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1. SUMMARY 
The demand for chiral compounds, often as single enantiomers, has escalated sharply in 

recent years, driven particularly by the demands of the pharmaceutical industry, but also by other 

applications, including agricultural chemicals, flavours, fragrances, and materials. This 

widespread demand for chiral compounds has stimulated intensive research in asymmetric or 

enantioselective synthesis, a key process in modern chemistry. On the other hand, 

photocatalysis, an environmentally friendly and sustainable form of energy for triggering chemical 

transformations, has emerged as one of the best strategies for the synthesis of organic 

compounds.  

When enantiopure products are desired, it is difficult to control product formation since excited 

states have short lifetimes and it makes challenging to control electron transfer process which 

leads the catalyst to not dictate the stereochemistry of the products so that the transformations 

taken into account provide achiral or racemic compounds. Additionally, merging the photoredox 

catalyst with a chiral catalyst is difficult because of the high reactivity and low activation barriers 

of radical intermediates. In spite of this awkwardness, asymmetric photocatalytic transformations 

nowadays have been successfully accomplished by using a dual-catalyst approach using a 

combination of a photocatalyst and a chiral organocatalyst and also with only one catalyst, named 

a bifunctional catalyst, where the same molecule has a cromophore unit and a catalytic unit so 

that it combines chirality and photoredox properties. In such transformations, visible-light redox 

sensitizers are combined with asymmetric catalysts (either in a single molecule or in a dual 

catalysis system), such as chiral secondary amines, chiral N-heterocyclic carbenes, chiral 

Brønsted acids, chiral Lewis acids, or chiral thiourea under mild reaction conditions. 

Overall, in asymmetric photoredox catalysis the photoactivated sensitizers (or the bifunctional 

catalyst with photoexcitation) initiate a SET from or to a closed-shell organic or metallic molecule 

to produce radical cations or radical anions whose reactivities are then exploited to synthetize the 

desired enantiopure product. To sum up, these advances allow it to forge a green, sustainable 

and economical chemistry without forgetting enantioselective properties. 
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2. RESUM 
La demanda de compostos quirals, sovint com a enantiòmers simples, ha augmentat 

considerablement en els darrers anys, sobretot per les demandes de la indústria farmacèutica, 

però també per altres aplicacions, incloent productes químics agrícoles, sabors, fragàncies i 

materials. Aquesta demanda generalitzada de compostos quirals ha estimulat la investigació 

intensiva en síntesi asimètrica o enantioselectiva, un procés clau en la química moderna. D'altra 

banda, la fotocatàlisi, una forma d'energia sostenible i respectuosa amb el medi ambient per 

desencadenar transformacions químiques, ha sorgit com una de les millors estratègies per a la 

síntesi de compostos orgànics. 

Quan es desitgen els productes enantiomèrics, és difícil controlar la formació del producte ja 

que els estats excitats tenen un temps de vida curta i és difícil controlar el procés de transferència 

d’electrons que provoca que el catalitzador no pugui controlar la estereoquímica dels productes, 

de manera que les transformacions proporcionen compostos aquirals o racèmics. A més, la fusió 

del catalitzador fotoredox amb un catalitzador quiral és desafiant a causa de l'elevada reactivitat 

i les baixes barreres d'activació dels intermediaris radicalaris. Malgrat aquesta complicació, avui 

en dia les transformacions fotocatalítiques asimètriques s'han aconseguit amb èxit combinant un 

fotocatalitzador i un organocatalitzador quiral o bé amb un catalitzador bifuncional, on la mateixa 

molècula té un cromòfor i una unitat catalítica, de manera que combina quiralitat i propietats 

fotoredox. En aquestes transformacions, els sensibilitzadors redox de llum visible es combinen 

amb catalitzadors asimètrics (ja sigui en una sola molècula o en un sistema de catàlisi dual), com 

ara amines secundàries quirals, carbens N-heterocíclics quirals, àcids quirals de Brønsted, àcids 

quirals de Lewis o tiourea quiral en condicions de reacció suaus. 

En general, en la catàlisi fotoredox asimètrica, els sensibilitzadors fotoactivats (o el 

catalitzador bifuncional amb fotoexcitació) inicien la transferència d’un electró a partir d’una 

molècula orgànica o metàl·lica per tal de produir cations radicalaris o anions radicalaris, que 

després s’utilitzen per sintetitzar el producte enantiomèricament desitjat. En resum, aquests 

avenços permeten forjar una química verda, sostenible i econòmica sense oblidar 

l’enantioselectivitat. 
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Bifunctional photoredox catalysts in asymmetric synthesis  7 
 

3. INTRODUCTION 
The demand for chiral compounds, often as single enantiomers, has escalated sharply in 

recent years, driven particularly by the demands of the pharmaceutical industry, but also by other 

applications, including agricultural chemicals, flavors, fragrances, and materials. Although the 

most obvious applications are bio-related, materials science also relies on the properties imparted 

by chirality, notably in chiral polymers and liquid crystals1. This widespread demand for chiral 

compounds has stimulated intensive research in asymmetric or enantioselective synthesis, a key 

process in modern chemistry.  Asymmetric synthesis is defined by the IUPAC as a chemical 

reaction (or reaction sequence) in which one or more new elements of chirality are formed in a 

substrate molecule and which produces the stereoisomeric (enantiomeric or diastereoisomeric) 

products in unequal amounts2, so that asymmetric catalysis consists in the use of one pure 

enantiomeric chiral catalyst in order to carry out the synthesis of the desired enantiomer with chiral 

reagents. 

On the other hand, photocatalysis has emerged as one of the best strategies for the synthesis 

of organic compounds. It consists in a change in the rate of a chemical reaction or its initiation 

under the action of ultraviolet, visible or infrared radiation in the presence of a substance, the 

photocatalyst, that absorbs light and is involved in the chemical transformation of the reaction 

partners3.  

