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1. SUMMARY 

In the last decades, plastic environmental contamination has increased significantly. This 

phenomenon is especially dangerous when it comes to microplastics due to their small size range. 

Microplastics are defined as synthetic polymers with an upper size limit of 5 mm. This type of 

plastic debris produces important environmental damages, especially in the marine environment, 

where microplastics can be ingested by marine wildlife. 

For this reason, the qualitative and quantitative determination of microplastics in 

environmental samples has become a critical issue. This task has become one of the most 

important research fields for the scientific community due to the matrices complexity, their small 

size and their natural degradation under environmental conditions. Therefore, there is an urgent 

need for the development and the implementation of an analytical methodology that allows to find 

the microplastics determination in a fast, easy and cost-effective way. 

In 2010, A. L. Andrady proposed to perform the determination of microplastics using a 

fluorescence-based approach. Solvatochromic dyes such as Nile Red, allow microplastics to be 

grouped by polymer polarity and provides the potential to do primary polymer classification. The 

main problem for the routine implementation of this method is the relatively high cost of Nile Red. 

In this project, the development and optimization of an analytical fluorescence-based approach 

using Nile Red as a dye are analyzed. To test the selectivity and efficiency of this analytical 

approach, different polymer studies were carried out. Moreover, different low-cost fluorescent 

dyes like Nile Blue A, Eosin Y and Crystal Violet were also tested. The efficiency of the 

microplastic determination using the analytical fluorescence-based technique developed with Nile 

Red and the other analyzed dyes were compared. 

Keywords: microplastics, marine environmental contamination, fluorescent-based approach, 

Nile Red, Nile Blue. 
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2. RESUM 

En els últims anys, la contaminació del medi ambient amb grans quantitats de plàstic s’ha 

incrementat de forma significativa. La contaminació produïda per part dels microplàstics és 

especialment greu. Aquests són petites porcions de plàstic de fins a un màxim 5 mm de diàmetre. 

Degut a la seva grandària, els microplàstics produeixen danys importants en els diferents 

ecosistemes, especialment en el medi marí, on gran quantitat de fauna els pot arribar a ingerir.  

Per tot l’exposat anteriorment,  és necessària la determinació qualitativa i quantitativa de 

microplàstics en mostres ambientals d’una forma ràpida, senzilla i econòmica. Degut a l’enorme 

complexitat de les matrius, la grandària que presenten aquests tipus de plàstics i la possible 

degradació que poden patir, aquesta tasca s’ha convertit en un dels majors reptes que existeixen 

en l’actualitat per a la comunitat científica. Per tant, l’urgent desenvolupament i implementació 

d’un metodologia analítica que permeti realitzar aquest tipus de determinacions és una tasca 

realment complexa. 

L’any 2010, el Dr. Andrady va proposar un mètode basat en el canvi de la fluorescència 

observada en certs colorants quan interaccionen amb els diferents microplàstics, com ocorre en 

el cas del vermell de nil. Aquest colorant té el gran avantatge de presentar un fort caràcter 

solvatocròmic, fet que li permet poder classificar els diferents tipus de  plàstics segons la seva 

polaritat. El desavantatge principal d’aquest colorant és el seu cost relativament elevat, fet que 

dificulta la seva implementació en un mètode de rutina. En aquest treball, es presenta el 

desenvolupament i posterior optimització d’un mètode capaç de poder determinar microplàstics 

en mostres ambientals mitjançant la seva detecció fluorimètrica degut a la prèvia tinció amb el 

vermell de nil. Posteriorment, aquest mètode s’ha estudiat utilitzant altres colorants que podrien 

ser útils per a la determinació de microplàstics utilitzant el mètode analític desenvolupat, com 

serien el blau de nil, l’eosina Y o el violeta de cristall.  

Paraules clau: microplàstics, contaminació de l’ecosistema marí, mètode de fluorescència, 

vermell de nil, blau de nil. 
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3. INTRODUCTION 

Nowadays, one of the most important industries in the world is the plastic factory. Plastic 

global production has increased significantly over the past decades (1.7 million tons in the 1950s 

to 348 million tons in 20171). Plastics are ideal for a large variety of applications due to their 

versatility, durability, light-weight and their low-cost production. Many different types of plastic are 

globally produced, but the most common ones are Polyethylene (PE, high and low density), 

Poly(vinyl chloride) (PVC), Polypropylene (PP), Polystyrene (PS), Poly(ethylene terephthalate) 

(PET), Polyurethane (PUR), and Nylon2,.  

The continuous increase in synthetic production and poor management in plastic debris 

through the last years, has led to plastics currently become one of the biggest portions of the 

municipal waste. In recent years, several studies have revealed that plastic debris accounts for 

60-80% of marine litter3. It is also known that approximately 8 million tons of plastic waste end up 

in the marine environment every year4. The exact amount of plastic litter that can be found in the 

oceans has not been reliably calculated, but it is estimated that between 5 to 50 trillion plastic 

fragments are currently floating on the ocean’s surface5.  

Hence, marine litter has become a global environmental problem, due to its persistence, 

ubiquity and toxic potential. For that reason, one of the most critical and important research fields 

for the scientific community is the identification and quantification of plastics in environmental 

samples. This is especially remarkable for microplastics (MPs) due to their small size range. 

Figure 1 corroborates this reality. As it is shown, the number of academic publications about 

microplastics has increased almost exponentially over the last years.   

Another remarkable fact that summarizes the increasing importance of microplastics in the 

modern society could be that the Fundéu BBVA, which is assessed by the Real Academia 

Española (RAE), has chosen this word as the word of the year 20186. 
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3.1 MICROPLASTICS: DEFINITION AND CLASSIFICATION 

Plastic debris can be divided into macroplastics, mesoplastics, microplastics and nanoplastics 

depending on their size range7. Small pieces of floating plastics in the ocean surface were firstly 

reported in the scientific literature in the early 1970s, but it was not until 2009 that the National 

Oceanic and Atmospheric Administration (NOAA) defined ‘microplastics’ as synthetic polymers 

with an upper size limit of 5 mm8. Below 1 μm scale, plastics should be defined as nanoplastics, 

the least known part of the marine waste. 

In table 1, the full classification of plastics 

by size is shown9–11. Microplastics can be 

categorized into primary and secondary 

microplastics. Manufactured plastics for 

industrial or domestic applications of 

microscopic scale are classified as 

primary microplastics. They are used in facial cleansers, toothpaste, cosmetics (e.g. shower gels) 

or textiles. Primary microplastics can be used in medicine, for example as vectors for drugs. Virgin 

plastic pellets are also considered as primary microplastics9,10. The estimate ranges of the global 

release of primary microplastic into the marine environment are between 0.8 and 2.5 Mtons/year 

according to an optimistic or pessimistic scenario respectively11. It is estimated that they represent 

between 15-31% of the total MPs in the oceans. 

Larger plastic waste in the ocean and land can be fragmented into smaller particles over time 

due to degradation processes (i.e. physical, chemical and biological). These types of 

Table1. Classification of plastics by their size. 

