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From Gambling to Random Modelling

MARTA SANZ-SOLÉ

Among mathematical �elds, probability stands out because of its short history and peculiar origins. Starting
with the analysis of games of chance, probability developed as the mathematical theory of uncertainty, and
nowadays probabilistic methods impregnate models of random phenomena. Going through the scienti�c career
of the Japanese mathematician Kyoshi Itô (1915–2008), we analyze his theory of stochastic analysis from the
perspective of a symbiotic relationship between purely curiosity driven and applied research interests.

Introduction

This aim of this article is twofold, to introduce non
specialists to some aspects of stochastic analysis —
a main achievement in probability theory of the 20th

century — and to give tribute to its founder, Kyoshi
Itô (1915–2008). First we set Itô’s work in a historical
context, then we describe some of his groundbreak-
ing ideas and early contributions in the 40’s and
50’s; �nally, we present some recent developments
and highlight the importance of his research in pure
mathematics and in stochastic modelling.

In comparison with other mathematical �elds, like
geometry or arithmetic, probability theory has a very
short history. Its origins are in the late Renaissance
period, when gambling was a common leisure activity
in circles of nobility and learned people, especially in
Italy and France. Speculative discussions and conjec-
tures on games of chance attracted the interest of
scientists like Gerolamo Cardano (1501–1576), Galileo
Galilei (1564–1642), Pierre de Fermat (1601–1655) and
Blaise Pascal (1623–1662), who tried to give mathe-
matical answers to challenging questions posed by
astute and experienced gamblers.

Until the beginning of the 19th century, probabil-
ity developed very slowly, possibly because of the
absence of suitable mathematical tools (in particular,
of combinatorial algebra), moral or religious barri-
ers in the society to the development of the idea
of randomness and chance, and the weight given
to the connections of probability with philosophy.
The publication in the year 1812 of the treaty Théorie
analytique des probabilités by Pierre-Simon Laplace
was a turning point in the early consolidation of
the �eld. For the �rst time, there was a successful
attempt to build a theory of randomness and to give
some unity to the subject. However, the indepen-
dence and blooming of probability only happened at
the beginning of the 20th century, thanks to giant

�gures like Andrei A. Markov, Andrei N. Kolmogorov
and Paul Lévy, with stochastic processes in their cen-
tre of interest. Around these dates, when he was a
student at the University of Tokyo (1935–1938), Itô
met stochastic processes. In his own words [4]:

[. . .] I was fascinated by the rigorous argu-
ments and the beautiful structures seen in
pure mathematics, but also I was concerned
with the fact that many mathematical con-
cepts had their origins in mechanics. Fiddling
around with mathematics and mechanics, I
came close to stochastic processes through
statistical mechanics.

This was the beginning of a long and fruitful jour-
ney. With his deep mathematical contributions and
insight, Itô laid the foundations of stochastic mod-
els used now in many �elds, like statistical physics,
population genetics and mathematical �nance. His
in�uence extends to areas far beyond his imagina-
tion, as he declared when he was awarded the Gauss
Prize in 2006.

Stochastic processes and Markov processes

A stochastic process is a measurable mapping
X : Ω × I −→ Rd , where Ω is the set consisting of
the random arguments, called the sample space,
and I is the set of indices, usually a subset of Rk

or Zk . By �xing ω ∈ Ω, the deterministic mapping
X (ω) : I −→ Rd de�ned by X (ω)(t ) = X (ω, t ), cor-
responds to an observation of the random evolution
described by the process X . The deterministic func-
tionsX (ω) are called the sample paths or trajectories
of the stochastic process.

Markov processes are prominent examples of
stochastic processes. They are characterized by the
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lack of memory. If I = [0,∞), this means that, for any
t ∈ [0,∞), the future of the process, Xs , s > t , is con-
ditionally independent of the past, Xs , s ≤ t , knowing
Xt . In other words, the past information gathered
by the process is summarized at the present time.
Introduced and studied by A.A. Markov in 1905, mem-
oryless random dependence already appears in the
work by F. Galton and H.W. Watson (1874) on evolution
of populations.

Di�usions and Kolmogorov’s equation

Di�usion processes are a fundamental class of
Markov processes. They provide models for particles
moving randomly in a �uid, like the Brownian motion.
Kolmogorov (1931) described di�usions by specifying
the behavior of the conditional average of increments
of the process over an interval of length h, and of
covariances. More speci�cally, a d -dimensional di�u-
sion X =

�(X 1
t , . . . ,X

d
t ), t ≥ 0

	
satis�es,

E (Xt+h − Xt |Xs , 0 ≤ s ≤ t ) = b(Xt )h + o(h),
E [(Xt+h − Xt − b(Xt )h) (Xt+h − Xt − b(Xt )h)ᵀ]

= a(Xt )h + o(h).
(1)

The functions b and a are termed the drift and the
di�usion coe�cients, respectively.