Nevertheless, most of the transformations taken into account provide achiral or racemic 

compounds using both metallic complexes and organic molecules as the photocatalysts. These 

results are obtained because the photocatalyst cannot induce a stereochemical control and 

merging it with a chiral catalyst is difficult because of the high reactivity and low activation barriers 

of radical intermediates. In spite of this awkwardness, asymmetric photocatalytic transformations 

have been studied and nowadays have been successfully accomplished by the use of a dual-

catalyst approach using a combination of a photocatalyst and a chiral organocatalyst and also 

with only one catalyst4, named a bifunctional catalyst, that combines chirality and photoredox 

properties. 
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Lots of strategies have been developed in which efficient catalytic photochemical processes 

that work under stereochemical control and provide chiral molecules in an asymmetric fashion 

can be carried out by two catalysts in tandem for a single chemical transformation. In such dual-

catalyst reactions, visible-light redox sensitizers are combined with asymmetric co-catalysts, such 

as chiral secondary amines, chiral N-heterocyclic carbenes, chiral Brønsted acids, chiral Lewis 

acids, or chiral thiourea. With respect to single catalysts, ultraviolet light in combination with 

hydrogen bonding or Lewis acid interaction has been used in triggering enantioselective catalysis. 

In addition, photoactivated enamine catalysis, in which a transient electron donor–acceptor 

complex is capable of absorbing visible light and triggering a charge transfer, is another pathway 

in bifunctional photoredox asymmetric catalysts.  

3.1. PHOTOREDOX CATALYSIS 

Owing to its natural abundance, ease of use, and fascinating potential of applications, visible-

light photoredox catalysis has been developed into a powerful tool to construct carbon−carbon or 

carbon−heteroatom bonds in organic synthesis. Through high-energy intermediates such as 

radicals and radical ions, unique reactions that are unavailable under thermal conditions can be 

accessed. Significant advances have been achieved in this field by employing ruthenium(II), 

iridium(III) complexes, or organic dyes as photoredox catalysts5,6. 

Figure 1: Oxidative and Reductive Quenching Cycles of a Photoredox Catalyst7 
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Photoredox catalysis is a branch of catalysis that harnesses the energy of light to accelerate 

a chemical reaction via single-electron transfer events. In particular, it employs small quantities 

of a light-sensitive compound that, when it is excited by light, can mediate the transfer of electrons 

between chemical compounds that would usually not react at all. Most photoredox catalytic 

reactions follow one of the two mechanistic schemes depicted in figure 1.  

In a catalytic photochemical reaction, the catalyst acts as an antenna collecting the light and 

transferring it to the substrate via sensitization. Sensitization can occur by energy or electron 

transfer. The most successful enantioselective sensitizers rely on chirality transfer in a 

conformationally restricted exciplex8. Photosensitization provides the opportunity to induce single 

electron-transfer (SET) processes under very mild conditions, thereby producing intermediate 

radical ions and radicals with useful reactivities9. A direct photoinduced electron exchange 

between two involved substrates, one electron acceptor and one electron donor, creates two odd-

electron species, which then generate a new bond upon radical–radical recombination10. 

In photochemical reactions applied to synthesis, light plays the role of a reagent that induces 

a transformation of a chemical compound as it is more commonly done by chemical reagents. In 

this context, the photon is considered as a traceless reagent. This effect is explained by the fact 

that electronic excitation by light absorption causes a particular reactivity that is often 

complementary to that of the ground state. In this regard, combination of catalysis with 

photochemical reactions should generate synergistic effects for sustainable transformation of 

matter11. 

Different labels can be used to describe molecules which participate in light driven chemical 

processes without being consumed, like photocatalyst, photosensitizer (or simply sensitizer), and 

PET sensitizer. Maybe the term photoredox catalyst provides a more precise definition because 

the implication of the catalytic involvement of photons, which is relevant in transformations which 

proceed by chain mechanisms but is misleading for those that do not, and also sensitizer is a 

term traditionally used to describe a molecule which participates in energy transfer processes, 

particularly where dioxygen (O2) is involved7. To sum up, the term photoredox includes the fact 

that after the excitation of the catalyst by light (what would be photocatalysis succinctly) a SET 

event occurs.  

These catalysts are generally drawn from three classes of materials: transition-metal 

complexes (which lead to reductive reactions), organic dyes (like arenes and amines, which 
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perform oxidative reactions), and semiconductors. Photoredox reactions tend to be reductive or 

oxidative reactions as well as neutral redox reactions.  In reductive reactions an electron donor is 

required to serve as the stoichiometric reductant likewise species that can function as a 

stoichiometric electron acceptor it may lead to oxidative reactions. Finally, in neutral reactions the 

substrate or substrates undergo both a single-electron oxidation and a single-electron reduction 

at disparate points in the reaction mechanism. As a result, there is no net oxidation state change 

between starting materials and products, and no stoichiometric external components are required 

to turn over the photocatalytic cycle12. 

A photoinduced electron transfer (PET) is an excited state electron transfer process by which 

an excited electron is transferred from donor to acceptor. When a photon excites a molecule, an 

electron in a ground state orbital can be excited to a higher energy orbital. This excited state 

leaves a vacancy in a ground state orbital that can be filled by an electron donor. It produces an 

electron in a high energy orbital which can be donated to an electron acceptor. In these respects, 

a photoexcited molecule can act as a good oxidizing agent or a good reducing agent. 

