default parameters. MS/MS spectra were searched
against a concatenated target-decoy IPI human protein database
(version 3.20, n = 61.225 target sequences) using the Sequest algo-
rithm. Search parameters included fully tryptic enzyme specificity
with up to two missed cleavages permitted, mass tolerance of
50 ppm for the precursor and 1 Da for fragments ions, fixed modifi-
cations of carboxamidomethylation on cysteines (+57.02146) and
dimethylation on lysines and peptide N-termini (+28.03130), and
as variable modifications methionine oxidation (+15.99491) and
the difference between heavy (6 deuterium) and light dimethyl on
lysines and peptide N-termini (+6.03766). Peptide matches were
filtered to b1% false-discovery rate using the target-decoy database
strategy. Peptides matching to multiple proteins were arbitrarily
Please cite this article as: Pinacho, R., et al., Altered CSNK1E, FABP4 and NEF
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assigned to the protein first listed in the database. Peptides were
quantified using in-house software by peak-area integration, and
heavy/light peptide ratios were calculated. Among the set of inde-
pendent measurements retained for each protein, the median of
the log2 heavy/light ratio of all peptides of the same protein was
used to determine the protein ratio, and the standard deviation
(SD) was calculated (Supplementary Data 1). Quality cutoffs were
as described previously (Baek et al., 2008).
2.5. Immunoblotting

Validation of candidate proteinswas approached in two steps. A first
pilot validation was performed in the same pooled protein lysates ana-
lyzed in the proteomic analysis (a control pool and a schizophrenia pool
each comprising equal amounts of protein lysates from four different
samples). This was followed by an extensive validation in an indepen-
dent cohort of 46 samples. Both cohorts are described in Section 2.1.
In both validation steps 50 μg of total protein lysates were resolved by
SDS-PAGE electrophoresis and immunoblotted with polyclonal anti-
body against FABP4 (ab23693, Abcam, Cambridge, UK); NEFH
(ab40796, Abcam); and monoclonal antibodies against CSNK1E
(ab82426, Abcam); ALDH1A1 (ab52492, Abcam) α-tubulin (T6199,
Sigma-Aldrich, St Louis, MO, USA); β-actin (A5316, Sigma-Aldrich)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (MAB374,
Millipore-Chemicon). All proteins were detected by a unique band at
the predicted molecular weight. Densitometric quantification of
candidate proteins was performed using Quantity One software
(BioRad). Values were normalized to the geometric mean of α-
tubulin, β-actin and GAPDH, and a control reference sample.
2.6. Data and statistical analysis

In the pilot protein analysis, a quality cutoff for protein determina-
tions was set to ≥2 peptide sequences and to ≥4 spectral counts for
proteins with unique peptide quantifications. Then, the log2 of the
median of the heavy/light ratio for each protein was transformed to a
z-score for asymmetrical standard deviations of the main distribution
as described previously (Graumann et al., 2008). A significance value
for each protein ratio was calculated from the complementary error
function for the normalized distribution of the z-scores (Graumann
et al., 2008), which provides an indicator of the chance that a given
protein is altered in this pilot analysis. Higher chance to be altered is
provided for proteins located at the end of the tails in the normalized
distribution with lower significance values. Correction of significance
values for multiple testing in the quantified protein data set was
performed following the Benjamini and Hochberg method (Benjamini
and Hochberg, 1995). A False Discovery Rate (FDR) was computed for
all the significance values and FDR threshold was set to 0.01.

Normal distribution of the variables was determined by
D'Agostino & Pearson test. Demographic and tissue-related features
of the samples were compared between schizophrenia and control
conditions by Fisher exact test for qualitative variables, by Student
t-test for parametric quantitative variables, and by Mann-Whitney
U test for quantitative non-parametric variables. Differences of the
protein levels between schizophrenia and control groups were
performed by one-tailed unpaired Student's t-test based on the
results already provided by the pilot proteomic analysis indicating
the expected direction of change. Grubbs test was used to detect
outliers. Spearman or Pearson correlation analyses were carried out
to detect association of our molecular measures with other clinical,
demographic and tissue related variables (age, postmortem delay,
pH, daily chlorpromazine equivalent dose and duration of illness).
Statistical analysis was performed with GraphPad Prism version
5.00, with significance level set to 0.05.
H protein levels in the dorsolateral prefrontal cortex in schizophrenia,
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Table 2
Top twenty up and down regulated proteins in the pilot proteomic analysis of the postmortem dorsolateral prefrontal cortex in schizophrenia.

