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1. SUMMARY 

Bananas are known to be a great source of potassium. One of the natural isotopes of 

potassium, potassium-40, turns out to be radioactive. This isotope is classified as a beta and 

gamma emitter and even though it only represents a 0.0117% of the total natural potassium, its 

presence in bananas makes this fruit to be classified as a radioactive food. 

For the determination of bananas potassium-40 content different radiochemical techniques 

have been used depending on the nature of the radioactive emission that is desired to measure. 

In one hand, the liquid scintillation technique for the beta particles emission and in the other 

hand the high resolution gamma spectrometry for the gamma rays emission. Furthermore, it has 

been used a Geiger-Müller counter, whose typical use is to quickly detect radiation in working 

surfaces with the aim of establishing a simple 40K determination method in bananas to apply in 

teaching environments. 

The determination of 40K via high resolution gamma spectrometry in a banana ashes matrix 

and a reduced size geometry has provided the most exact results among all the others 

radiochemical techniques that have been used in this work. The design and application of a 

simple procedure for the same determination have been successfully achieved, having been 

banana ashes measurements with a Geiger-Müller counter the best option. 

The determination has led to the establishment of the banana activity and the radiation dose 

received when this fruit is ingested. In the same way, such data have been used for the 

comparison of daily or extreme scenarios, such as tobacco use or a nuclear plant accident, with 

the emitted radiation by a single banana for the purpose of raise awareness of the continuous 

radiation that our bodies are subjected. 

Keywords: Bananas, Radioactivity, Potassium, 40K. 
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2. RESUM 

Els plàtans són coneguts per ser una fruita rica en potassi. Un dels isòtops naturals del 

potassi, el potassi-40, resulta ser radioactiu. Aquest isòtop és classificat com un emissor de 

partícules beta i gamma i, tot i que la seva abundància sigui només del 0.0117%, la seva 

presència en el plàtan és la causa de que aquest sigui denominat com a un aliment radioactiu. 

Per a la determinació del contingut de potassi-40 en plàtans s’han emprat diverses 

tècniques radioquímiques depenent del tipus d’emissió radioactiva que s’ha volgut mesurar. Per 

una banda, la tècnica del centelleig líquid per a l’emissió de partícules beta i, per l’altra banda, 

l’espectrometria gamma d’alta resolució per a l’emissió de raigs gamma. També s’ha utilitzat un 

altre tipus de comptador anomenat Geiger-Müller, comunament utilitzat per a una ràpida 

detecció de radiació en superfícies de treball, amb el propòsit d’establir un mètode simple de 

determinació de 40K en plàtans per a la seva futura implementació en entorns docents. 

La determinació de 40K mitjançant la tècnica d’espectrometria gamma d’alta resolució en 

una matriu de cendres de plàtan i en una geometria de mida reduïda ha proporcionat els 

resultats més exactes d’entre totes les tècniques radioquímiques que s’han emprat en aquest 

treball. La posada a punt d’un mètode simple per a la mateixa determinació s’ha dut a terme 

satisfactòriament, havent sigut la millor opció les mesures de cendres de plàtan amb un 

comptador Geiger-Müller. 

Aquesta determinació ha portat a l’establiment de l’activitat del plàtan i la dosi de radiació 

que rep un ésser humà al ingerir-lo. Tanmateix, també s’ha utilitzat aquesta dada per a la 

comparació d’escenaris tan quotidians, per exemple el consum de tabac, com extrems, com ara 

un accident nuclear, amb la radiació que emet un plàtan per tal de conscienciar a la població 

sobre la contínua exposició a la radiació a la que els nostres cossos estan sotmesos. 

Paraules clau: Plàtans, Radioactivitat, Potassi, 40K. 
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3. INTRODUCTION 

It’s worthwhile to start this work with a preliminary contextualization of the topic at different 

levels: the day-to-day presence of the paper main protagonist, banana; its role and standing in 

our nutrition, its close relationship with radioactivity and how to measure it and finally certain 

curiosities that may be of interest for the reader. 

3.1. OVERVIEW IN FRUIT CONSUMPTION 

Fruits and vegetables are essential components in a healthy diet, also an enough daily 

consumption could contribute in the prevention of important diseases such as diabetes, certain 

types of cancer and cardiovascular diseases. Approximately 3.9 million of deaths worldwide in 

2017 could be connected to a low fruit and vegetable consumption, as announced by World 

Health Organization (WHO) and Food and Agriculture Organization of the United Nations 

(FAO)(1). 