3.2. ASYMMETRIC CATALYSIS 

Structural and stereochemical complexity is often associated with superior biological 

properties regarding target affinity and binding selectivity and has therefore become an important 

concept for drug development14. The good selectivity achieved when using also complexes and 

organic molecules in asymmetric catalysis has been demonstrated in asymmetric transformations 

through various mechanisms, including hydrogen bond donor–acceptor, secondary amine or 

Figure 2: Schematic representation of PET (D is  electron donor, A is electron acceptor, and * denotes an 
excited state)13 
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Brønsted base hydrogen-bond donor bifunctional catalysis, Lewis acid and photoredox catalysis 

under mild reaction conditions15. In the following sections the main types of asymmetric catalysis 

are going to be discussed.  

3.2.1. Lewis Acid Catalysis 

In Lewis acid catalysis of organic reactions, a metal-based Lewis acid acts as an electron pair 

acceptor to increase the reactivity of a substrate. The metal atom forms an adduct with a lone-

pair bearing electronegative atom in the substrate, such as oxygen, nitrogen, sulfur, and 

halogens. The complexation has partial charge-transfer character and makes the lone-pair donor 

effectively more electronegative, activating the substrate. Asymmetric catalysis by Lewis acids 

rely on catalysts with chiral ligands coordinated to the metal center. Over the years, a small 

number of chiral ligand scaffolds have stood out as having privileged catalytic properties suitable 

for a wide range of applications, often of unrelated mechanisms. Current research efforts in 

asymmetric Lewis acid catalysis mostly utilize or modify those ligands rather than create new 

scaffolds. These scaffolds share a few common features, including chemical stability and relative 

ease of elaboration. The majority of the scaffolds are multidentate. Most of them also have high 

scaffold rigidity within the ligand; the catalysts are almost invariably rendered chiral by using chiral 

ligands (it is also possible to generate chiral-at-metal complexes using simpler achiral ligands). 

Lewis acids are capable of activating a large variety of carbon-heteroatom and carbon–carbon 

bond forming reactions and chiral Lewis acids have therefore become indispensable tools for 

asymmetric catalysis. Their canonical design consists of a central metal ion coordinated to chiral 

organic ligands so that one-point or two-point binding of a substrate to the Lewis acidic metal ion 

activates the substrate towards nucleophilic or electrophilic attack by a co-substrate or reagent 

and at the same time provides the mode of asymmetric induction by transferring chirality from the 

organic ligands to the product, typically through shielding one face of a prochiral center16. 

3.2.2. Enamine Catalysis 

The catalysis by primary and secondary amines of electrophilic substitution reactions in the 

α-position of carbonyl compounds and related reactions via enamine intermediates are called 

enamine catalysis. Enamine catalysis is a general activation mode in which the formation of an 

enamine from a secondary amine and a carbonyl compound activates the α- position of the 

carbonyl toward a range of electrophilic functionalization reactions. 
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One strategy in this subfield is the use of chiral secondary amines to activate carbonyl 

compounds. In this case, amine condensation with the carbonyl compound generates a 

nucleophilic enamine17. The chiral amine is designed so that one face of the enamine is sterically 

shielded and so that only the unshielded face is free to react. 

3.2.3. Hydrogen bond Catalysis 

Hydrogen-bond catalysis is a type of organocatalysis (form of catalysis whereby the catalyst 

is an organic molecule consisting of carbon, hydrogen, sulfur and other non metal elements) that 

relies on use of hydrogen bonding interactions to accelerate and control organic reactions. 

Catalytic amounts of hydrogen-bond donors can promote reactions through a variety of different 

mechanisms. During the course of a reaction, hydrogen bonding can be used to stabilize anionic 

intermediates and transition states. Alternatively, some catalysts can bind small anions, enabling 

the formation of reactive electrophilic cations. More acidic donors can act as general or specific 

acids, which activate electrophiles by protonation. A powerful approach is the simultaneous 

activation of both partners in a reaction, for example nucleophile and electrophile. In all cases, 

the close association of the catalyst molecule to substrate also makes hydrogen-bond catalysis a 

powerful method of inducing enantioselectivity.  

Nevertheless, Lewis acid catalysis has been more developed than hydrogen bond catalysis 

because current known reactions are very substrate specific and generally exhibit low rate 

acceleration and turnover, thus requiring high catalyst loading18, 19. 
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4. OBJECTIVES 
The aim of this project is to critically review asymmetric photocatalytic transformations and 

the catalysts that are used in that.  

Until a past few years, these transformations were accomplished by means of a dual-catalyst 

system, composed by the combination of a photocatalyst and a chiral organocatalyst. Now, some 

scientists have developed chiral bifunctional catalysts, where the same molecule has a 

chromophore unit and a catalytic unit (Lewis acid, Lewis base, hydrogen-bond donor, transition 

metal…). Therefore, this project is primarily focused on these new researches, even so a brief 

review about the pioneer dual systems is going to be done.  

Additionally, the understanding and summarisation of the chemical processes that take place 

in these transformations and the exploration of the topic in different databases have been set as 

objectives. 
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5. METHODS 
The bibliographic research has been done using scientific data bases as SciFinder, Reaxys, 

ResearchGate and Google Scholar. 

In order to contextualize; the project has been started with the exploration of one article about 

the topic; A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, 

and Mechanistic from J. Alemán and co-workers. Due to this read, an example of the processes 

and transformations that are going to be studied has been probed.   

SciFinder has been of great help, thematic searches with “bifunctional photoredox catalyst” 

or “catalysis” and “in enantioselective synthesis” or “in asymmetric synthesis” have conducted to 

get pleasant results. After the exploration of the twelve references found, six articles have been 

selected to be reviewed. The starter reference has also been found in this search. 

Reaxys has not been so useful; nine references have appeared and seven of these concur 

with the results of SciFinder. The different two articles found have been discarded because the 

catalyst used in the related transformations is not bifunctional. 