For �xed t ≥ 0 and x ∈ Rd , de�ne P (t, x,A) :=
P (Xt+r ∈ A|Xr = x), that is, the probability that, if
at time r , the process is at point x , after a further
t units of time, it visits the set A ⊂ Rd . Assume
that this probability has a density, meaning the exis-
tence of a nonnegative function, pt (x, ·), called the
transition probability density, such that P (t, x,A) =∫
A pt (x, y) dy . Kolmogorov proved that transition
probability densities of di�usions are solutions to
partial di�erential equations de�ned by the partial
di�erential operator L= 1

2a
i, j (x)∂2i, j + b i (x)∂i , and

by its dual L∗. These are the backward and forward
Kolmogorov equations,

∂

∂t
pt (x, y) = Lpt (x, y), ∀y ∈ Rd,

∂

∂t
pt (x, y) = L∗pt (x, y), ∀x ∈ Rd,

(2)

respectively.

Existence of Markov processes

In the 1930’s, the existence of Markov processes
was a central question of study. Using tools of mea-
sure theory, Kolmogorov (1931) proved the existence
of Markov processes with continuous sample paths.
Later on, Feller (1936) proved the existence of Markov
processes with jumps.

Itô, who went deeply through the methods of these
works, envisioned a di�erential approach to the
problem focussing on the sample paths of the pro-
cesses, rather than on their probability laws. For
this, he viewed the Kolmogorov transition probabili-
ties P (t, x, ·) (de�ned above) as a �ow of probability
measures; then he introduced a suitable notion of
tangent and obtained P (t, x, ·) by integration of the
tangent. Finally, using this representation, he found
a realization of the integral �ow {P (t, x, ·), (t, x) ∈
[0,∞)×Rd } on the path space of the Markov process,
(called nowadays the Itô map). The tangent to the
�ow should be the best linear approximation. In the
probabilistic context, and because of results of Paul
Lévy, the role of lines is played by processes of inde-
pendent increments. In this way Itô (1942) deduced
that the sample paths of a di�usion (as de�ned in (1))
leave the initial state x in the same way as the paths
of a Brownian motion B having instantaneous mean
and variance b(x) and a(x), respectively. Hence, the
probabilistic dynamics of the sample paths of a dif-
fusion is given by the stochastic di�erential equation

dXt = σ(Xt )dBt + b(Xt )dt, t > 0, X0 = x, (3)

where σ(x) = [a(x)]1/2.
In Itô’s words [4]: “It took some years to carry out
this idea”.

The birth of stochastic calculus

Having achieved a pathwise description of the dynam-
ics of Markov processes, Itô faced two tasks, namely
to give a rigorous meaning to (3), and to recover the
transition probabilities of the Markov process solu-
tion to (3), thereby establishing the connection with
Kolmogorov’s theory. Itô’s stochastic calculus with
respect to the Brownian motion was created to solve
both questions. With the stochastic integral (1944),
equation (3) is rigorously formulated, and using the
change of variables formula, called Itô’s formula (1951),
it is proved that the transition probabilities of X (t )
satisfy Kolmogorov’s partial di�erential equations (2).
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Let f be a C2 function and B a Brownian motion.
The simplest version of Itô’s formula says

f (Bt ) = f (0)+
∫ t

0
f ′(Bs )dBs+12

∫ t

0
f ′′(Bs )ds . (4)

From this equality, we see that stochastic calcu-
lus does not follow the same computation rules as
ordinary calculus. Moreover, the Itô map is not con-
tinuous with respect to the Brownian motion and
therefore equation (3) lacks a suitable stability prop-
erty. These facts produced perplexity, especially in
applied circles of scientists, motivating further inves-
tigations (Rubin and Fisk, 1955; Stratonovich, 1966).
Such questions were at the origin of rough path anal-
ysis, a theory initiated by Terry Lyons in the late
1990’s.