It is well known the recommendation of health 

professionals and organizations about the consumption of 5 

pieces of fruit or the equivalent of, at least, 400 g of fruit per 

day. A large number of reports and surveys about the Spanish 

population fruit consumption(2) reveal that fruit predominates 

above lactic products and sweets as desserts in daily meals, 

resulting that Canarias banana is almost always the most 

cheered fruit (Figure 1). 

3.2. BANANA MINERAL CONTENT 

The mineral composition of Canarias banana may vary according to different factors 

referred to all the stages between cultivation and consumption of the fruit: from the geography of 

the crops zone, including soil type or altitude; the agriculture techniques used and the 

transporting and storage of the product(3). All this parameters could be subject of chemometrics 

studies with the aim of classifying unknown banana samples into concrete defined groups. 

Figure 1. Canarias banana. 
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Banana is considered one of the greatest sources of potassium in fruits, only underneath a 

few tropical fruits such as avocado, guava or dates(4). Potassium is responsible for several 

biochemical functions in human body. Hormone secretion and ion transport through the famous 

sodium-potassium pump and potassium channels are a few examples. 

3.3. RADIOACTIVITY 

It is crucial for understanding the basis of this work to make an overview of radioactivity in 

terms of its origin, as well as the mechanisms of its behaviour. 

Radioactivity is the decay process of an unstable atomic nucleus by emitting nuclear 

particles, such as alpha and beta particles, or gamma rays (in other words, electromagnetic 

radiation), to a more stable atomic nucleus. 

3.3.1. Radiation sources 

Depending on whether there’s human intervention or not, we can distinguish two types of 

radiation sources: natural sources and artificial sources(5). 

3.3.1.1. Natural radiation sources 

Within natural radiation sources, we can differentiate between cosmic radiation and 

terrestrial radiation. 

In one hand, cosmic radiation can be described as the radiation emitted in outer space that 

travels long distances and is capable of reaching the Earth. Its interaction with elements present 

in the atmosphere brings out the so-called cosmogenic nuclides, such as 3H and 14C. 

In the other hand, terrestrial radiation is defined as the one caused by mineral constituents 

present in the Earth since its formation: the primordial nuclides and its descendants. It comes 

from the three natural decay chains of 235U, 238U and 232Th. A primordial nuclide that does not 

participate in one of the explained natural decay chains is 40K. 

3.3.1.2. Artificial radiation sources 

Artificial radiation can be described as the radiation caused by nuclear disintegrations and 

radionuclides produced in devices created by humans, such as nuclear reactors as the most 

evident example. 
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Some common products of this activities that can end up in the nature by leakages or 

controlled releases are: 238U, 235U and 90Sr, ordered from most to least half-life. 

3.3.2. Radioactive decay processes 

The decay process undergone by a particular nuclide depends on whether exists a 

proton/neutron excess or deficit, as well as the mass-energy relation of the initial and final 

nuclide. 

It can be distinguished three types of radioactive decays: alpha decay, beta decay (positive 

or negative), and gamma decay(5). 

3.3.2.1. Alpha decay (α) 

A nuclide disintegrates emitting an helium-4 particle ( 𝐻𝑒2+)2
4  of a characteristic energy that 

depends on the initial nuclide. The decay can be represented as: 

𝑋 → 𝑌 + 𝐻𝑒2+
2
4

𝑍−2
𝐴−4

𝑍
𝐴  

It is common in nuclides with a mass number (A) bigger than 150. Among its characteristics, 

it can be highlighted its high ionization power but low penetration effect. Thus, alpha radiation 

can be stopped by a simple sheet of paper. 

3.3.2.2. Beta decay (β) 

A nuclide disintegrates emitting either an electron (beta negative, β-) or a positron (beta 

positive, β+). The decays can be represented as: 

𝛽−: 𝑋 → 𝑌 + 𝑒− + �̅�𝑍+1
𝐴

𝑍
𝐴  

𝛽+: 𝑋 → 𝑌′ +𝑍−1
𝐴

𝑍
𝐴 𝑒+ + 𝑣 

where �̅� is an antineutrino and 𝑣 a neutrino. These particles were postulated by Wolfgang E. 