Size Range Terminology 

>20cm Macroplastic 

5-20cm Mesoplastic 

1-5mm Large  
Microplastics 

1-1000µm  Small  

<1000µm Nanoplastic 

 

Figure 1. Publications by year (2010 –2019) using the term ‘microplastics’ in Web of Science. 
(checked on June 7th 2019) 
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microplastics are categorized as secondary microplastics. A variety of factors control their rate of 

fragmentation. The different degradation types can be described as biodegradation (i.e. the action 

of living organisms), photodegradation (i.e. light radiation), thermooxidative degradation (slow 

oxidative breakdown at moderate temperatures), thermal degradation (i.e. high temperatures) 

and hydrolysis (i.e. water)1. A combination of environmental factors and properties of the polymers 

influences the degradation process of macroplastics to microplastics. 

UV radiation commonly starts the photooxidative degradation of exposed polymers in the 

marine environment. After that, other types of degradation such as thermooxidative degradation 

can occur without the need for exposure to UV-radiation. 

It is important to mention that degradation initiated by solar UV radiation is a very effective 

mechanism in plastics exposed in the air or lying on a beach surface. Instead, it is much less 

efficient when the plastic material is floating in seawater. The lower temperatures and the lower 

oxygen concentration in water environments could explain this behavior. Degradation of plastic 

debris in oceans can be slowed down by fouling effects too1. For this reason, the most common 

place for the generation of microplastics in the marine environment is the beaches sand. 

3.2 MICROPLASTICS SOURCES AND DISTRIBUTION IN THE MARINE ENVIRONMENT 

Microplastics can be from land and ocean provenance. The land-based sources contribute to 

the 80% of the total microplastic debris in the marine environment10. The fact that the main types 

of degradation are much more efficient on land sources than in water environment could be a 

possible explanation for it. Microplastics formed on terrestrial sources can enter the marine 

environment via different pathways. Primary microplastics can be introduced in aquatic nature 

through industrial or domestic drainage principally. Secondary microplastics can be introduced in 

marine habitat via storms, sewers, wind, currents or overland flow. Sewage sludge could be 

another possible source of microplastic litter9. All this information is represented in Figure 2. 

Microplastics have been found in almost every marine habitat around the world, even in Arctic 

and Antarctic waters, probably transported by ocean currents and wind. They can be suspended 

in the water column, surface waters, coastal waters, estuaries, rivers, beaches and deep-sea 

sediments. 

Suspended in the water column, microplastics can be trapped in ocean currents and 

accumulated in central oceanic regions. The nature and inherent properties of MPs like shape 
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density or size influence their distribution in the ocean. The localization of the MPs source, ocean 

currents, wind and the subsequent complex interaction of physical, chemical and biological 

processes are also decisive. Currently, there is growing information about all these aspects. Many 

studies about the abundance and composition of microplastics have been carried out in all the 

continents. Even so, there are still major uncertainties about the spatial and temporal distribution 

of microplastics 8,11.  

Figure 2. Summary of possible MPs land-sources. (With permission from Peter Kershaw and the 
Finnish Environment Institute)12. 

3.3 ENVIRONMENTAL IMPACT OF MICROPLASTICS 

The potential harm that MPs can impose on ecosystems, marine organisms or humans 

explains the recent interest of the scientific community in this type of plastic debris. The 

environmental impacts of MPs can be classified in physical, chemical and biological effects.  

Physical impacts include the entanglement and the ingestion of microplastics. Usually, 

entanglement is commonly related to macroplastics. Intake does not directly impose fatal effects. 

Over time, it can cause death by toxicity through many different mechanisms (chemical and 

biological impacts). Ingestion of microplastics can be found in almost all trophic levels, from 

zooplankton to whales8.  
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The toxicity of microplastics can come from the polymeric compounds used in the production 

of plastics, as well as from additives added during their production in order to improve physical 

properties such as color, density, resistance or hardness. For example, PVC must have some 

plasticizers like phthalates and bisphenol A to reduce photodegradation. Other compounds can 

include some heavy metals, like chromium and cadmium.  

Microplastics can also absorb organic pollutants from seawater. Due to the large surface area 

to volume ratio of microplastics, MPs tend to absorb waterborne contaminants like persistent 

organic pollutants (POPs), including polychlorinated biphenyl (PCBs), dichlorobiphenyl 

trichloroethane (DDTs) and polycyclic aromatic hydrocarbon (PAHs), or heavy metals. They are 

absorbed in higher concentrations than in the marine environment, making them much more toxic 

and deadlier. In addition, microplastics that have absorbed POPs can contaminate other 

ecosystems across ocean currents or wind. 

The danger posed by the high concentration of POPs is particularly significant. POPs are very 

stable halogenated organic compounds with high lipid solubility. For that reason, they can 

accumulate in fatty tissues once they are ingested by marine organisms, causing several issues, 

even death. 

Furthermore, this material ingested by marine biota can be transported along the food chain, 

and even reach humans. Toxicological effects of ingestion of microplastics have also been 

examined in many different studies13–16. These studies show that ingestion of plastics produces 

changes in the metabolism, endocrine function, behavior or reproduction.  

3.4 MICROPLASTICS ANALYSIS IN ENVIRONMENTAL SAMPLES 

In order to determine the real ecological and biological risks of microplastics, there is a 

pressing need to develop and implement standardized protocols for the analytical process to 

determine microplastics in different environmental matrices. Particularly, for MPs found in 

seawater, freshwater and sediments.  

3.4.1. General sampling methods 

Collecting appropriate samples is the first critical step to quantify microplastics from the 

marine environment. Sampling methods can be categorized into selective sampling, bulk 
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sampling and volume-reduced sampling4. Ocean currents or sample sediment type must be 

considered to choose an appropriate sampling method. 

3.4.2. Sample extraction and purification 

Firstly, microplastics must be separated from the initial matrix to simplify their 

identification/quantification. Many different methods are used to isolate microplastics from the 

initial matrix, such as filtration through size fractionation or sieving through size exclusion, but the 

most common one is the density flotation. In this technique, microplastics are separated from 

high-density sand, mud sediment and other sample matrices employing a high-density solution. 

NaCl solution (~1.20 g/cm3) is the most used solution in the separation process due to its low cost 

and lack of toxicity. To separate high-density microplastics like PVC, NaI solutions (~1.80 g/cm3), 

or ZnCl2 (1.50-1.70 g/cm3) can be used despite its high level of toxicity17.  

Subsequently, a purification approach must be performed to remove all the organic matter 

present on the surface of microplastics. To prevent the overestimation of synthetic particles in 

environmental samples, it is critically important that biological materials like wood, chitin, or shells 

are also eliminated. In conclusion, this process is very important since it allows clear identification 

of microplastics in environmental samples. Most common purification methods use a 30-35% 

hydrogen peroxide (H2O2) digestion18. Enzymatic digestion can also be used9. 