Moreover, a search in Google Scholar, using the title of the project as keyword, has been 

done with no favourable results; more than two thousand results were found. Research Gate has 

been also useful; although there were not as many published papers as in other data bases, but 

it has served to look for short and concise definitions. 

Once the literature found on the databases was revised, the references cited on these articles 

were examined carefully in order to locate more chemical processes with this type of catalysts 

involved. Through this revision nineteen new articles have been incorporated to the literature with 

which the review is going to be done. 

To follow up, the results were analysed visually one by one to ascertain whether the chemical 

transformations gathered the desired characteristics. Because the search was made using 

different databases and strategies, some results were duplicated, and it was necessary to reject 

those. Finally, a table was generated to organize the selected data, which is collected in appendix 

1. 
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6. RESULTS AND DISCUSSION  
As it has been described before, PET is frequently used to synthetize complex molecules 

from simple precursors. These reactions start with the generation of molecules in excited 

electronic states, because of the light absorption, that are capable of accepting or donating 

electrons. If enantiopure products are desired, it is difficult to control product formation since 

excited states have short lifetimes and it makes challenging to control electron transfer process 

which leads the catalyst to not dictate the stereochemistry of the products20. This is the reason 

why lately it has been examined dual-catalyst or bifunctional catalyst systems, so that the catalyst 

not only takes part in photoredox process but also acts as an asymmetric catalyst. 

In most reported examples, this task is shared by two catalysts, a photoredox sensitizer for 

triggering light-induced redox chemistry, in combination with an asymmetric catalyst to provide 

the activation of one substrate and the required stereodifferentiation21. In recent years good few 

examples of bifunctional catalysts have been applied to different organic transformations in which 

enantioselectivity is a very important thing. In the ensuing pages it is going to be related the 

advances that have occurred in terms of bifunctional photoredox and asymmetric catalysis with a 

single molecule as a catalyst in the last decade. The results are classified as concerns the mode 

in which asymmetric catalysis is undergoing. 

6.1. HYDROGEN BOND CATALYSIS 

The first works in this area are from Bach, who described a catalytic photoinduced electron 

transfer reaction with high enantioselectivity using an electron accepting chiral organocatalyst 

acting as hydrogen bond catalysis. The reaction devised for this study, shown in figure 4 was 

based on PET catalysed conjugate additions of α-amino alkyl radicals to enones that had been 

performed previously with non-enantioselectivity. In the mentioned reaction, the catalyst used, 

displayed in figure 3, served only as a PET catalyst, thus enantioselectivity was not achieved. 
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 With the presence of the catalyst with enantioselective control, exhibited on figure 3 also at 

the right, ultraviolet irradiation induces a PET from the amine to the photoexcited catalyst and the 

subsequent proton loss from the intermediate cation radical presumably leads to an α-aminoalkyl 

radical which adds intramolecularly to the quinolone. Finally, after the radical addition, back 

electron transfer from the catalyst generates an enolate, which is protonated to yield the products. 

The catalyst used for this reaction, serves not only as a PET catalyst, but also as a stereo 

controlling device inducing the desired enantioselectivity. The mechanistic details of this reaction 

were not elucidated by the authors, but it is known that the chirality multiplication was due to 

hydrogen-bond catalysis8. 

 

 

 

Figure 3: Structures of the achiral PET catalyst (3) and the chiral enantiomeric PET catalyst (4)8. 

Figure 4: PET-catalysed cyclization of the prochiral substrate (1) to the chiral pyrrolizidine (2) and its 
enantiòmer (ent-2)8. 
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6.2. ENAMINE CATALYSIS 

In 2013, Melchiorre and his companions reported chiral amines as organic catalysts, with well-

known utility in thermal asymmetric processes, that conferred a high level of stereocontrol in 

synthetically relevant intermolecular carbon-carbon bond forming reactions driven by visible light 

without any photosensitive unit. It was well-established that chiral secondary amines guided the 

transient formation of photon-absorbing chiral electron donor-acceptor (EDA) complexes and an 

in-cage radical combination as the stereodefining step was involved. The reaction studied, 

consisting in α-alkylation of aldehydes with alkyl halides, starts with the formation of a photon-

absorbing enamine-derived EDA complex, which is necessary to initiate the photochemical 

process. Then, photoinduced electron transfer occurs and the alkyl radical generated undergoes 

combination with its chiral enamine radical cation partner in the solvent cavity of their origin20. The 

mechanism described can be seen in figure 5. 

Furthermore, the same group described and effective alternative for the direct 

functionalization of simple ketones. As in the case of aldehydes, the process is a molecular 

aggregation which occur in the ground state upon association of the transiently generated 

electron-rich enamine EDA complex (the donor, formed from the condensation of an aldehyde or 

Figure 5: Mechanistic proposal for the photochemical organocatalyzed direct a-alkylation of aldehydes and 
ketones20. 
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ketone and a chiral amine) with the electron-accepting alkyl bromide. The mechanism of this 

asymmetric alkylation of cyclic ketones with alkyl bromides, leading to the formation of α-alkylated 

products22, follow the same guidelines as in figure 5. 

Alternatively, enamines can also reach an electronically excited state upon simple light 

absorption and then to act as effective photosensitizers and not are limited to form ground state 

EDA complexes23. This absorption leads to a chain propagation mechanism illustrated in figure 

6. The two blended processes in the way enamine can act are compared in figure 7. 

 

 

Figure 16: Mechanism of enamines in the ground and excited states23. 

Figure 7: Mechanisms that enamines can use to drive the photochemical generation of radicals; a) by 
inducing ground state EDA complex formation; b) acting as a photosensitizer upon direct photoexcitation23. 
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A few years later, Alemán and co-workers developed a photoaminocatalyst, composed by 4-

imidazolidinone because it was the one employed in alkylation of aldehydes in most of dual 

catalytic systems and it possess two groups that could allow the incorporation of two different 

units; one photocatalytic unit and a group for the modulation of the steric hindrance of the 

aminocatalyst. The photoredox properties came from the thioxanthone, a photo-organocatalyst 

which is combined with the amino-organocatalyst, imidazolidinone. 