Pauli in 1927 in order to comply the conservation law of linear momentum and the total kinetic 

moment. Because of the null presence of e- or e+ in a nucleus, these processes can be 

explained as the transformation of a neutron into a proton emitting an electron and the 

antineutrino (in β- radioactivity) or the transformation of a proton into a neutron emitting a 

positron and the corresponding neutrino (in β+ radioactivity). 

In a much lower probability, a nuclide can also undergo a process of electron capture (EC), 

where a nucleus proton captures an atomic orbital electron emitting a neutron and a neutrino. 

The decay proceeds as following: 
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𝑋 + 𝑒− → 𝑌′ + 𝑣 𝑍−1
𝐴

𝑍
𝐴  

This process is in competence with β+ decay, although the difficulties of an innermost K 

shell electron of being in close contact with a proton.  

The beta decay process can be undergone by any type of nuclide, including a single proton 

or neutron and results in a continuous energy spectrum characteristic of every nuclide. It has a 

medium ionization power and penetration effect compared to α radioactivity. As a result, a few 

millimetres of lead are needed to stop β radioactivity. 

3.3.2.3. Gamma decay (γ) 

As a consequence of one of the radioactive decay processes explained above, a nuclide 

can be left in an excited state. This nuclide can return to the ground state or a lower excited 

state by photon emission (γ-ray, electromagnetic radiation) as shown hereunder: 

𝑋∗ → 𝑋 + 𝛾𝑍
𝐴

𝑍
𝐴  

The photons energy will depend in the state the nuclide returns. Since the energy states of a 

nuclide are discrete (quantized) and characteristic of itself, each nuclide will emit monoenergetic 

photons corresponding to its specific energetic transitions. 

Finally, these photons are low ionizing but have a high penetration power and many 

centimetres of lead are required to stop them. 

3.4. POTASSIUM-40 

As previously announced, 40K and its content in Canarias banana is the centre of this work, 

so it is of interest to know about the nuclide, its radioactive properties and the different decay 

processes that can undergo. 

3.4.1. Properties and interesting aspects 

40K is one of the three natural isotopes (along with 39K with a 93.26% abundance and 41K 

with a 6.73% abundance) from a total of 24 potassium isotopes that are currently known(6). It 

can be found mostly in the earth crust or forming part of minerals, in addition to its high 

presence in oceans water. 
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It is a radioactive (unstable) isotope that only represents a 0.0117% of the total natural 

potassium. With one more neutron but the same atomic number (Z=19) in comparison with the 

common potassium, it results in an atomic weight of 39.96 u(6). 

A half-life of 1.25·109 years (1.3 billion years, in the order of the age of the universe) makes 

40K a source of concern in terms of environmental care and radioactive pollution. One must take 

into account that it is not the only radioactive isotope of potassium, but short half-lives (ranging 

from milliseconds to less than a day) of these other nuclides and their artificial origin make them 

not considered in a study of bananas radiation. 

3.4.2. Decay processes 

The two types of decay processes that 40K can undergo with a high probability are beta 

negative decay and electron capture (Figure 2). 

With a 89.25% of probability, 

potassium-40 disintegrates by a 

β- process emitting a beta 

negative particle (electron) with 

a maximum energy of 1.311 

MeV and an antineutrino. As a 

result, 40K decays to the ground 

state of calcium-40 (40Ca)(7). 

With a 10.55% of probability, 

40K disintegrates by electron 

capture emitting a neutrino and 

followed by gamma emission 

(photon) of 1.460 MeV. As a 

result, 40K decays to an excited state of 40Ar(7). 

In a very small probability, 40K can also disintegrate by electron capture to the ground state 

of 40Ar (0.20%) and by beta positive emission (0.001%)(7). 

 

 

Figure 2. Potassium-40 decay chain. 

(Image extracted from M.-M. Bé et al. Table of Radionuclides, 2010, 5, 7-12) 
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3.5. RADIATION DETECTION AND MEASUREMENT TECHNIQUES 

The radiochemical techniques used in this work for the determination of 40K and its 

theoretical background are explained hereunder. 