3.4.3. Identification and quantification techniques 

There are many different analytical techniques used to carry out a qualitative and quantitative 

analysis of microplastics in environmental samples. Identification methods are based on the 

physical or chemical behavior of microplastics. Commonly, the combination of two different 

analytical approaches has been widely used, due to the difficulty to identify microplastics of 

various sizes, shapes and polymer types from complex environmental samples using only one 

analytical method. Usually, the microplastic analysis consists of two different steps: physical 

characterization of potential microplastics (e.g. microscopy) followed by chemical analysis for the 

confirmation of plastics (e.g. spectroscopy). 

The most common quantification technique for microplastics is visual counting. Large plastics 

can be sorted out directly, but smaller-sized ones need further observation, normally using a 

microscope or the naked eye. This process is necessary, especially when the purification process 
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is not completely optimized. Electron microscopy (SEM-EDS) can be also applied when the 

microplastic size is <100 µm19. 

Afterwards, the characterization of microplastics is performed to confirm the synthetic 

procedure of the particles selected in the previous step. The most important approaches are 

Raman spectroscopy9,20 and Fourier-transform infrared spectroscopy (FT-IR)3,7,21. Other 

approaches such as liquid chromatography (HPLC)22, and gas chromatography coupled to mass 

spectrometry (Pyro-GC/MS)18,23, are also used. 

Quantitative data is needed to illustrate the abundance of microplastics in environmental 

samples. The concentration units “particles per m2” or “particles per m3” are widely used to 

characterize microplastics in the surface water, meanwhile “particles per m3” is the habitual 

concentration unit used to quantify microplastic concentrations in the water column18. 

In Table 2, the advantages and limitations of the most common methods applied nowadays 

in the identification and quantification of microplastics in environmental matrices are presented. 

3.4.3.1 Emerging approaches  

Currently, the main problem existing in the microplastics determination in environmental 

samples is the non-existent of standardized, efficient, low-cost, effective, capable and robust 

methods for the quantification and identification of microplastics. This is the principal reason for 

the scientific community to improve and develop new analytical approaches in order to reduce 

time, costs, and efforts to detect these plastics in complex environmental samples. Some new 

analytical approaches recently tested are NMR24, NIR25,26, tagging method9 or thermogravimetry27.  

Another promising approach proposed by A. L. Andrady in 2010, consists of the use of 

fluorescence lipophilic dyes such as Nile Red (NR) to stain microplastics. Performing these 

methods, microplastics visualization under the microscope is facilitated. The development of this 

analysis has not been followed until now28. Fluorescence staining approaches are very selective, 

fast, simple and inexpensive methods that can be very helpful to determine, in a qualitative and 

quantitative way, the microplastics in complex environmental samples as a routine method. 

Nile Red (9-diethylamino-5H-benzo[α]phenoxazine-5-one) is a lipophilic fluorescent dye 

which allows the in-situ staining of hydrophobic molecules, like lipids. For this reason, Nile Red is 

widely used in many different applications such as the determination of the lipid content in animal  
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Table 2. Summary of advantages and limitations of commonly used analytical methods for analysis of microplastics. 

Method Advantages Limitations 

Visual Counting 
 

 
Microscopy 

counting 
 

 
- Microplastics can be identified 
quickly, easily and in low cost-
effective way 

 

- May not provide accurate information 
- Difficult to differentiate microplastic from 

other particles with similar size 
-High possibility of under or 
overestimating the abundance of 
microplastics (especially for microplastics 

<1mm in size) 
- No chemical confirmation 

SEM-EDS 

-Provides a clear and high-
magnification images of plastic 
particles 
-Elemental composition of 

particles can be determined 

 
- A high cost but effective technique 

- Requires laborious sample preparation 
steps and substantial amount of time for 
examination 
- No detailed information for identification 

is available 
 

Spectroscopic 
Method 

Raman 
spectroscopy 

 

- Only available to analyze   

particles <1-2 µm 
- Non-destructive analysis 
- Reduction of false negative 
data 

- No possibility of false positive 
data by chemical confirmation 
- Functional non-polar groups 
and symmetric bonds can be 

easily identified 

- Several interferences of fluorescence 
from organic and inorganic impurities 
- Expensive instrument 

- Requires laborious sample pre-
treatment steps and substantial amount 
of time for the whole particle identification 

FT-IR 

 
- Can detect microplastics down 

to 10-20µm 
- Non-destructive analysis 
- Reduction of false negative 
data 

- No possibility of false positive 
data by chemical confirmation 
- Functional polar groups of the 
polymers can be easily identified 

 

- Expensive instrument 

- Sample must be pre-treated to eliminate 
IR-active water 
-Non-transparent particles could be 
difficult to analyze 

- Spectrum is susceptible to variations by 
the surface condition of samples 
- An expert with experience in interpreting 
spectra is needed 

Chromatography 
Method 

 
Pyro-GC-MS 

- Simultaneous analysis of 

polymer type and additive 
chemicals 
- Pre-treatment of the sample is 
not required 

- Sensitive and reliable 
approach 

- Destructive method 
- Information about number, size or 

shape of microplastics is not obtained 
- Representative of the sample may be 
compromised 
- Complex instrumental and data 

processing 
- Pyrolysis database available only for 
some selected polymers 

HPLC-SEC-
RI 

- The recoveries of polymers are 
quite good 
- Quantification results can be 
achieved 

 

-  Information about number, size or 

shape of microplastics is not acquired 
- Only a small amount of sample can be 
evaluated per run 
- Only specific polymers can be analyzed 

by this method 
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cells and microorganisms, for detecting intracellular lipid droplets as well as for flow 

cytofluorometry29 or in polymer chemistry to stain synthetic polymers20. It is also used to probe 

the microenvironment of polymers, xerogels, liquid crystals and zeolites30 because of its 

solvatochromic behavior (Figure 3).  

Because of this solvatochromic response, NR emission spectra shifts depend on its 

environmental polarity. That fact allows NR fluorescence approaches categorize microplastics 

according to their general hydrophobicity/polarity. That evidence can be seen in Thomas Maes et 

al. study28. They could also provide a good indicator to evaluate changes in surface properties 

due to oxidation or biofouling in the environment. Ingestion studies of microplastics and their 

effects by biota could also be carried out using this kind of methods. The main problem of Nile 

Red is its relatively high-cost, making these methods difficult to be implemented as a routine 

technique. For that reason, in this research, more cost-effective dyes will be tested in order to 

determine their efficiency and applicability in routine fluorescence staining methods comparing 

with NR. 

  

 
Figure 3. Solvatochromic behavior of Nile Red can be easily seen when it is dissolved in different 

solvents. From left to right: hexane, tert-butyl methyl ether, chloroform, acetone, ethanol, methanol, 
acetone-water (1:1) and water 
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4. OBJECTIVES 

The main aim of this project is the development of a fluorescence-based analytical approach 

for the microplastic determination in environmental samples. This study attempts to establish a 

standardized protocol for the analysis of microplastics in complex matrices. To achieve that, some 

minor objectives must be accomplished: 

➢ Optimization of the staining conditions for the chosen method using Nile Red considering 

experimental factors such as polarity of the solvent, time of incubation, the concentration 

of the dye and time of heating. 