Acc.
number

Gene
symbol

Protein description Log2 ratio H/L Ratio
H/L

RBC? Biological function Previously reported in the dlPFC in SZ

Norm
median

SD Norm
median

Q9Y6C7 LOH3CR2A Loss of heterozygosity 3 chromosomal region 2 gene A protein −5.50 0.29 0.02 No Unknown
Q6FGZ8 TUBB TUBB protein (fragment)a −5.25 0.72 0.03 No Cell growth/maintenance ▼ English et al. (2009), ▲ Behan et al.

(2008)
Q5VWI4 NRAP Nebulin-related anchoring protein −4.90 2.18 0.03 No Cell growth/maintenance
XP_372916 LOC391352 Predicted: similar to peptidylprolyl isomerase A isoform 1 −4.36 1.95 0.05 No Unknown
Q569K3 LOC644936 Actin/actin-like family protein −3.80 1.31 0.07 No Cell comunication/signal transduction
Q5VVH4 PHIP Pleckstrin homology domain interacting protein −3.74 1.94 0.07 No Cell comunication/signal transduction
P11473 VDR Vitamin D3 receptor −3.54 1.63 0.09 No Regulation of gene expression, epigenetic
P22061-2 PCMT1 Isoform 2 of Protein-L-isoaspartate(D-aspartate) O-methyltransferase −2.00 0.96 0.25 No Protein metabolism ▲ English et al. (2009);

▲ Martins-de-Souza et al. (2009b)
P49674 CSNK1E Casein kinase I isoform epsilon −1.66 0.04 0.32 No Cell comunication/signal transduction (▲CSNK2A1) Martins-de-Souza et al.

(2009b)
P11217 PYGM Glycogen phosphorylase, muscle form −1.12 0.31 0.46 No Metabolism/energy pathways
Q96DZ9-2 CMTM5 Isoform 2 of CKLF-like MARVEL transmembrane domain-containing

protein 5
−1.07 0.72 0.48 No Unknown

P02689 PMP2 Myelin P2 protein −0.96 0.21 0.51 No Transport
Q96NS9 MAP4 CDNA FLJ30134 fis, clone BRACE1000187, weakly similar to

microtubule-associated protein 4
−0.96 0.56 0.51 No Cell growth/maintenance (▲MAP6) Martins-de-Souza et al. (2009b)

P49753-1 ACOT2 Isoform 1 of acyl-coenzyme A thioesterase 2 −0.92 0.26 0.53 No Metabolism/energy pathways
Q8NF17 IGHM FLJ00385 protein (fragment) −0.91 0.29 0.53 No Immune response
P12036 NEFH Neurofilament triplet H protein −0.85 0.32 0.55 No Cell growth/maintenance
P15090 FABP4 Fatty acid-binding protein, adipocyte −0.85 0.01 0.56 No Cell comunication/signal transduction
P00352 ALDH1A1 Retinal dehydrogenase 1 −0.77 0.39 0.59 Yes Aldehyde metabolism ▼ Prabakaran et al. (2004); (▲ALDH4A1)