The first proposal was according to the original mechanism proposed by MacMillan and 

others. In figure 8 is outlined the mechanism for the photoalkylation of aldehydes. The reaction 

starts with the condensation of catalyst 4c with aldehyde 5 to give the first enamine intermediate 

A.  

Figure 8: Proposed mechanism for the α-alkylation of aldehydes in accordance with the original 
mechanism proposed by MacMillan4. 
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The thioxanthone moiety of intermediate A can absorb light to reach excited intermediate A* 

(step 1). It is well-known that thioxanthones can promote a SET. Therefore, this excited 

intermediate A* can reduce the bromoalkane derivative 6 (step 2) through a SET reduction, to 

give intermediate B and the alkyl radical. Then, the alkyl radical is added to the nucleophilic 

enamine B to yield α-amino radical C that can be intramolecularly oxidized by the thioxanthone 

radical cation. Finally, the resultant iminium D is hydrolyzed to give the final α-alkylated aldehyde 

7.  

Then, the initiation step under bifunctional catalysts proceeded toward the tioxanthone was 

also conclude. In this radical I is trapped by enamine II to form α-amino radical III that can be 

oxidized by bromo derivative 6. Next, the generated iminium ion IV is hydrolyzed to recover 

catalyst 4. Therefore, the generation of additional radical species to react with II, via the initiation 

process, is unnecessary because propagation of the process can take place (6 to I)4. 

6.3. METAL-LEWIS ACID CATALYSIS 

Initially, Meggers and co-workers developed asymmetric photoredox transition-metal 

catalysis, an issue that has been acutely explored afterwards and lots of examples and 

applications are reported nowadays. They envisioned the combination of the facts that 

photosensitizers are typically based on transition-metal complexes and that chiral transition-metal 

complexes are on type of asymmetric catalysts in one single transition-metal based catalyst acting 

in photoredox and in asymmetric catalysis processes. 

Figure 9: Accepted radical chain propagation process for the α-alkylation of aldehydes4. 
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6.3.1. Iridium  

At first, the study was conducted by chiral-at-metal iridium (III) complex coordinated by two 

achiral bidentate ligands and two additional labile acetonitriles that gave acces to Lewis acid metal 

centre (figure 10). These chiral Lewis acid were designed to intertwin chiral enolate catalysis with 

photoredox radical ion chemistry when activating α,β-unsatured 2-acyl imidazoles.  

 

Figure 211: Plausible mechanism for a combined photoredox and asymmetric catalysis; photosensitizer is in 
the form of enolate complex II24. 

Figure 310: Chiral iridium complexes.  
S, substrate; I, intermediate; P*, non-racemic chiral product. The complex acting in the plausible 

mechanism has X = S because an increased steric hindrance thanks to longer C – S bonds that positions 
the two tert-butyl groups somewhat closer to the exchange labile acetonitrile ligands than if it is oxygen24. 
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The mechanism, illustrated in figure 11, initiates with the coordination of 2-acyl imidazoles to 

the iridium catalyst, followed by the formation of a nucleophilic iridium (III) enolate complex upon 

deprotonation. Herein, a photo-reductively generated electrophilic radical is added to the electron 

rich metal-coordinated enolate double bond affording and iridium-coordinated ketyl radical that 

will be oxidized to a ketone by single electron transfer. Finally, iridium catalyst is regenerated and 

released upon exchange with unreacted starting materials and following by a new catalytic 

cycle24. 

Keeping track of previous work, Meggers and co-workers developed an oxidative coupling of 

2-acyl-1-phenylimidazoles with tertiary amines providing aminoalkylated products. The previous 

α-alkylation of 2-acyl imidazoles consisted in a reductive activation, instead the reaction being 

reported now occurs through oxidative chemistry. Moreover, against the preceding consideration 

for the pioneer transformation, in this case the catalyst with sulfyde in lieu of oxygen results less 

efficient because of the reactions nature.The catalytic cycle is initiated upon coordination of the 

2-acyl imidazole substrate to the iridium complex in a bidentate fashion under release of the two 

labile monodentate acetonitrile ligands to provide the substrate coordinated intermediate. The 

subsequent reversible deprotonation in the α-position of the carbonyl group affords the 

nucleophilic iridium enolate intermediate, which reacts with an electrophilic iminium ion that is 

generated by an iridium-photosensitized oxidation of the α-silylamine with oxygen serving as the 

terminal oxidant according to the shown and generally accepted photoredox catalysis cycle. The 

addition of the iminium ion to the iridium enolate complex occurs in a stereocontrolled fashion 

dictated by the metal-centered chirality and provides the iridium-coordinated product, which is 

subsequently released as the product upon coordination to a new substrate molecule, thereby 

initiating a new catalytic cycle25. 
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Figure 12: Plausible mechanism for the photoinduced asymmetric catalysis. PS: iridium photosensitizer; [O]: 
oxidant in form of molecular oxygen and superoxide anion25. 
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Another reaction tested by Meggers’ group has been the thrichloromethylation of 2-acyl 

imidazoles and 2-acylpyridines. This mechanism, shown in figure 13, not differs appreciably from 

the previous one (figure 12). In the same role, the perfluoroalkylation of 2-acyl imidazoles with 

perfluoroalkyl iodides at the α-position of the carbonil groups, a redox-neutral and electron-

catalysed reaction, goes ahead the same steps in the reaction26. In these reactions, the 

intermediate iridium (III) enolate complex, which is expected to act as the chiral reaction partner 

for the electron-deficient radicals, acts simultaneously as the active photosensitizer.  