➢ Evaluation of the optimized NR staining method using various microplastics types 

(polyethylene, polypropylene and polystyrene). 

➢ Assessment of the staining procedure using alternatives dyes (Nile Blue A, Crystal Violet 

and Eosin Y). 

➢ Apply the optimized method in environmental samples, considering different types of 

experiments: a study of industrial plastics, plastics in complex matrices (sediments) and 

photodegraded plastics. 
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5. EXPERIMENTAL SECTION 

5.1. CHEMICALS AND REAGENTS 

The different fluorescent dyes tested are: 

• Nile Red, CAS 7385-67-3, TCI 

• Crystal Violet, CAS 548-62-9, Sigma Aldrich, (certified by biological stain commission) 

• Nile Blue A, CAS 3625-57-8, Sigma Aldrich, (dye content ≥ 75%) 

• Eosin Y, CAS 15086-94-9, Sigma Aldrich, (dye content ~ 99%) 

Cospheric (USA) provide the microplastics used as references during the experimental part. 

Microplastics have the following specifications: 

Table 3. Specifications are given by Cospheric about MPs used in the experiments. 

Name MPs type Color Particle size [μm] Density [g/cm3] Quantity 

PEg polyethylene Fluorescent Green 425-500 1.00 10g 

PEs polyethylene Clear 710-850 0.96 10g 

PEl polyethylene Clear 1700-2000 0.96 10g 

PP polypropylene White 2400-2500 0.90 100 spheres 

PS polystyrene Clear 1890-2100 1.06 100 spheres 

The various solvents employed are: 

• Acetone for analysis-ACS-ISO-Reag.Ph.Eur-Reag.USP, Carlo-Erba Reagents 

• Propan-2-ol for analysis ACS-Rreag.Ph.Eur-Reag.USP, Carlo-Erba Reagents 

• Chloroform for analysis ISO-ACS-Reag.Ph.Eur-Reag.USP, Stabilized with ethanol,  

Carlo-Erba Reagents 

• Methanol for liquid chromatography, Merck 

• Ethanol absolute for analysis ACS-ISO-Reag.Ph.Eur., Emsure 

• Hexane for gas chromatography, Merck 

• Milli-Q water  
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Other reagents used are:  

• Tween 80, CAS 9005-65-6, Sigma Aldrich. 

• Potassium chloride, CAS 7447-40-7, Sigma Aldrich 

5.2. EQUIPMENT 

The diverse apparatus used during this project are: 

• Agilent Cary Eclipse Fluorescence Spectrometer (Agilent Technologies, USA) 

• Atlas Suntest CPS (Atlas, USA)  

• Plant Grow Chambers MLR-352-H (Panasonic, Japan) 

• 3D Sunflower Mini-Shaker (Biosan, Latvia) 

• Conterm drying oven (J.P. Selecta, Spain) 

• Sample Concentrator (Techne, UK) 

• Milli-Q Integral 3 purification system (Merck, USA) 

5.3. STAINING PROCEDURE 

Different approaches were tested to optimize the staining of microplastics by Nile Red. 

Standard PEs were employed in the optimization of the staining procedure. The “Aqueous” 

staining method was used as described by Thomas Maes et al.28, with some adaptations. 

“Organic” staining approach was based on the approach described by Matthias Tamminga et al.31. 

 

 

 

 

 

 

 

 

 

The general scheme of “Organic” method is summarized in Figure 4. In the “Organic” method, 

staining was carried out analyzing diverse solvents (acetone, acetone-water (1:1), methanol, 

 
Figure 4. Generic scheme of “Organic” staining method.   
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ethanol, hexane, and chloroform) at varying concentrations of NR (10, 100, 500 and 1000 µg/mL). 

Many solvent volumes were also tested (300 µL, 0.5, 1 and 2 mL). As it is shown, after the sample 

incubation two different procedures were analyzed. The filtration step was evaluated using 

acetone or water. On the other hand, the solvent was also evaporated directly using three different 

procedures: at room temperature, heating MPs at 45 ºC or using an N2 current.  

The “Aqueous” method procedure is represented in Figure 5. In this procedure, once sample 

incubation had finished, diverse filtration options were evaluated. MPs were washed with acetone 

or water. After that, MPs were dried at room temperature or 45 ºC. 

 

 

 

 

 

 

 

 

Preliminary results showed that MPs were better stained using the “Aqueous” method. The 

optimization of this method was carried out testing seven different adsorption times (15 min, 30 

min, 60 min, 120 min, 4h, 6h and overnight) in the incubation step. Time of heating at 45 ºC was 

also optimized (1h, 2h, 3h, 4h, 5h and overnight). After that, other dyes (Nile Blue A, Crystal Violet, 

Eosin Y) were tested using the previously optimized conditions for NR. 

5.4. APPLICATION OF THE MPS STAINING METHOD TO ENVIRONMENTAL SAMPLES 

5.4.1. Samples and studies 

Different types of environmental samples were analyzed during this project. All the sediment 

samples used in this project were collected in the Castelldefels beach. Diverse plastic types were 

used in the experiments performed as spiked samples. Plastics types can be classified in: 

 

Figure 5. General scheme of “Aqueous” staining method. 
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▪ Reference microplastics (see table 3). 

▪ Industrial plastics (PET bottle, PP and PS plastic glasses), which were ground until their 

size scale was appropriate.   

The different studies carried out in this project can be divided into: 

▪ Staining efficiency evaluation: In these experiments, both types of plastic were used. 

Reference samples (without sediments) and sediment spiked samples were assessed. 

▪ Assessment of the staining method in photodegraded plastics: Only standard 

microplastics were used. Reference plastics were evaluated in a high-intensity 

photodegradation process (30 min and 6 hours at 400 W/m2 (1h at 400 W/m2 is 

equivalent to 40 days of UV daylight dose in Madrid32)) and a low-intensity 

photodegradation process using an environmental chamber (see more details in the 

Appendix 1). Reference samples (without sediments) and sediment samples were 

studied. 

5.4.2. Sediment samples treatment 

To separate the microplastics in sediment samples, a density flotation step was performed 

before the staining method was carried out. In this project, a KCl (sat.) solution (~1.18 g/cm3) was 

used. The workflow performed is detailed below. 

The staining method was directly carried out without filtrating the sediments. Preliminary tests 

performed showed that no interferences of the MPs adsorbing process were caused by the 

sediments. Once the staining process was finished, a visual classification of the different types of 

MPs was carried out. After that, following the optimized “Aqueous” procedure, MPs were dried at 

45 ºC. To test the density flotation efficiency, a recovery study using the reference microplastics 

was performed. 

 
Figure 6. General scheme of the sediment samples treatment. 
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5.5. FLUORESCENCE MEASUREMENTS  

5.5.1. Theoretical background 

Luminescence is the emission of light from an atom or molecule and it happens because of 

electronically excited states. For that reason, luminescence follows the absorption of 

electromagnetic energy and can be divided into two categories depending on the nature of the 

excited state: fluorescence and phosphorescence. 