Wesseling et al. (2013)
Q96IX5 USMG5 Up-regulated during skeletal muscle growth protein 5 −0.74 0.11 0.60 No Unknown
P63000-1 RAC1 Isoform A of Ras-related C3 botulinum toxin substrate 1 precursor −0.73 0.03 0.60 No Cell comunication/signal transduction
O96000 NDUFB10 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 0.68 0.25 1.61 No Metabolism/energy pathways
Q02410 APBA1 Amyloid beta A4 precursor protein-binding family A member 1 0.70 0.19 1.62 No Cell comunication/signal transduction
O94772 LY6H Lymphocyte antigen Ly-6H precursor 0.70 0.00 1.63 No Immune response
P63027 VAMP2 Vesicle-associated membrane protein 20.70 0.16 1.63 No Transport
P00403 MT-CO2 Cytochrome c oxidase subunit 2 0.71 0.13 1.64 No Metabolism/energy pathways
Q15836 VAMP3 Vesicle-associated membrane protein 3 0.73 0.25 1.66 Yes Transport
Q2TBE9 OAT Phospholysine phosphohistidine inorganic pyrophosphate phosphatase 0.74 0.24 1.66 No Unknown
P55087-1 AQP4 Isoform 2 of aquaporin-4 0.75 0.42 1.68 No Transport ▲ Chan et al. (2011)
Q9H5G0 ISOC2 Isochorismatase domain-containing protein 2, mitochondrial 0.78 0.36 1.72 No Metabolism/energy pathways
Q8NBS8 CAMKV CDNA FLJ90813 fis, clone Y79AA1000967, weakly similar to

calcium/calmodulin-dependent protein kinase type I
0.78 0.13 1.72 No Unknown

Q12904 NPNT Multisynthetase complex auxiliary component p43 0.79 0.32 1.73 No Unknown
P35232 PHB Prohibitin 0.82 0.34 1.76 No Cell comunication/signal transduction ▲ Behan et al. (2008); ▼ Smalla et al.

(2008)
Q99623 PHB2 Prohibitin-2 0.83 0.00 1.78 No Regulation of nucleobase, nucleoside, nucleotide

and nucleic acid metabolism
(▲PHB) Behan et al. (2008); (▼PHB)
Smalla et al. (2008)

P00167-2 CYB5A Isoform 2 of cytochrome b5 0.86 0.16 1.82 No Metabolism/energy pathways
P10636-6 MAPT Isoform tau-D of microtubule-associated protein tau 0.86 0.55 1.82 No Cell growth/maintenance
P62158 CALM1 Calmodulin 1.13 0.84 2.20 No Cell comunication/signal transduction ▼ Novikova et al. (2006)
Q5UE58 CLSTN1 Calsyntenin 1 isoform 2 1.22 0.89 2.33 No Cell comunication/signal transduction
Q8N163-2 KIAA1967 Isoform 2 of protein KIAA1967 1.66 0.49 3.16 No Cell comunication/signal transduction
Q6ZS99 ARMC9 CDNA FLJ45706 fis, clone FEBRA2028457, highly similar to nucleolin 3.08 1.75 8.43 No Unknown
Q8WZ42-2 TTN Isoform 2 of titin 8.83 3.75 456.17 No Transport

Access number fromUniprot database Uniprot; H/L ratio between heavy (schizophrenia) and light (control) peptide areas; RBC, red blood cell protein. Significance is the complementary error function for z-scores values of the protein distribution as
described in the methods section. Selected candidates for validation are shown in bold. Related proteins previously reported to be altered in this brain area in SZ are indicated in brackets.

a This protein comes from TUBB pseudogene which corresponds to a small fragment not the whole TUBB protein. 5
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3. Results