Next, 1,2-amino alcohols were synthesized from trifluoromethyl ketones and tertiary amines 

with high enantioselectivities using, alike before, iridium that catalyses the electron transfer 

reaction between a donor substrate and a catalyst-bound acceptor substrate that apparently is 

followed by a sterecontrolled radical-radical recombination. As we can see in figure 14, it starts 

with the photoactivation of the iridium-coordinated trifluoromethyl ketone (step 1), which induces 

a single electron transfer from a tertiary amine, thereby generating an amino radical cation aside 

from a reduced iridium complex, which can be described as an iridium-coordinated ketyl radical 

(step 2). This is followed by a proton transfer (step 3) and a radical–radical cross-coupling 

between the electronrich α-aminoalkyl radical and the electron-deficient ketyl radical (step 4), 

which is stereochemically controlled by the chiral iridium complex. Finally, the product is replaced 

by new substrate (step 5)10. 

Figure 13: Putative mechanism for the visible-light asymmetric catalysis. PS, photosensitizer in the form of 
enolate intermediate II26. 
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The catalytic asymmetric β-C−H functionalization of carbonyl compounds that is based on 

weakening of the β-C−H bond upon catalyst-induced enolate formation and visible light induced 

single electron transfer was also developed by Meggers. A subsequent proton transfer then sets 

the stage for a stereocontrolled radical−radical recombination under control of the chiral catalyst. 

It is worth noting that a related iridium complex, which is known to enable photoactivated enolate 

photoredox chemistry, failed to promote this. Visible light and oxygen-free conditionals are 

devised to be essential for this transformation. Taken together, all mechanistic studies with 

rhodium catalysts, it is consistent that the role of the Rh catalyst as both a chiral Lewis acid and 

light-harvesting antenna which will suppress direct photoactivation of the dicarbonyl reaction 

partner and promote an electron- and proton-transfer (net hydrogen atom transfer) initiated by 

photoactivated Rh-enolate Rh-II27.  

As yet, in all the published cases, an in situ substrate coordinated iridium intermediate, with 

or without following deprotonation, served as the active photoredox mediator/catalyst by tuning 

the UV/Vis-absorption spectrum and the redox potential of the intermediate iridium species. For 

the case that concerns us now, the employed catalyst is a bis-cyclometalated iridium that provides 

access to useful chiral building blocks like carbocycles, 2,3-disubstituted indoles and 

Figure 14: Mechanism for the visible-light-activated catalytic asymmetric process. a) Catalytic cycle. b) 
Model for the asymmetric induction in the course of the radical–radical recombination shown for selected 

substrates10. 
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functionalized alcohols. The intermediate is not isolated for this reaction since the single catalyst 

is mediating two mechanistically different reactions simultaneously28. In order to complement this 

experiment and to provide diverse chiral alcohols with formation of a new C-C bond and 

establishing one or more chiral centers, the same group of Meggers tried to establish the same 

procedure but executing first the photoredox reaction followed by an asymmetric transfer 

hydrogenation29. 

6.3.2. Rhodium 

In contrast to bis-cyclometalated iridium complexes which are well established photoredox 

sensitizers, this is not the case for the analogous rhodium complexes. Notwithstanding the 

aforementioned, rhodium complexes have been established as Lewis acid asymmetric catalysts 

for some applications likewise the activation of 2-acyl imidazoles through two point binding, 

asymmetric Michael additions (electrophile activation) as well as asymmetric α-aminations 

(nucleophile activation). In these cases, the rhodium catalyst is found to be overall superior to its 

iridium congener16. Emphasizing the first item, where a chiral-at-rhodium complex is capable of 

catalysing the amination of 2-acyl imidazoles through the formation of a coordinated rhodium 

enolate, asymmetric cross-coupling of two Csp3-H groups with molecular oxygen as the oxidant 

has also been proved to work well under rhodium catalysis30. In figure 15 the mechanism of this 

reaction, applicable to the others with rhodium as catalyst, is illustrated. 

Figure 15: Mechanism for the catalytic asymmetric cross-dehydrogenative couplings with molecular 
oxygen30. 
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By the other hand, rhodium complexes have also been used with other photosensitizers in 

order to make possible a photoredox asymmetric catalysis. For example, a reaction that has been 

studied, the addition of alkyl radicals to alkenes, is initiated by the now well-established 

photosensitized oxidative conversion of organotrifluoroborates to carbon-centered radicals, which 

in turn add to N,O-rhodiumcoordinated 2-acyl imidazole or N-acyl pyrazole substrate  thereby 

generating the secondary radical intermediate II, which is subsequently reduced by SET to a 

rhodium enolate, which upon protonation by water provides rhodium-bound product31. This course 

of reaction is very similar to the α-alkylation of 2-acyl imidazoles and the thrichloromethylation of 

2-acyl imidazoles and 2-acylpyridines. 

Furthermore Kang demonstrated an efficient strategy for the addition of α-amino radicals 

generated from tertiary amines to Michael acceptors catalysed by a chiral-at-metal rhodium 

complex. In this case, the catalyst is N,O-rhodium-coordinated complex instead of rhodium metal 

free32. The steps overall are related in figure 16. The addition starts with the coordination of 

Substrate 1 with the rhodium complex in a bidentate fashion to generate intermediate I. Then, the 

N,O-rhodiumcoordinated α,β-unsaturated 2-acyl imidazole complex (intermediate I) is 

photoexcited and reduced by tetrahydroisoquinoline 2, thus generating an α-amino radical, which 

subsequently added to intermediate I to generate the secondary radical intermediate II. 

Intermediate III (rhodium enolate), which is generated from intermediate II via a SET process, 

results in rhodium-coordinated product IV by protonation with H+. The desired product is released 

via the replacement of the coordinated product IV by 1a32.  