Fluorescence can be described as a type of luminescence phenomenon in which light 

emission goes from the first excited electronic singlet level (S1) to its ground electronic level (S0). 

On the other hand, phosphorescence is the emission of light which arises from its triplet excited 

state (T1 → S0). In this case, the energy provided by the photon, makes the electron undergo to 

a metastable level. This phenomenon explains why the emission rate in fluorescence (108 s-1) has 

higher values than in phosphorescence (1-103 s-1). All these facts are summarized in the 

Jablonski’s diagram. These diagrams depict the changes in the energy of a molecule or atom 

when it absorbs and emits photons. 

Figure 7. Jablonski's diagram (With permission of Edinburgh Instruments)33. 

Fluorescent chemical compounds are also called fluorophores. Fluorescence typically occurs 

in aromatic compounds which displays a number of general attributes34,35:    

• Fluorescence always occurs at longer wavelengths than the excitation (Stokes shift). 

• The shape of emission spectra does not change as the excitation wavelengths are varied 

(Kasha's rule). 

• Excitation spectra have the same shape as absorption spectra. 

• Emission spectra are a mirror image of the absorption band of the least frequency in a 

good approximation (Mirror image rule). 
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5.5.2. Instrumental measurements 

Fluorescence measurements are typically carried out analyzing the emitted perpendicular 

fluorescence by a sample. In other words, the light source is in a 90-degree angle with the 

detector. Four-faced transparency quartz cuvettes are widely used. In this project, microplastics 

fluorescence analysis is performed employing wellplates. Although initially they were designed 

for cell cultures and cell assays, nowadays, this type of fluorescence measurement is commonly 

applied for intensity analysis of many samples. For example, these systems are commonly used 

in the drug discovery field. In Figure 8, a scheme of the two operating procedures of the 

fluorescence measurements are presented: either with the light beam hitting the sample surface 

(1) or illuminating the plate under the sample cell (2).  

Figure 8. Representation of fluorescence measurement using a microplate                                                    
(With permission of Molecular Devices)36. 

Another important fact worth commenting is that MPs fluorescence measurements are 

conducted in the solid-state. Usually, solid systems do not allow to apply fluorescence approaches 

for analytical applications. Measuring MPs in solution involves many extraction problems and 

measurement difficulties. The reproducibility of experiments is also compromised using this type 

of measurements. On the other hand, solid analysis allows much easier extraction steps such as 

filtration or solvent stage. That fact was shown on the preliminary studies performed.  
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6. DYES AND MPS FLUORESCENCE PRELIMINARY 

STUDIES 

Several staining approaches were tested with the aim of optimizing the microplastics dyeing 

workflow. Firstly, how fluorescence measurements would be carried out had to be solved. 

Typically, the fluorescence of compounds is analyzed in solution. Despite that, in the literature, 

most microplastics fluorometric analysis were performed in solid-state using many filter imaging 

methods5,28,37. As microplates were used in this project, preliminary studies had to be done to 

assess the suitability of the approach. 

With that purpose, the fluorescence spectra of the diverse dyes used during this project were 

measured in solution. As it was expected, good results and reproducibility were obtained. Spectra 

registered for NR using solvents with different polarity are presented in Figure 9. 

As it is commented in Erni-Cassola et al. work, these results agree with previous studies 

performed about the solvatochromic behavior of Nile Red, which favors detection of strongly 

hydrophobic samples at short excitation wavelengths. Hydrophilic samples are ideally visualized 

at longer excitation (i.e. 515-560 nm) and emission wavelengths (≥ 590 nm)5. 

Fluorescence spectra of NR in the various solvents could be justified appealing to the mirror 

image rule, which is related to the Franck-Condon principle. As T. J. Zuehlsdorff commented on 

 
Figure 9. NR solvatochromic behavior is shown. All the spectra were observed at λex=490 nm, 

excepts formaldehyde and acetone-water (1:1) which were recorded at λex=540 nm. 
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his work Nile Red experimental absorption spectrum in the visible light region is characterized by 

a single strong feature using polar solvents such as acetone or alcohols. Furthermore, in non-

polar solvents like cyclohexane or hexane, the single absorption band is found to exhibit two 

separate identifiable peaks with a tail. These spectral differences can be explained looking at NR 

structure. The dye consists of a 2-diethylamino group connected to an aromatic ring system via a 

single C-N bond, as is shown in Figure 10. The S1 state corresponding to a HOMO-LUMO 

transition with strong oscillator strength dominates its absorption and fluorescence spectra. 

Different quantum chemistry studies have shown that rotation around the C-N bond is a key 

feature influencing the dye's absorption and fluorescence spectra38. These facts were 

experimental proved, as is seen in Figure 9. Results from other studies performed in this project 

confirmed that NR excitation spectra have the same shape than the absorption spectra. It was 

also confirmed that fluorescence spectra, to a good approximation, are a mirror image of the 

absorption spectra.  

Fluorescence spectra of the other dyes tested during this project were also measured. Eosin 

Y and Nile Blue A fluorescence spectra are shown in the Appendix 2 and 3.  

After that, fluorescent microplastics studies started with different measurements of PEg. 

These measurements were performed in solution and in solid-state. Results achieved indicated 

that measuring microplastics in solutions was less reproducible than in the solid-state. This fact 

was caused by the poor reproducibility obtained in the transfer of MPs to the microplate. 

Hydrophobic interactions could explain this fact. In addition, density variations between MPs 

made that the transfer of microplastics to the wellplate from the vials, and fluorescence 

measurements were more difficult to reproduce. Although an emulsifier agent was used (Tween 

80), the commented problems could not be eliminated. 

In contrast, good reproducibility was achieved in the solid-state. In a good approximation, the 

fluorescence intensity in the solid-state measurements is determined by the number (weight) of 

 
Figure 10. Structures of Nile Blue A (1) and Nile Red (2). 
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fluorescent plastic particles introduced in the wellplate when there are no interferences. As it was 

experimentally confirmed, fluorescence intensity depends on the thickness of the plastic particles 

in the microplate. This approximation was experimentally confirmed thanks to a simple experiment 

using different masses of PEg. The results obtained are represented below. As is shown, a linear 

correlation between fluorescence intensity and the plastic mass analyzed was demonstrated in 

the range studied. When the fluorescence intensity was measured in ≥ 0.1 g of PEg, the linear 

correlation disappears. That fact could be explained by how the spectrofluorometer makes the 

fluorescence measurements. 

7. DEVELOPMENT OF THE STAINING METHOD  

7.1 PRELIMINARY STUDIES 

Preliminary studies were conducted comparing the “Aqueous” and the “Organic” methods. 

The “Organic” approach was evaluated using different types of solvent. The best results were 

obtained using hexane, chloroform and acetone, which matched with the results found in the 

literature31. Despite that, in the “Organic” approach, many experimental problems were found: 

❖ Filtration step could not be performed successfully using acetone or water. NR 

adsorbed in the surface was removed using this experimental step. 

❖ After using an N2 current for the solvent evaporation, no fluorescence signal was 

observed. 