3.5.1. Liquid Scintillation Counting (LSC) 

Developed in the late 40’s, nowadays liquid scintillation counting (LSC) is the baseline 

technique for beta emitters measure, as in 40K case. 

3.5.1.1. Scintillation detector 

The LSC is based in a scintillation detector, which measures the induced luminescence in a 

given compound caused by the electronic transitions to excited states and the subsequent de-

excitation by photon emission. 

The scintillating substances used must comply the following requirements: to be transparent 

in front of its own light flashes, in order to enable them to reach the photomultipliers; to emit light 

with a similar spectrum of that corresponding to the photomultiplier spectral sensitivity curve 

(typically between UV and IR zones, with a 400 nm maximum) and finally to emit a light flash 

that quickly decays in order to not letting detection pulses to stack, so half-life of excited states 

have to be short(5). 

It can be distinguished two types of scintillating substances: inorganic and organic, the latter 

being the one used in this work. 

Organic scintillating substances are able in solid and liquid state (the last ones, usually 

formed by dissolution of a solid scintillator in an organic aromatic solvent). Radiation excites the 

organic scintillator with subsequent photons emission, which reach the detector. 

3.5.1.2. Mechanism of liquid scintillation 

Radiation excites organic aromatic solvent molecules, transferring the energy through them, 

until scintillating substances (primary scintillators) are reached: the primary scintillator de-

excitation is followed by photon emission, particularly in the UV zone. Usually there are another 

scintillating substances (secondary scintillators) that capture the emitted light and re-emit it in a 

higher wavelength, which is more appropriate for the photomultiplier spectral sensitivity 

curve(8). 
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The photon avalanches reach the photomultipliers where are amplified, collected and 

converted into electric signals. Later, they are converted into tension pulses and lastly counted 

and classified into a multichannel according to their amplitudes which in turn is directly related 

with the energy of the particle emitted in one nuclide disintegration (Figure 3). 

 
Figure 3. Detection scheme of a nuclear particle in LSC and the corresponding quench processes that can 

occur. 

(Image extracted from Bagán H. Doctoral thesis, 2011, 28) 

3.5.1.3. Quenching processes 

During the energy transmission through the solvent, the scintillator and the photomultiplier it 

can take place a reduction or inhibition of light emission due to an interference process: 

quenching(9). When this phenomenon occurs, it can be expected a reduction in the detection 

efficiency of the method. Hereafter are explained a few quenching processes to take into 

consideration. 

In a colour quenching process, a substance absorbs emitted photons preventing them from 

reaching the photomultiplier. 

In a chemical quenching process, a substance affects the energy transfer from the organic 

aromatic solvent to the scintillator, capturing π electrons from the solvent. 

3.5.1.4. Calibration 

One of the most important parameters in liquid scintillation is detection efficiency (EffD),  

EffD=
Net cpm

Act
×100 

the fraction of photon avalanches counted by the detection system in relation to the total 

number of disintegrations produced, where “Net cpm” is the difference between the registered 

and the background counts and “Act” corresponds to the activity of the substance.  
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The most common calibration in LSC is the external calibration curve method, where 

detection efficiency is correlated with a parameter, the quenching parameter, obtained either 

from the sample spectrum or an external source.  

The quenching parameters of an external source is obtained from the sample irradiation by 

a radioactive source (the most common is 152Eu). The most used is the Spectral Quench 

Parameter of the External Standard, or SQP(E), which is an indicator of the uppermost channel 

number that comprises the integration of the 99.5% of the counts produced by the external 

source when it irradiates a particular sample(10). 

3.5.2. High Resolution Gamma Spectroscopy (HRGS) 

In the spectroscopy field of gamma radiation semiconductor detectors are typically used at 

the expense of inorganic scintillator detectors such as sodium iodide doped with thallium. 

3.5.2.1. Semiconductor detector 

In semiconductor detectors, the passage of radiation produces electron-hole pairs with their 

subsequent movement, which generates an electric current proportional to the deposited energy 

by the nuclear particle. 

They are preferred for providing a high resolution that enables the interpretation of complex 

gamma spectrum containing various peaks. However, they offer a lower detection efficiency 

compared to an inorganic scintillator detector(5).  

For its calibration, it has to be taken into consideration that detection efficiency will strongly 

depend on the geometry of the sample recipient and the sample matrix. 