3.1. Proteomic analysis of postmortem DLPFC from schizophrenia patients
and controls

To identify protein changes related to schizophrenia, we performed
a pilot proteomic analysis in pools of DLPFC protein extracts from four
male patients with schizophrenia and four control individuals matched
for gender, age and postmortem delay. No differences were observed
between schizophrenia and control groups for any demographic- or
tissue-related variables (Table 1). Tryptic peptides fromprotein extracts
were subjected to a reductive dimethylation reaction for both pools.
Schizophrenia peptides were labelled heavy and control peptides
were labelled light, providing a difference of 6.0377 Da for the same
peptide sequence in the MS spectrum (Fig. 1). Labelled heavy and
light peptidesweremixed equally in a 1:1weight proportion, separated
by SCX and analyzed by LC-MS/MS (Fig. 1). We quantified 36,226
peptides corresponding to 2115 proteins with adequate quantification
quality. 58% of proteins were identified with 2 or more peptides and
33% with four or more peptides (Fig. S1A). 1315 proteins were
quantified with two or more unique peptide sequences and four or
Fig. 2. Immunoblot analysis of CSNK1E, FABP4, NEFH and ALDH1A1 in the brain samples used fo
controls (C, n=4), and schizophrenia (SZ, n=4) patients from theUPV/EHU brain collectionwe
β-actin (ACT) and GAPDH. Protein levels for each hit were quantified by densitometry and n
reference control sample. Images show representative immunoblots of a pool of controls (left
duplicate. Bars represent mean ± standard deviation of the analysis of duplicates in two ind
used in the proteomic assay. Statistical analysis was performed using t-test. Statistical analy
**p b 0.01, ***p b 0.001).
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more spectral counts) (Supplementary Data 1 and Fig. S1B). The distri-
bution of protein H/L ratios shows that the majority of proteins of the
DLPFC proteome were not altered in schizophrenia (Fig. S1C and S1D).

We identified 116 proteins (9%) with a false discovery rate accep-
tance of 1%, of which 60 were down-regulated and 56 up-regulated
(Supplementary Data 2) By comparing our results with previous prote-
omic studies of the DLPFC, we found that 22% of the altered proteins in
our list (26 out of 116 proteins) had been previously described for the
same isoform reported here and/or a closely related protein (Behan
et al., 2008; Chan et al., 2011; English et al., 2009; English et al., 2011;
Johnston-Wilson et al., 2000; Martins-de-Souza et al., 2009a;
Martins-de-Souza et al., 2009b; Novikova et al., 2006; Pennington
et al., 2008; Prabakaran et al., 2004; Smalla et al., 2008; Wesseling
et al., 2013) (Supplementary Data 2). Moreover, we restricted our can-
didate list to the top-20 upregulated and the top-20 downregulated
proteins (Table 2). We further classified the altered proteins according
to their biological function using theHuman Protein Reference Database
(HPRD-http://www.hprd.org) and we compared them to the non-
regulated proteome. Similar biological functions were found in both
data sets and no biological function was enriched (Fig. S1E). The most
prevalent functions were cell communication and signaling pathways,
r the proteomic analysis. Pooled protein extracts from samples of the postmortemDLPFC of
re analyzed by immunoblotting for CSNK1E, FABP4, NEFH, ALDH1A1, andα-tubulin (TUB),
ormalized to the geometrical mean of α-tubulin, β-actin and GAPDH values, and to the
band, C) and a pool of schizophrenia (right band, SZ) patients. Analysis was performed in
ependent dissections, except for FABP4, which validated only in the original dissection
sis was performed using t-test for independent samples. (n.s.-not significant, *p b 0.05,
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Table 3
Association analysis of other variables in the independent validation cohort.

Age PMD pH

r r r

SZ-C (n = 46)
CSNK1E −0.086a 0.334a⁎ −0.097a

FABP4† −0.313a⁎ 0.010a 0.035a

NEFH† 0.105a 0.030b 0.094b

Daily AP dose‡ Duration of illness

r r

SZ (n = 23)
CSNK1E 0.132b 0.015a

FABP4† 0.077a −0.540a⁎⁎

NEFH −0.418b⁎ −0.156a

PMD, postmortem delay; SZ, schizophrenia; C, control; AP, antipsychotic.
Significant associations are indicated in bold.

a r, Spearman's correlation for non-parametric variables.
b r', Pearson's r for parametric variables.
† An outlier was detected for NEFH, and two outliers for FABP4 and therefore excluded

from the analysis (NEFH: C, n = 22, SZ, n = 23; FABP4: C, n = 22, SZ group, n = 22).
‡ Last chlorpromazine equivalent dosewas calculated based on the electronic records of

drug prescriptions of the patients.
⁎
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metabolism and energy pathways and cell growth and maintenance
(Fig. S1E).