 
Figure 11. Average fluorescence intensity achieved at the analysis of diverse replicates of PEg 

weights. The R2 obtained is 0.9784. 
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❖ Solvent evaporation at room temperature was a very slow process (1 week was required 

to observe fluorescence signal). 

❖ Drying microplastics at room temperature or heating the solution at 45 ºC, NR crystals 

were formed. These crystals make it difficult to obtain a clear fluorescence signal that 

belongs to stained microplastics. 

On the other side, the “Aqueous” method only presents no successful results when acetone 

was used on the filtration step (as occurs in the “Organic” method, a discolor procedure takes 

place). Drying microplastics at room temperature, as happens on the “Organic” method, a week 

was approximately needed to obtain good fluorescence signals. When performing this step at     

45 ºC, it is necessary to keep it overnight to obtain a satisfactory signal. That fact could be 

explained by the nonfluorescence behavior presented by Nile Red in hydrophobic environments. 

Therefore, only the “Aqueous” method using water on the filtration step and drying microplastics 

at 45 ºC was properly optimized. 

7.2 AQUEOUS METHOD OPTIMIZATION 

The results obtained from the different experiments performed allowed to optimize the 

"Aqueous" method. The factors optimized as it was explained in the Experimental Procedure 

section were the incubation and drying time. The results achieved from the optimization 

experiments performed are presented in Table 4.  

Table 4. Results acquired from the optimization of the “Aqueous” method. 

Incubation 

times 

Fluorescence intensity [a.u.] Drying times Fluorescence intensity [a.u.] 

15 min 44.8 1h 24.9 

30 min 50.6 2h 32.9 

60 min 122.5 3h 39.7 

120 min 105.3 4h 44.1 

4h 107.3 5h 51.9 

6h 103.1 overnight 132.3 

overnight 109.8   
(a) The incubation times were performed using a drying time of overnight. 

(b)  ( 

(c)  

(d)  

(b) The drying times were carried out using an incubation time of overnight. 

Thereafter, the incubation time used was 1 hour. On the other hand, microplastics drying step 

was carried out overnight. The reached results match with the conclusions exposed by Thomas 
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Maes et al., who suggested that incubation times longer than 30-60 minutes led to a gradual 

aggregation of the unadsorbed dye (which has low water solubility and precipitates)28. For this 

reason, fluorescence intensity remained constant after 60 minutes of incubation. The excitation 

wavelength was also optimized using PEs. For Nile Red, an excitation wavelength of 470-510 nm 

produces higher emission intensities. That fact agrees with the previously realized studies. The 

fluorescence measurements obtained once the method conditions were optimized are depicted 

in Figure 12. 

After that, the reproducibility of the stained method was tested. To analyze it, the same 

experimental procedure for the analysis of the reproducibility in the solid-state measurements was 

performed. The results are shown below. As can be seen, the linear correlation between emission 

intensity and the number of particles in the wellplate was similar using PEg, which are covalent-

bonded to a green fluorescent dye and adsorbed stained PE. 

 

 
Figure 13.  Average fluorescence intensity achieved for the peak at 535 nm when replicates 

of stained PEs weights were analyzed. The R2 obtained is 0.9805. 
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Figure 12. Fluorescence spectrum obtained by analysing stained PEs using the optimised 

conditions of the staining method. The excitation wavelength used was 500 nm. 
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8. MICROPLASTICS DETECTION 

Once the fluorescence staining method was optimized with PEs, other types of microplastics 

(MPs) were also tested (PS, PP and PEl). The obtained results demonstrated that the efficiency 

and reproducibility of the “Aqueous” staining method did not decrease using other MPs types or 

sizes. That fact can be seen in Figure 14. In this figure, PS, PP and 

PEl after the staining procedure are illustrated. A comparison with the 

unexposed MPs can also be seen. Successful results were also 

acquired, matching with the results reported in the literature28. That 

fact demonstrates the utility of NR to detect and quantify small plastic 

particles. It could be visually observed that PS (violet) stained color 

was quite different compared with the stained color of PP and PE 

(red). Many factors could explain this experimental observation. As it 

was explained before, Nile Red has a strong solvatochromic behavior 

which absorption maximum undergoes a spectral shift that is roughly 

correlated with environmental polarity. Therefore, the monomer 

structure and their polarity could be responsible for that experimental 

difference. The monomers structures of the tested polymers are represented in the Appendix 4.  

Although all the polymers tested are non-polar, PP and PE have aliphatic hydrocarbon structures 

while PS has an aromatic radical. Other facts such as the crystalline structure, surface conditions 

or adsorption interaction may also influence in the absorption maximum shift. In Figure 15, the 

obtained fluorescence spectra from the measurements of the analyzed polymer types are 

disclosed. All the measurements were also performed using an excitation wavelength of 500 nm. 

The different spectra achieved shown that PS is clearly different from PP and PE. It was 

experimentally confirmed that adsorbed NR in PP and PE have a similar response as dissolved 

NR in non-polar solvents such as hexane. As PS fluorescence spectra only present a broad 

maximum, it could be concluded that PS polarity is not low enough to exhibit two separate 

identifiable peaks, as happens in toluene (Figure 9). The monomer structure of PS could explain 

the similar fluorometric behavior between NR dissolved in toluene or adsorbed in PS. As it is 

 
Figure 14. MPs visual 
appearance of PS (a), 

PP (b), PEl (c) using NR 
compared with 

unexposed MPs (d,e,f)  
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explained in Dalia G. Yablon work, many factors influence in the NR solvatochromic behaviors. 

Therefore, further studies of NR solvatochromic reaction in MPs environments are required39. 

 While only a selection of polymers were tested, given the mode of interaction of NR with 

polymer surfaces, there is no reason to suppose that NR would not be adsorbed to any other 

polymer types or surfaces. As it is explained on the bibliography, mainly Van der Waals interaction 

with additional dipole interactions can explain the adsorption of the dye to the polymer surface28. 

The plastic types used in this study are the more common plastics found on the marine 

environment but could be interesting to assess the selectivity of the method in more polar 

polymers such as PMMA, PVC or nylon.  

8.1 EVALUATION OF ALTERNATIVE DYES 

After optimized conditions were tested in various microplastics types using Nile Red, 

alternative colorants were analyzed using the same conditions. Nile Blue A (NB), Crystal Violet 

(CR) and Eosin Y were tested. In Figure 16, the results 

of the stained procedure can be seen. For Nile Blue A 

and Crystal Violet, the results were quite similar to Nile 

Red. In both cases, PS had a different behavior than 

PP and PE. In contrast, Eosin Y seems to have fewer 

efficiency to stain MPs compared to NB and CR. That 

contrast could be seen clearly on the image. MPs 

stained with Eosin Y were very similar to the 

unexposed MPs. The reasons that justify these 

experimental observations are not clearly understood. 