Itô’s equation and modelling

The connections of equation

dXt = σ(Xt )dBt + b(Xt )dt, t > 0, X0 = x, (5)

with modelling go back to the notion of Brownian
motion, since for σ = 1, b = 0 and x = 0, equa-
tion (3) de�nes the Brownian motion. Let us mention
some examples. In 1900, Louis Bachelier proposed a
model of Brownian motion while deriving the dynamic
behaviour of the Paris stock market. Fluctuation of
prices in the stock market is due to the selling and
buying activity of many agents, producing a simi-
lar e�ect as the movement of pollen particles in
the experimental description of Brownian motion. In
1908, Paul Langevin described the velocity v of a
Brownian particle of mass m by the equation

m dv (t ) = −λv (t )dt + B(dt ), t > 0,

where B is a Brownian motion independent of the
particle. Building on Bachelier’s work, McKean and
Samuelson (1965) showed that

dXt = µXtdt + σXtdBt t > 0.

is a good model for stock price variations. The pro-
cess (Xt ) is called a geometric Brownian motion.

Itô’s in�uence and parallel developments

Generalizations of the Itô stochastic integral (1944)
to more general processes than Brownian motion

came already in the early 50’s. Motivated mainly
by the study of the striking connections between
stochastic calculus and potential theory, the exten-
sions concern processes with conditionally orthogo-
nal increments (J.L. Doob, 1953), submartingales (P.-A.
Meyer, 1962), local martingales (K. Itô and S. Watan-
abe, 1965), and semimartingales (C. Doléans-Dade
and P.-A. Meyer, 1975). In parallel, with very little inter-
action with other countries, the Russian school made
impressive advances in stochastic analysis. Dynkin,
Gikhman, Skorohod, Wentzell, Freidlin, Krylov, are in
the group of main contributors. Gradually, with the
break down of isolation, the groundbreaking work of
colleagues in the former Soviet Union became visible
and in�uential.

From �nite to in�nite dimensions: stochastic
partial di�erential equations

It took several decades to lift Itô calculus to in�-
nite dimensions, in particular, to develop a theory
of stochastic partial di�erential equations (SPDEs). At
present, SPDEs form a large and blooming �eld of
stochastic analysis, where Itô also made some contri-
butions in relation to measure-valued processes. In
this article, we will focus on a class of SPDEs closely
related to Itô’s equation.

The equation (5) can be understood as an ordinary
di�erential equation with a random forcing nonlin-
ear term σ(Xt )dB(t ). Some classes of SPDEs obey
a similar principle. Consider the heat equation on R,

∂

∂t
v (t, x) − ∂2

∂x2
v (t, x) = f (t, x), t > 0, x ∈ R, (6)

with a given initial condition, describing the evolu-
tion of the temperature along a metal bar under
some external in�uence f . If f contains a stochas-
tic source then (6) gives rise to a stochastic heat
equation. For example, f may be a space-time white
noise, Ẇ (t, x) — an in�nite dimensional version of
a Brownian motion. The linear stochastic heat equa-
tion driven by a space-time white noise is one of the
most basic examples of an SPDE.

There are good motivations to study SPDEs, as the
following two examples illustrate.

The parabolic Anderson model is a Cauchy problem for
the heat equation with random potential. It has con-
nections with motions in random potentials, trapping
of random paths and spectra of random operators,
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among others. An interesting example of potentials
are Gaussian processes. If the choice is a space-
time white noise, as before, we have the stochastic
parabolic Anderson model described by the SPDE

∂

∂t
u(t, x)− ∂2

∂x2
u(t, x) = u(t, x)Ẇ (t, x), t > 0, x ∈ R.

(7)
This equation is related with the Kardar–Parisi–Zhang
equation (KPZ, in short) that Martin Hairer success-
fully solved in 2013,

∂

∂t
h(t, x)− ∂2

∂x2
h(t, x)−

[
∂

∂x
h(t, x)

]2
= Ẇ (t, x). (8)

Indeed, the stochastic process obtained via the Cole–
Hopf transformation

u(t, x) = exp (h(t, x)) ,
solves (formally) equation (7).

The KPZ equation is a new universality class (similar
as the Gaussian law of the Brownian motion in much
simpler situations), to describe phenomena like one-
dimensional interface growth processes, interacting
particle systems and polymers in random environ-
ments, which display characteristic scalings and new
statistics or limiting behaviors.

Very fundamental questions on SPDEs, like giving
a rigorous meaning to the equations, and proving
existence and uniqueness of solution, can be very
challenging and generate a great deal of wonderful
mathematics. A paradigmatic example is the theory
of regularity structures of Martin Hairer (2014), moti-
vated by the well-posedness of the KPZ equation.