3.2. Validation of hit protein changes in DLPFC schizophrenia samples

From the significantly altered and top-20 upregulated and top-20
downregulated proteins (Table 2), 4 hit candidates were selected for
further validation by immunoblot due to their protein function on cell
signaling, neuronal development and synapse functioning: casein ki-
nase I isoform epsilon (CSNK1E), fatty acid-binding protein 4 (FABP4),
neurofilament triplet H protein (NEFH), and retinal dehydrogenase 1
(ALDH1A1).

In a first phase, we analyzed the protein levels of CSNK1E, FABP4,
NEFH and ALDH1A1 in pooled samples from the same cohort analyzed
by proteomics. All candidates were referenced to the geometrical
mean of α-tubulin, β-actin and GAPDH levels in each pool, which
showed no differences between the two pools (Fig. S2). We observed
that NEFH, CSNK1E, FABP4, and ALDH1A1 protein levels were signifi-
cantly decreased in schizophrenia (Fig. 2). To validate these proteins
as potentially decreased proteins in DLPFC in schizophrenia, we further
characterized NEFH, CSKN1E, FABP4, and ALDH1A1 protein levels by
immunoblot in an independent cohort of 23 male elderly chronic
Fig. 3. CSNK1E, FABP4 and NEFH are reduced in the DLPFC of chronic schizophrenia.
Protein extracts from samples of the postmortem dorsolateral prefrontal cortex of control
individuals (C, n = 23), and schizophrenia patients (SZ, n = 23) from the collection of
neurologic tissues of Parc Sanitari Sant Joan de Déu (Roca et al., 2008) and the Institute
of Neuropathology Brain Bank (HUB-ICO-IDIBELL Biobank) were analyzed by
immunoblot for the same proteins as in Fig. 2 and quantified by densitometry.
(A) Protein levels for each protein were normalized to the geometrical mean of α-
tubulin, β-actin and GAPDH values, and to a reference healthy control sample. Bars
represent mean ± standard error of the mean for each group. Statistical analysis was
performed using t-test for independent samples. (n.s.-not significant, *p b 0.05).
(B) Representative Western blot images for the indicated proteins in 5 control
individuals and 5 patients with schizophrenia.

p b 0.05.
⁎⁎ p b 0.01.
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schizophrenia patients and 23 matched controls (Table 1). We found
that the following protein levels were significantly reduced in the
schizophrenia group: NEFH [t = 1.917, df = 44; p = 0.0308; fold
change (FC) ± SEM: control (C) = 1.000 ± 0.1449, SZ = 0.6856 ±
0.0768], CSNK1E [t = 1.942, df = 44; p = 0.0293; FC ± SEM: C =
1.000 ± 0.0511, SZ = 0.8773 ± 0.0372] and FABP4 [t = 1.693, df =
42; p = 0.0489; FC ± SEM: C = 1.000 ± 0.2052, SZ = 0.6050 ±
0.1110] (Fig. 3). However, ALDH1A1 was not significantly altered in
this cohort (t = 1.036, df = 43; p = 0.1530; FC ± SEM: C = 1.000 ±
0.1752, SZ=1.268±0.1898) (Fig. 3). This protein is the only candidate
that was previously reported to be expressed in the red cell blood pro-
teome (Pasini et al., 2006) (Supplementary Data 2), which could be a
confounding factor for ALDH1A1, but not for the other candidates not
expressed in red blood cells. Further, we have analyzed the influence
of other demographic, clinical and tissue-related variables (Table 3).
FABP4 and CSNK1E showed significant correlations with age
(Spearman's r = −0.313, p = 0.039) and PMD (Spearman's r =
0.334, p = 0.023), respectively. However, there are no significant
differences in age and PMD between groups (Table 1). NEFH protein
levels inversely correlated with the chlorpromazine equivalent dose
(Pearson's r = −0.418, p = 0.047 n = 23), indicating that NEFH may
be influenced by antipsychotic treatments. FABP4 protein levels nega-
tively correlated with the duration of the illness (FABP4: Spearman's
r = −0.540, p = 0.009, n = 22), suggesting that this protein may be
changing with the progression of the disease.