3.5.3. Geiger-Müller Counting (GMC) 

Geiger-Müller detectors are gaseous ionization detectors that work in a particular zone of 

polarization. 

For a better understanding of these detectors behavior, and concretely the Geiger-Müller 

detector, it will be done a short overview of the most important theoretical concepts. 

3.5.3.1. Gaseous ionization detector 

Gaseous ionization detector measures the ionization produced by a radioactive source to a 

gas enclosed in a chamber, which contains two electrodes working as a condenser when a 
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voltage is applied. The constant voltage will experiment a slight fall, that will later be measured, 

due to the electron-ion pairs formed during the ionization process(5). 

Depending on the magnitude of the electric field intensity, the detector can work in several 

different ways. The Geiger-Müller detector works in the so-called Geiger zone, where the 

electric field intensity is such that it produces an electron avalanche due to a massive formation 

of electron-ion pairs. As a result, Geiger-Müller detectors cannot distinguish between charged 

particles or different energies. 

As in the case of HRGS, for GMC calibration has to be taken into consideration that 

detection efficiency will strongly depend on the sample matrix and geometry used. 

3.6. DISSEMINATION AND CURIOSITIES 

It may be of interest to know a few facts and curious comparisons from the world of 

radioactivity involving bananas that will surprise the reader. 

First of all, the existence of a defined magnitude named banana equivalent dose (BED) 

which represents the radiation dose received when a single banana is eaten. This particular 

magnitude was established and it is currently used to concern population about the risk of 

radiation exposure with a simple comparison with such a common fruit as is banana. For 

example, a chest computerized axial tomography (CAT) scan done in a hospital would 

correspond to an ingest of 70.000 bananas (7 mSv)(11). Moreover, it can be interesting for 

those smoker readers to know that a 1 pack of cigarettes per day habit during a whole year 

equates to approximately 700.000 BED (70 mSv).  

A frequently asked question when talking about the radioactivity within bananas is whether 

its consumption is harmful to health. It will be later answered with the results obtained in this 

work.   
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4. OBJECTIVES 

The main objective of this work is the development of a procedure to determine 40K in 

bananas by radiochemical techniques. To achieve it, the following points are proposed.  

First of all, the elaboration of a sample treatment plan with the aim of eliminate the 

interfering substances in bananas to obtain a suitable matrix to work on the further 

determinations. 

Secondly, the total potassium determination of bananas by a spectroscopic technique such 

as flame emission. The following results will be referenced to the value obtained in this stage of 

the work. 

Next, the design and application of a procedure for the 40K determination of bananas by its 

beta and gamma emissions. 

The comparison of 40K activities obtained by the different radiochemical techniques to 

discuss possible differences obtained. 

Finally, the design and application of a simple procedure for the 40K determination to 

implement in a learning environment. 
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5. EXPERIMENTAL SECTION 

5.1. REAGENTS AND MATERIALS 

All the reagents used are of analytical grade. Hydrochloric acid fuming 37% by Merck KGaA 

(Darmstadt, Germany) and nitric acid 65% by Fisher Scientific (Loughborough, England) have 

been used to prepare the acid solution for ashes attack. Nitric acid and nitromethane (by Merck 

KGaA) have been used as chemical quenching agents. 

For LS measurements, the scintillation cocktail Optiphase HiSafe 3 by PerkinElmer has 

been used. 

5.2. APPARATUS 

An atomic absorption/emission spectrometer AAnalyst 200 AA 

(by PerkinElmer) has been used for total K measurements. 

A 1220 Quantulus liquid scintillation detector (by EG&G Wallac) 

with logarithmic amplification and a multichannel analyser of 4096 

channels has been used for LS measurements (Figure 4). 

A high resolution gamma spectrometer with an intrinsic 

germanium detector (by Canberra) has been used for gamma 

emissions measurements. 

A LB 124 Geiger-Müller counter (by Berthold Technologies) has 

been used for β/γ measurements. 

5.3. BANANA SAMPLE TREATMENT 

A representative sampling of bananas and its treatment by crushing and dry ashes 

method(12) previously designed (Table 1) has been done for the later determinations of total K 

and 40K. The sample used during all the work has been the edible parts of Canarias banana 

from Plátano de Canarias brand, Cavendish variety with a minimum size of 16 cm. 