 
Figure 15. Fluorescence spectra obtained for different types of stained MPs 
(All the spectra were recorded using an excitation wavelength of 500 nm). 
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Figure 16. MPs visual appearance of 

PS (1), PP (2), PEl (3) and PEs (4) using 
different dyes (NB (a), CR (b), Eosin Y 
(c)) compared to unexposed MPs (d). 
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Further investigations about how the different used dyes adsorbed on the MPs surface are 

needed. Fluorescence studies could not be successfully analyzed with CR or Eosin Y stained 

MPs. Crystal Violet preliminary studies showed that this dye was nonfluorescent using water as 

a solvent at any excitation wavelength. It was also demonstrated experimentally that CR was not 

a useful dye to detect MPs by fluorescence approaches because no significant signal was 

detected. Similar to the CR case, microplastics stained with Eosin Y could not be detected using 

fluorescence methods. In contrast to CR preliminary studies, Eosin Y was strongly fluorescent 

when water was used as a solvent (Appendix 3).The main problem detected in Eosin Y probably 

was the staining method used. The results obtained for Nile Blue A are shown below. 

 For NB, it was acquired that the optimized excitation wavelength was between 450-500 nm, 

which provide a maximum fluorescent intensity for stained microplastics. The optimized excitation 

wavelengths, as well as the emission spectra shape for PP, PEs and PEl, were very similar 

between Nile Red and Nile Blue. Contrary to that, stained PS fluorescence could not be recorded 

even though the staining process was successfully carried out. Differences between PS and the 

other types of microplastics tested could not be justified. Different hypothesis commented before 

would explain that experimental differences, but further studies are highly recommended to 

confirm it. 

An important fact to highlight is the similar experimental behavior between Nile Red and Nile 

Blue A. That fact could be reasoned based on the similar structure of both fluorescent dyes (Figure 

10). As it was discussed above, the key feature influencing the Nile Red’s fluorescence spectra 

would be the rotation around the C-N bond. Considering the similar structure, the same 

hypothesis could be used to explain the fluorescence spectra of Nile Blue A. This hypothesis is 

Figure 17.  Fluorescence spectra of stained MPs using Nile Blue A.  
(All the spectra were recorded using an excitation wavelength of 480 nm.) 
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supported with the similar experimental fluorescence spectra obtained for both dyes. To confirm 

that, a solvatochromic study of Nile Blue A was carried out. The obtained results allowed to 

conclude that Nile Blue A has a solvatochromic behavior too, even though not as strong as Nile 

Red. The fluorescence spectra of Nile Blue A dissolved in chloroform, acetone, methanol and 

water are compared in the Appendix 2. 

9. APPLICATION OF THE NR STAINING METHOD TO 

SEDIMENT SAMPLES 

9.1 DENSITY FLOTATION STEP ASSESSMENT 

Finally, the staining method was tested in environmental samples showing a complex matrix. 

Firstly, spiked samples using reference plastics (PEg and PEs) were analyzed. PEg could be 

recovered easily because of their green surface’s color.  Besides that, stained PEs recovery rates 

were worse. That fact could be reasoned for the microplastic color surface after adsorbed NR. As 

it is commented on the literature, the recovery rates of microplastics in visual counting strongly 

varies depending on their surface color. For blue, green and violet hues, 70-100% recovery rates 

were obtained. Despite that, yellow, pink and orange microplastics recovery values were 0-40%7. 

Recovery results of staining spiked particles of various polymer types in fine marine sediments 

are shown below. 

Table 5. Recovery of NR stained microplastics from sediment samples. 

Microplastic 

type 

Number/Weight (g) 

seeded  

Number/Weight (g) 

recovered  

Recovery rate (%) 

PEg 0.04162 0.04049 97 

PEs 0.06656 0.03555 53 

PEl 0.07872 0.07624 97 

PP 5 5 100 

PS 8 8 100 

(a) PEg and PEs recovery rates were calculated using the calibration study exposed in Figure 11 and Figure 13 
respectively. Recovery rates of the other plastic types could not be determined this way because any calibration study 
was performed. 

(b) PEl recovery rates were calculated by weight difference. PP and PS recovery rates were calculated by direct counting 
because of their bigger size scale. 
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9.2 INDUSTRIAL PLASTICS ANALYSIS 

To evaluate the applicability of the fluorescence approach in real environmental samples, 

industrial plastics were also analyzed. Firstly, reference samples of industrial plastic types were 

measured. Nile Red and Nile Blue A were assessed. In 

Figure 18, the staining method was successfully 

performed in the industrial plastics tested. After that, 

sediment spiked samples of the different industrial plastic 

types were assessed using a combination of the density 

flotation step and the staining method. The followed 

experimental procedure was presented in section 5.4.2. 

The results demonstrated that the industrial microplastics 

could also be stained in complex sediment matrices. As it 

can be seen in the presented image, the method was also 

successfully applied using Nile Blue A. When Nile Blue A 

was used to stain industrial microplastics in sediment 

spiked samples, the color solution was violet. In reference 

samples, the color solution was blue. Furthermore, as happens with Nile Red, aggregations of 

the unadsorbed dye were formed in KCl saturated solution. That could be reasoned for the polarity 

increment presented by the KCl saturated solution in comparison with water. The increment of 

the solution’s polarity produces a decrease in the NB solubility.  

Then, the fluorescence spectra of the different industrial plastics using NR were measured. 

The fluorescence spectra of the reference industrial plastic samples and the sediment spiked 

samples were very similar. As it is shown, the fluorescence spectra shape of PP and PS industrial 

plastics were similar to the spectra obtained when standard microplastics were analyzed. 

However, PET was not tested with reference microplastics. Furthermore, looking at the monomer 

structure (which is represented in the Appendix 4) it could be predicted that the maximum 

emission wavelength should appear at longer wavelengths than PP and PS. In addition, only one 

peak should be seen. That prediction is corroborated with the experimental fluorescence spectra 

of the polymer. The fluorescence spectra acquired for PP, PS and PET using Nile Red are showed 

in Figure 19. Another important fact to highlight is the differences found in the intensities between 

hydrophobic polymer types (PP and PS) and hydrophilic ones analyzed (PET). 

 
Figure 18. MPs visual appearance 

of PS (a), PP (b) and PET (c) 
using NR (7,9) and NB (8,10) after 
performing the staining method in 

reference industrial plastics 
samples (7,8) or in sediment 

spiked sample (9,10). 
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That point could be explained by the important influence of the plastics polarity in the 

intramolecular charge transfer state of the NR. Same results were observed on the literature5,37. 

The high-density of PET (>1.2 g/cm3) could also influence in the decrement of the fluorescence 

intensity5. These limitations could be overcome by increasing the sensitivity of the method.   

The fluorescence spectra of the different industrial plastics using Nile Blue A are shown in 

Figure 20. As it happened when NR was tested, differences in the fluorescence spectra shape 

between reference samples and sediment spiked samples were minimum. A similar response 

was observed between standard PP and industrial PP. PET did not present important 

fluorescence intensity as happened in the NR study. The emission band was also presented at 

longer wavelengths than PS and PP. A significant difference between the standard PS and 

industrial PS could be observed. As shown in Figure 20, industrial PS gave an intense emission 

band.  