A question concerning sample paths of SPDEs

Numerical simulations of SPDEs show that their sam-
ple paths are complex and intriguing mathematical
objects. We next describe a speci�c problem where
the nature of the sample paths plays a very impor-
tant role.

Let v = {v (x), x ∈ Rm} be a Rd -valued stochastic
process, solution to a system of SPDEs. How likely
is it that the sample paths of v visit a deterministic
set A? This fundamental question in probabilistic
potential theory is clearly related to the regularity of
the sample paths and geometric-measure properties
of A.

Having upper and lower bounds for the hitting prob-
abilities

P{ω : v (ω)(I ) ∩ A , ∅} (9)

in terms of notions of geometric measure theory,
like the capacity or the Hausdor� measure of the set
A, provides an insight into the problem.

A �rst result in this direction, proved by S. Kakutani
in 1944, states that, up to positive constants, for a
d -dimensional Brownian motion, the hitting proba-
bility (9) is bounded from above and from below by
Capd−2(A), the capacity of dimension d − 2 of the
set A. In particular, this implies that a d -dimensional
Brownian motion hits points if and only if d = 1.

Hitting probabilities for the sample paths of solu-
tions to SPDEs have been in the focus of research in
the last �fteen years. Since in most cases, the ran-
dom �eld solutions to SPDEs fail to have a “suitable”
Markov property, Kakutani’s method, and further gen-
eralizations to di�erent types of Markov processes,
cannot be applied. The new successful approach for
SPDEs relies on the study of densities of the random
�eld solutions at �xed points, using as mathematical
background Malliavin calculus.

Closing the circle: Kolmogorov, Itô, Hörmander,
Malliavin

We �nish this article with some touches on Malliavin
calculus, not only because of its role in the study
of hitting probabilities for SPDEs but especially, to
close a beautiful circle of ideas that started with
Kolmogorov, continued with Itô and Hörmander, and
ended with Malliavin.

Recall the forward Kolmogorov equation for densities
(in the distribution sense) of di�usions starting from
x , (

∂

∂t
−L∗

)
pt (x, ·) = 0. (10)

In the theory of partial di�erential operators, there is
the notion of hypoellipticity. It tell us that, if ∂

∂t −L∗

is hypoelliptic then the solution to the PDE(
∂

∂t
−L∗

)
α = 0,

is a smooth function. That is, the solution to (10) in
the distribution sense is a smooth function pt (x, y).
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In a seminal paper, L. Hörmander (1967) gave su�-
cient conditions of geometric type for a partial di�er-
ential operator in quadratic form to be hypoelliptic
(see also Kohn (1973), Oleinik and Radkevič (1973)).
Hörmander’s theorem applies to the operator L,
therefore to Kolmogorov’s equation.

Malliavin envisioned giving a probabilistic proof of
Hörmander’s theorem, thereby having an exclusively
probabilistic understanding of (10). Starting with Itô’s
stochastic di�erential equation (5) he proved that,
by expressing Hörmander’s assumptions in terms
of geometric properties of the coe�cients σ and
b , the law of the random vector Xt , for any t > 0,
possesses a smooth density. Existence of densities
are obtained by integration by parts formulas on the
Wiener space, that rely on a stochastic calculus of
variations given the name of Malliavin calculus.

Malliavin theory, introduced in [3], was further
investigated and expanded by Bismut, Stroock,
Ikeda, Watanabe, Bouleau, Hirsch, Meyer, Kusuoka,
Shigekawa, Nualart, Bell, Mohammed, Ocone, Zakai,
among others. Its scope goes far beyond the initial
project of giving a probabilistic proof of Hörmander’s
theorem. In particular, integration by parts formulas
provide explicit expressions for densities of random
vectors de�ned on abstract Wiener spaces. Explicit
formulas for densities, along with the Malliavin calcu-
lus toolbox, are the basic ingredients to address the
problem of hitting probabilities for systems of SPDEs
with multiplicative noises (see work of R. Dalang, D.
Khoshnevisan, C. Mueller, E. Nualart, M. Sanz-Solé, R.
Tribe, C. Tudor, F. Viens, Y. Xiao, L. Zambotti).

Final remarks

By changing the approach to Markov processes of
Kolmogorov and Feller, and by giving the sample
paths a priority, Itô paved the way to stochastic mod-
elling. His mathematical work consolidated the theory
of stochastic processes, that was still in its infancy
when he was a student at the University of Tokyo,
expanded the theory, by the creation of stochastic
calculus, boosted connections with other mathemat-
ical �elds, initiated the use of stochastic models in

sciences, and is still a source of new and challenging
problems in probability.
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