Figure 4. 1220 Quantulus 
liquid scintillation detector by 

EG&G Wallac. 
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Stage Image Description 

Raw material 

 

Banana edible part 

Crushed 

 

Homogeneous paste after crushing 

Carbonized 

 

Dark brown residue after 200ºC 
sand bath 

Calcined 

 

White ashes after 500ºC calcination 

Acid attack 

 

Ashes dissolution. Yellow coloration 
is due to HNO3 thermal 

decomposition 

Table 1. Sample treatment stages. 
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Bananas have been crushed in a closed blender until achieving an homogeneous paste. 30 

g of the result have been transferred into porcelain capsules. The replicates have been first 

heated in a sand bath at approximately 200ºC and later calcined at 500ºC, performing a ramp of 

temperatures to avoid sample inflammation. During the process temperature has not been 

increased beyond 500ºC to prevent potassium loss(3)(13). The obtained ashes have been 

dissolved with 25 mL of a HCl 1:1/HNO3 1:1 solution and an additional 5 mL of concentrated 

HNO3. To ensure the full dissolution, capsules have been heated to approximately 100ºC in a 

sand bath. 

5.4. TOTAL POTASSIUM DETERMINATION 

Total potassium determination of bananas has been done by Flame Atomic Emission 

Spectroscopy (FAES) with few additional sample treatment steps. 

Capsule contents have been filtered with ashless 110-mm filter papers (Whatman, 

Buckinghamshire, UK) and transferred into 250 mL flasks filled up with double deionized 

water(14). A volume of 2.5 mL of the solutions has been diluted to 25 mL flasks in order to 

reach the concentration of the technique calibration range. A concentration of 1000 ppm Na has 

been introduced into the measuring 25 mL flasks acting as a ionization suppressor(15). 

Standards have been prepared by consecutive dilutions from a 1000 ppm K solution into a 

10-80 ppm K range, containing a 1000 ppm Na concentration(15). 

Blank solutions have been prepared with 2.5 mL of HCl 1:1/HNO3 1:1 solution, a 1000 ppm 

Na concentration and filled up with double deionized water. 

Measurements have been performed at the emission wavelength of 776.5 nm(15)(16). 

5.5. BETA DETECTION 

For 40K determination by beta emissions, LSC with a calibration method by chemical 

quenching, using HNO3 and CH3NO2, has been descripted and tested for banana ashes 

solution matrix.  

LS sample vials have been prepared by adding 6 mL of 250 mL flasks prepared in Section 

5.4. and filled up with 14 mL of scintillation cocktail(17) (Figure 5). Each sample vial has been 

measured for 5 h with 20 min of SQP(E). 
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LS standard vials for chemical quenching calibration have been prepared with increasing 

amounts of HNO3 or CH3NO2 (0-1000 μL and 0-25 μL ranges, respectively), 1 mL of a 0.3 g 

KCl/mL solution, 14 mL of scintillation cocktail and 

filled up with double deionized water to 20 mL. 

Each standard vial has been measured for 2 h with 

20 min of SQP(E). 

LS blank vials have been prepared by adding 

increasing amounts of HNO3 or CH3NO2 (same 

ranges than standard vials), 14 mL of scintillation 

cocktail and filled up with double deionized water. 

Each blank vial has been measured for 5 h with 20 min of SQP(E). 

5.6. GAMMA DETECTION 

HRGS and GM measurements for 40K determination have been done for crushed banana 

and ashes matrices.  

5.6.1. Geometries preparation  

A sample geometry and a sample geometry spiked with KCl have been prepared for 

detection efficiency calibration of the techniques. 

For crushed banana geometries (GA1 and GB1), two 500 mL 

geometries (Figure 6) have been filled achieving the same weight 

and height of sample inside the recipient. GA1 only contained 

crushed banana and GB1 has been prepared by adding 

consecutive layers of crushed banana and dried KCl (a total of 

approximately 30 g) with the aim of obtaining an 

homogeneous sample. 

For the preparation of banana ashes geometries (GA2 

and GB2), previous geometry contents have been treated 

as indicated in Section 5.3. and ashes obtained have been 

disposed in optimised geometries (100 mL geometry 

covers, Figure 7), achieving the same weight and height, 

Figure 6. On the left, GA1. On 
the right, GB1. 