Figure 16: Proposed mechanism for the addition of α-amino radicals generated from tertiary amines to 
Michael acceptors32. 
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6.3.3. Copper 

Leaving aside the advances related before, the first to develop a light-promoted 

enantioselective C-N cross-coupling by a copper (I) catalyst containing a chiral phospine ligand 

was Fu and his laboratories; never before copper had been established as a bifunctional catalyst. 

An outline of a possible mechanism for photoinduced copper-catalyzed C-N couplings of alkyl 

halides is illustrated in figure 17. Irradiation of a copper-nucleophile complex (A) could lead to an 

excited-state adduct (B) that would then engage in electron transfer with the alkyl halide (R-X) to 

generate an alkyl radical; next, bond formation between the nucleophile and the radical (Nu-R) 

could occur through an innersphere pathway involving a copper-nucleophile complex (C)33.  

Beside the aspects of relatively shorter excited state lifetimes and weaker visible-light 

absorption, an inherent drawback of copper complexes as photoredox catalysts is that the low 

reduction potentials of Cu(II) to Cu(I) might impede the closure of a photocatalytic cycle. Very 

recently, an appealing strategy involving light-accelerated homolysis has been developed to 

address this problem. So that copper(II) bisoxazoline complexes (Cu-BOX) have been disclosed 

as asymmetric/photoredox catalysts for the alkylation of imines. 

Figure 17: Outline of a possible pathway for photoinduced copper-catalyzed C-N crosscouplings of alkyl 
halides. For simplicity, all copper complexes are illustrated as neutral species, and all processes are 
depicted as being irreversible; X may be serving as an inner- or an outer-sphere ligand [Ln denotes 

additional ligand(s) coordinated to copper]33. 
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As we can see in figure 18, catalyst Cu(II)−L oxidizes the trifluoroborate substrate 2 to the 

radical A through a ligand exchange/light accelerated homolyses process. On the other hand, 

imine substrate 1 or 4 undergoes fast ligand exchange with Cu(II)−L and affords the intermediate 

complex B. The nucleophilic alkyl radical A proceeds with radical addition to the carbon an 

nitrogen double bond of complex B in an enantioselective fashion and transformation to radical 

C. Reduction of C by Cu(I)−L affords monocationic complex D, followed by protonation and ligand 

exchange to release chiral product 3 or 5 and regenerated intermediate complex B. The effective 

asymmetric induction can be explained by radical attack from the sterically less hindered side of 

the copper-coordinated imine. Result of this experiment it is clear that a ligand exchange/light-

accelerated homolysis pathway might be engaged to overcome the low oxidizability of the Cu(II) 

complexes5.  

6.3.4. Nickel 

Although they are inexpensive and well-compatible in photochemical reactions, nickel 

complexes themselves have been less reported as photoredox catalysts. In this case the study 

turns around the photoredox reactions of α,β-unsaturated carbonyl compounds and 

tertiary/secondary α-silylamines.  

Figure 18: A Proposed Reaction Mechanism for the alkylation of imine5. 
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The reaction proceeds with N-acyl pyrazole substrate that undergoes fast ligand exchange 

with the chiral nickel catalyst and affords the intermediate complex. On the other hand, the photon-

absorbing nickel complex Ni–L1 or Ni–L1–1 is activated by visible light, and then oxidizes α-

silylamine by SET to generate silylamine cation radical and the reduced radical (only Ni–L1 as 

the photocatalyst is shown in the figure). Subsequent desilylation of B led to the formation of the 

nucleophilic α-aminoalkyl radical, which undergoes radical addition to the carbon double bond of 

complex A in an enantioselective fashion and transformation to radical species. Reduction of 

these by strong reductant radical produces anion E, followed by protonation to afford neutral 

complex F. Finally, substitution with 1 released chiral product 3 and regenerated intermediate A34. 

The mechanism is outlined in figure 19.  

Considering the steric hindrance created by the tridentate and bidentate coordination, nickel 

center does not interact directly with the free carbon radicals in the nickel catalysis cycle. The 

metal instead serves as a Lewis acid to activate the electrophilic N-acyl pyrazole through a 

bidentate coordination. To sum up, a range of α,β-unsaturated N-acyl pyrazoles containing 

aliphatic, aromatic or electron-donating substituents at the β-position were well tolerated34.  

6.3.5. Nanomaterial  

In 2018 Scaiano and Hodgson reported an efficient nanocomposite acting as a Lewis acid 

catalyst and formed by samarium oxide nanoparticle (a nanostructured semiconductor) decorated 

with titanium or ceria dioxide (Lewis acidic nanoparticles).  

Figure 19: A proposed reaction mechanism for the nickel-catalyzed enantioselective photoredox reaction 
of α,β-unsaturated carbonyl compounds and α-silylamines34. 
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This catalyst performed the photoreductive cyclization and [2+2] photocycloaddition chemistry 

reactions; shown in figure 20. For the first, the net reductive mechanism (figure 21) begins with 

coordination of two molecules of substrate to a single SmxOy nanoparticle on the catalyst surface 

such that the two reactants come into close proximity. As in the homogeneous analogue, 

photoexcitation of the catalyst and two SET events are followed by radical−radical coupling to 

form a new carbon−carbon bond. Subsequent monoprotonation of the dienolate followed by 

intramolecular aldol addition furnishes the substituted cyclopentanol product. Interestingly, the 

Lewis acid samarium triflate has been proposed to take on multiple roles in the homogeneous 

catalytic version of this system. In addition to stabilizing the radical anion intermediate, it has been 

reported that a single Sm(III) atom facilitates the ring-closing final step by coordinating to both the 

enol and carbonyl functionalities of the dienolate, rendering the reaction highly selective toward 

the thermodynamically favored stereoisomer. 