4. Discussion

This study reveals novel altered proteins in the DLPFC in schizophre-
nia includingNEFH, CSNK1E, and FABP4. A decrease in the abundance of
these proteins may be associated with cognitive and/or negative
symptoms of schizophrenia.

4.1. Neurofilament triplet H protein

NEFH is a component of the neurofilament intermediate proteins
found in the cytoskeleton of mature neurons that regulates axon caliber
(Lee and Cleveland, 1996). There are previous reports of altered protein
levels of NEFH, neurofilament triplet light protein (NEFL) and neurofil-
ament triplet medium protein (NEFM) in schizophrenia (English et al.,
2009; English et al., 2011; Focking et al., 2011; Martins-de-Souza et al.,
H protein levels in the dorsolateral prefrontal cortex in schizophrenia,
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2010a; Martins-de-Souza et al., 2010b; Martins-de-Souza et al., 2010c).
In addition, a role for NEFM and NEFL in connectivity functions in
schizophrenia has also been suggested (English et al., 2011),with an im-
pact on synapses and plasticity, core features of the disorder (Friston,
1999; Harrison and Weinberger, 2005). Here we describe for the first
time a reduction in NEFH protein levels in grey matter in schizophrenia
patients. Therefore, a dysregulation of NEFH protein levels together
with the other neurofilament proteins is likely to have a role in the
connectivity deficits present in this disorder, participating in the
neuropathology of schizophrenia.

4.2. Casein kinase I isoform epsilon

We describe a reduction in CSNK1E protein levels in the postmortem
DLPFC in schizophrenia. CSNK1E is a member of the clock gene family
that regulates signal transduction pathways related to the circadian
molecular clock (Ko and Takahashi, 2006). Sleep and circadian rhythms
abnormalities are often a co-morbidity in schizophrenia, suggesting
common brain mechanisms (Klingaman et al., 2015; Pritchett et al.,
2012). Cognitive impairments occur in sleep and circadian rhythm
disruption as well as in schizophrenia (Pritchett et al., 2012). This
together with our finding that CSNK1E expression is reduced in
schizophrenia suggests that the molecular clock pathway in the
prefrontal cortex may have a role in cognitive deficits in both disorders.
More work is needed to investigate this possibility.

4.3. Fatty acid-binding protein 4

FABP4 is a member of the FABP family of proteins whose primary
role is facilitating the uptake and intracellular transport of hydrophobic
fatty acids and so participating in energy metabolism, signaling path-
ways and regulation of transcription (Chmurzynska, 2006). Although
FABP4 is typically expressed in adipocytes and macrophages, we have
detected it in human postmortem brain by mass spectrometry and an
isoform-specific antibody, in line with previous reports (Anderson
et al., 2011; Chaerkady et al., 2011). We found that FABP4 protein levels
are decreased in schizophrenia patients. Notably, a recent study
reported a reduction in FABP4 expression in the scalp hair follicle in
patients with schizophrenia in an attempt to provide more accessible
biomarkers for this disorder (Maekawa et al., 2015). This report also
analyzed FABP4 gene expression in the brains but found no changes in
Brodmann area 46. Interestingly, here we have found that FABP4
protein levels are reduced in Brodmann area 9, further suggesting a
role for FABP4 in the pathology of schizophrenia. Despite the role of
FABP4 in brain function is unknown, it has been reported that other
FABP proteins such as FABP3, FABP5 and FABP7 play important roles
in brain development (Liu et al., 2010). These additional FABP proteins
facilitate the cellular functions of long chain polyunsaturated fatty
acids (PUFAs), which have also been linked to schizophrenia
(Freeman, 2000; Maekawa et al., 2011). PUFAs are essential for the nor-
mal development of the brain (Basak et al., 2013; Neuringer et al., 1988;
Wainwright, 2002), participate in synaptic vesicle trafficking (Ben
Gedalya et al., 2009), and have been related to altered dopamine vesicle
density in rat frontal cortex (Zimmer et al., 2000) and behavioral
disturbances (Bourre et al., 1989; Yoshida et al., 1997). Therefore, we
suggest that a decrease in FABP4 in schizophrenia could be limiting
vesicle formation in the presynaptic terminal. However, further studies
will be needed to confirm this mechanism.