 
Figure 20. Comparison of the fluorescence spectra of the different industrial plastics analyzed using 
NB. As happened with NR, important differences in the emission band were observed between the 

different polymer types. The excitation wavelength used was 500 nm. 
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Figure 19. Comparison of the fluorescence spectra of the different industrial plastics analyzed using 

NR. Important maximum emission band and fluorescence intensity variations were observed between 
the different plastics analyzed. The excitation wavelength used was 500 nm. 
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Further studies are needed to determine how the emission band varies depending on other 

factors like crystallinity, shape, color within the same polymer type. Thus, reference and industrial 

polystyrene plastics should be analyzed to confirm any general behavior.  

9.3 STUDY OF PHOTODEGRADED PLASTICS 

Spiked samples with reference microplastics were photodegraded with UV light. Then, they 

were analyzed to determine the accuracy of the fluorescence approach using Nile Red in 

degraded samples. The obtained recovery values did not vary in comparison to the non-

photodegraded microplastics (see Table 5). The staining method was also successfully applied 

in all the samples tested. The fluorescence spectra presented by PE l after the different 

degradation processes were compared with the fluorescence spectra shape of reference PEl in 

Figure 21. As shown, the fluorescence spectra shape did no present important variations 

compared to the unexposed MPs in the time scale studied. This behavior was observed in all 

types of MPs analyzed (PP, PS and PE of both sizes). That fact allowed the correct identification 

of the polymer types even though an important degradation process had occurred. The most used 

identification approaches (FT-IR and Raman spectroscopy) are not able to realize that accurate 

identification. In addition, this fluorescence staining method combined with the density separation 

does not require important pre-treatment of the environmental sample or expensive 

instrumentation. To confirm this, extended studies about the behavior of the photodegraded 

plastics in the fluorescence approach using a fluorescence dye would be required. Therefore, it 

could be of great interest new investigations of other degradation procedures and how they affect 

the staining process and the fluorescence spectral shape.

 
Figure 21. Comparison of the fluorescence spectra of PEl after different degradation processes 

occurs. The excitation wavelength used was 500 nm. 
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10. CONCLUSIONS 

In the present study, the development and optimization of a staining method that allowed the 

microplastic determination using a fluorescence-based approach have successfully been 

designed. The achieved results led to the following conclusions: 

➢ The “Aqueous” method with a drying step at 45 °C was chosen as the most appropriate 

approach for the MPs Nile Red staining. The optimized incubation time was set to 1h, 

whereas the drying time required was set to overnight. 

➢ The optimized method was successfully applied to different polymer plastic types (PS, 

PP, PE, PET). Thus, the solvatochromic behavior of NR permitted microplastics to be 

grouped by polymer polarity. 

➢ The optimized “Aqueous” approach was also successfully applied using Nile Blue A. 

Similar results were obtained using either NR or NB. The similar structure between NB 

and Nile Red could explain their similar response in the staining method. The only 

difference observed was that any fluorescence signal could be recorded by reference PS 

using NB. 

➢ The suitability of this method to sediment samples was also tested using Nile Red and 

Nile Blue A. Promising results were obtained using both dyes in standard and industrial 

microplastics. Achieved results from the photodegraded plastics study were also 

satisfactory as the fluorescence spectral shape of the different polymers did not vary in 

the time scale studied. 

All these results led to conclude that this method is a simple and sensitive approach to 

determine the most common plastic debris in the marine environment. 

Although promising results were accomplished in this project, further studies are required to 

implement this analytical fluorescence-based approach as a routine method to the microplastics 

determination in environmental samples. The studies that should follow the present study are:  
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• Testing the optimized method with more polar polymers like PMMA, PVC or nylon. As 

discussed previously, low fluorescence intensity is achieved in the analysis of these 

plastic types. The limitations of the method in polar polymer types must be studied. 

• Assessing the efficiency of the density flotation step with denser plastic polymers. A 

comparison of various saturated salt solutions (i.e. NaCl, ZnCl2, or NaI) would also be of 

great interest. 

• Analyzing how the fluorescence spectrum varies depending on other factors such as 

crystallinity, shape, and color for the same kind of polymer. 

• More in-depth studies of how the fluorescence spectra vary when photodegradation 

processes occur must be made to evaluate the efficiency of the method. The different 

degradation procedures that plastic debris undergo in the marine environment should also 

be studied. 

• Chemometric analysis tools could be helpful for the identification and quantification of the 

different plastic polymer types in plastic debris mixtures. The application of these 

chemometric techniques could also be useful in the study of the possible variations in the 

fluorescence spectra of the degraded plastics. 
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12. ACRONYMS 

CR: Crystal Violet 

FT-IR: Fourier-Transform Infrared Spectroscopy 

HPLC-SEC-RI: High-Performance Liquid Chromatography-Size Exclusion- 

Chromatography-Refractive Index 

MPs: Microplastics  

NB: Nile Blue A 

NIR: Near-Infrared 

NMR: Nuclear Magnetic Resonance 

NOAA: National Oceanic and Atmospheric Administration 

NR: Nile Red 

PE: Polyethylene 

PET: Poly (ethylene terephthalate) 

POPs: Persistent Organic Pollutants 

PP: Polypropylene  

PS: Polystyrene 

PUR: Polyurethane 

PVC: Poly (vinyl chloride) 

Pyro-GC/MS: Pyrolysis-Gas Chromatography-Mass Spectrometry 

RAE: Real Academia Española 

SEM-EDS: Scanning Electron Microscopy-Energy Dispersive Spectroscopy 
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APPENDIX 1: CONDITIONS USED IN THE 

ENVIRONMENTAL CHAMBER 
 

 

In this figure, the conditions used in the low-intensity photodegradation of the reference 

microplastics are depicted. As is shown, a real photodegradation process of the plastics in the 

sand’s beach is simulated. The standard microplastics were subjected to these environmental 

conditions for one week. The light intensity was measured in Photosynthetic Photon Flux Density 

(PPFD) with units of μmol/s·m2. 
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APPENDIX 2: NILE BLUE A FLUORESCENCE 

SPECTRA IN DIFFERENT SOLVENTS 
 

 

A comparison of the Nile Blue A fluorescence spectra in different solvents is illustrated. Nile 

Blue A presents also a solvatochromic behavior like NR. Acetone maximum emission wavelength 

appeared at longer emission wavelengths than expected. Apolar solvents such as hexane or 

toluene could not be tested because NB is insoluble in these solvents. The excitation wavelength 

used was 560 nm. 
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APPENDIX 3: EOSIN Y FLUORESCENCE SPECTRUM 

IN WATER 

 

Fluorescence spectrum of Eosin Y using water as a solvent. The excitation wavelength used 

was 500 nm.  
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APPENDIX 4: MONOMER STRUCTURE OF THE 

DIFFERENT PLASTIC TYPES TESTED 

 

The monomer structures of PP (1), PE (2), PS (3) and PET (4) are represented. The various 

polymers are ordered by increasing polarity: PE ~ PP < PS < PET. 

 





 

 