Figure 21: Proposed mechanism for the heterogeneous net reductive photoredox-Lewis acid catalytic 
reductive cyclization of trans-chalcones35. 

Figure 204: Proposed mechanism for the heterogeneous net reductive photoredox-Lewis acid catalytic 
reductive cyclization of trans-chalcones35. 
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Secondly, a similar mechanism was proposed for the heterogeneus catalytic intramolecular 

[2+2] photocycloaddition of symmetric bis(enones) (figure 22). It consists in a SET from the 

photoexcited nanocomposite catalyst to the Lewis acid-activated substrate forms the key radical 

anion intermediate stabilized by the Lewis Acidic SmxOy nanoparticles. Subsequent 

intramolecular Michael addition leads to closing of the five-membered ring followed by 

cyclobutanation to afford the samarium-coordinated ketyl radical, which then gives up an electron 

to yield the cycloadduct 5 (one diastereomer shown for clarity). Unlike the photoreductive 

cyclization of chalcones then, the intramolecular [2 + 2] photocycloaddition of bis(enones) is a net 

neutral redox process and the possibility of a chain component in the overall mechanism should 

not be ignored35.  

This emerging class of nanomaterials harnesses the Lewis acidity of the lanthanide, 

eliminates product contamination by the catalyst, and can be excited with visible light.

Figure 22: Proposed mechanism for the heterogeneous net neutral photoredox-LA dual catalytic 
intramolecular [2 + 2] photocycloaddition of symmetric aryl bis(enones)35. 
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7. CONCLUSIONS 
By one hand asymmetric catalysis is seen as one of the most economical strategy to 

synthetize enantiomerically pure small molecules. On the other hand, visible light has been 

recognized as an environmentally friendly and sustainable form of energy for triggering chemical 

transformations. Moreover, photoredox catalysis provides the generation of highly reactive radical 

intermediates with often unusual or unconventional reactivities. Overall, in asymmetric 

photoredox catalysis the photoactivated sensitizers (or the bifunctional catalyst with 

photoexcitation) initiate a SET from or to a closed-shell organic molecule to produce radical 

cations or radical anion whose reactivities are then exploited. 

Generally, the catalyst is a metal complex or an organic molecule which can be photoexcitated 

as well as can control stereoselectivity across different types of asymmetric catalysis likewise 

Lewis acid catalysis, enamine catalysis, photoaminocatalysis and hydrogen bond catalysis. 

Lewis acid catalysis through chiral-at-metal complexes such as iridium, rhodium, copper ad 

nickel is the field that has been most explored. The iridium catalysts are more abundant than 

others of other metals; however these catalysts overall have been demonstrated to catalize 

enolate reactions, Michael additions, cycloadditions, asymmetric hydrogenations, asymmetric 

transfer hydrogenations, and a variety of different photoredox reactions. 

Nevertheless in recent years photoaminocatalysis or Lewis acid with a nanomaterial as center 

of chirality, have also been related and greatly proved to conduct a chemical transformation with 

the desired enantioselectivity.  

To sum up, this advances allow it to forge a green, sustainable and economical chemistry 

without forgetting enantioselective propierties. 
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9. ACRONYMS 
SET: single electron transfer 

PET: photoinduced electron transfer 

EDA: electron donor-acceptor 

EWG: electron-withdrawing group 

LG: leaving group 

BOX: bisoxazoline complexes 
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APPENDIX 1: TABLE DATA 
YEAR AUTHOR BIFUNCTIONAL CATALYST ASYMMETRIC CATALYSIS CHEMICAL TRANSFORMATION REFERENCE 

2005 Bach organocatalyst Hydrogen Bond catalysis conjugate additions of α-amino alkyl radicals to enones 8 

2013 Melchiorre 
enamine-derived EDA 

complex 
Enamine catalysis α-alkylation of aldehydes and ketones 

20 

2014 Meggers iridium complex Lewis Acid catalysis α-alkylation of 2-acyl imidazoles 24 

2015 Meggers iridium complex Lewis Acid catalysis oxidation of 2-acyl-1-phenylimidazoles with tertiary amines 25 

2015 Meggers rhodium complex Lewis Acid catalysis amination of 2-acyl imidazoles 16, 30 

2015 Melchiorre 
enamine-upon direct 

photoexcitation 
Enamine catalysis α-alkylation of aldehydes and ketones 

22, 23 

2016 Meggers iridium complex Lewis Acid catalysis 
thrichloromethylation of 2-acyl imidazoles and 2-

acylpyridines 
9, 26 

2016 Meggers iridium complex Lewis Acid catalysis α-amination of trifluoromethyl ketones 10 

2016 Meggers rhodium complex Lewis Acid catalysis addition of alkyl radicals to alkenes 31 

2016 Fu copper complex Lewis Acid catalysis C-N cross-coupling 33 

2017 Meggers iridium complex Lewis Acid catalysis β-C−H functionalization of carbonyl compounds 27 

2017 Kang rhodium complex Lewis Acid catalysis addition of α-amino radicals to Michael acceptors 32 

2018 Meggers bis-cyclometalated iridium Lewis Acid catalysis chiral building blocks like carbocycles 28, 29 

2018 Gong 
copper(II) bisoxazoline 

complex 
Lewis Acid catalysis alkylation of imines 

5 
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2018 Gong nickel complex Lewis Acid catalysis 
photoredox reaction of α,β-unsaturated carbonyl and α-

silylamines 
34 

2018 Scaiano Nanocomposite Lewis Acid catalysis photoreductive cyclization and [2+2] photocycloaddition 35 

2018 Alemán Photoaminocatalyst Enamine catalysis photoalkylation of aldehydes 4 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