4.4. Retinal dehydrogenase 1

ALDH1A1 appeared to be altered in the pool of the smaller cohort
but this was not replicated in the larger cohort used in this study, com-
prising tissue from older individuals. This could be a consequence of
ALDH1A1 being part of the red blood cell proteome (Pasini et al.,
2006) and therefore a false positive ormay be the result of an alteration
Please cite this article as: Pinacho, R., et al., Altered CSNK1E, FABP4 and NEF
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present in only one patient. However, this protein has been previously
described as being reduced in white matter in the DLPFC in schizophre-
nia (Prabakaran et al., 2004) and regulated by psychotropic drugs in the
context of Parkinson Disease (Lauterbach, 2012). The closely related
protein ALDH1A2 has also been associated with schizophrenia previ-
ously (Wan et al., 2009). Therefore, further studies should be conducted
to determinewhether this factor is associatedwith the pathophysiology
of schizophrenia.

4.5. Limitations

The use of human postmortem brain constitutes a useful tool to
dissect the molecular mechanisms disrupted in psychiatric disorders,
but has limitations. Therefore, although potentially interesting, the
molecular findings of this study should be further interrogated for
functional validity using orthogonal techniques. First, our pilot proteo-
mic analysis used pooled samples. This type of design is a useful
approach for rapidly detecting common altered pathways (Behan
et al., 2008; Martins-de-Souza et al., 2009a; Martins-de-Souza et al.,
2009b); however, it does not allow for the control of inter-individual
variations, which, as noted for ALDH1A1, could account for modifica-
tions in the results. A cautious interpretation of this panel of altered
protein should be considered. Further validation in individual samples
will be needed for this list of possible altered candidates. Second, the
possible effect of laterality in our sample cannot be ruled out, since
only contralateral prefrontal cortex was available for the non-
psychiatric control group. Left schizophrenia prefrontal cortex was
compared to right control prefrontal cortex. Further analyses should
be performed to explore the laterality effects on the abundance of
these proteins in the prefrontal cortex and their potential as biomarkers.
To investigative their possible role as biomarkers it would be of great
interest to extend the study of these candidates to tissues that can be
studied with less invasive approaches such as cerebrospinal fluid
(CSF) and peripheral blood cells. Third, the patients in our second
validation cohort had long-lasting and heterogeneous antipsychotic
medications. To control for this variable, we have used the last daily
chlorpromazine equivalent dose in a bivariate analysis. We found that
NEFH significantly correlated with the antipsychotic dose suggesting
that the reduction of NEFH observed in this study could be the result
of the antipsychotic treatments. Further pharmacological studies in
cellular and animal models, as well as in drug naive patients, will help
to clarify the possible influence of antipsychotic treatments in these
candidate proteins. Fourth, we had elderly patients and matched con-
trols in this study. Fifth, the study only included men. Further studies
in a younger cohort with equal representation of both genders and if
possible drug naive patients would be of interest. Finally, we were not
able to validate the findings for ALDH1A1 in the larger cohort. This
protein has also been described in the red cell proteome (Pasini et al.,
2006). This raised the question whether some changes may be related
to the presence of blood in the samples. A careful post-hoc analysis of
candidates expressed in red blood cells should be taken in postmortem
tissue analysis to address this potential confound. Despite these limita-
tions, findings from this study may contribute towards a better under-
standing of the molecular mechanisms that underlie schizophrenia.

4.6. Conclusions

Our findings in the DLPFC in schizophrenia provide evidence of
altered proteins involved in synaptic function (FABP4), cytoarchitecture
organization (NEFH), and circadianmolecular clock signaling (CSNK1E),
which may be contributing to the cognitive and/or negative symptoms
in this disorder. Moreover, FABP4, CSNK1E and NEFH could become
potentially useful biomarkers for schizophrenia in the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.schres.2016.04.050.
H protein levels in the dorsolateral prefrontal cortex in schizophrenia,
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