 

Figure 7. On the left, GA2 geometry. 
On the right, GB2 geometry.  

Figure 5. LS measured vials and 250 mL flasks 
prepared in Section 5.4. 
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which have been covered with parafilm. GA2 and GB2 have been prepared from GA1 and GB1, 

respectively (Appendix 1). 

5.6.2. HRGS measurements 

GA1 and GA2 geometries have been measured for 3 days. GB1 and GB2 geometries have 

been measured for 1 day due to the higher activity caused by the KCl addition in both 

geometries. 

Detection efficiency calibration of the instrument, as a function of the gamma decays ratio 

and its energies, has also been done by Servei d’Anàlisis Isotòpiques (Universitat de 

Barcelona). 

5.6.3. GMC measurements 

Geometries have been placed in the centre of the GMC detection surface and measured for 

5 h each (Figure 8). In the case of crushed 

banana matrix, measurements have been 

performed with and without the geometry cover 

and an alternative rectangular geometry with a 

bigger surface have been tested. 

Background radiation measurements have 

been performed with an empty 500 mL geometry 

and an empty optimised geometry for crushed 

banana and ashes matrices, respectively.  

 

 

 

Figure 8. On the left, β/γ counts per second are 
shown in the GM screen. On the right, set up 

for crushed banana geometries measurement. 
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6. RESULTS AND DISCUSSION 

In the next sections results obtained for ash content determination, total potassium 

determination by atomic emission measures, 40K determination by beta emission measures by 

LSC and by gamma emission measures by HRGS are discussed, in addition to the results 

obtained for the simple procedure designed for 40K determination by gamma emission using 

GMC. 

6.1. ASH CONTENT DETERMINATION 

As a previous step to the total K and 40K determinations, the banana ash content has been 

determined and a suitable matrix has been achieved, in addition to the 40K preconcentration. 

For ash obtainment, a calcination step of the sample at 500ºC has been performed in order 

to eliminate the organic matter and humidity within bananas (Table 2). 

Capsule Crushed banana 
mass (g) 

Banana ashes 
mass (g) 

Ash content 
(%) 

RE1 30.15 0.3072 1.02 

RE2 30.05 0.3280 1.09 

RE3 30.06 0.3120 1.04 

Table 2. Crushed banana mass and banana ashes mass obtained for ash content determination. The 
replicates has been used for the posterior FAES and LSC analyses. 

A significant reduction in sample dimension has been observed (Table 2) after calcination 

mostly due to the high humidity content of bananas(18), mainly remaining metal oxides and 

carbonates, resulting in an average ash content of 1.04% (0.03) (RSD=3%). 

6.2. TOTAL POTASSIUM DETERMINATION BY ATOMIC EMISSION 

For the later comparison of the different techniques used in this work, total potassium 

content of bananas has been determined by FAES. 
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The 776.5 nm emission spectral line has been chosen in a range of concentrations from 10 

to 80 ppm K for the sample and standards. 

For the technique calibration an external calibration curve has been obtained with a linear 

fit, that follows the equation 

𝑦 = 404.527𝑥 + 6860.77         𝑅2 = 0.9662 

Table 3 shows the total K concentration per 100 g of banana calculated for the samples 

prepared. 

Sample [K] (mg/L) Emission 
(a.u.) 

[K]/100 g banana 
(mg/100 g) 

1 60.21 31218 494.3 

2 60.87 31483 504.6 

3 58.08 30355 487.7 

Table 3. Potassium concentration, emission energy and potassium concentration per 100 g of banana of 
samples prepared. 

The total K concentration per 100 g of banana calculated has been 496 mg K/100 g (9) 

(RSD=2%). 

The total K concentration has been compared with data found on bibliography about Plátano 

de Canarias, which has been 385 mg K/100 g banana(19). Differences has been observed, 

probably caused by the differences between banana crops (Section 3.2.), but results are in the 

same order of magnitude. Thus, FAES result obtained has been taken as the reference value 

for comparisons throughout the posterior determinations. 

6.3. 40K DETERMINATION BY BETA EMISSION 

At this point, the 40K content in bananas has been determined by its beta emissions using 

LSC. 

The technique calibration has been first performed with the addition of increasing volumes 

of HNO3 in the measuring vials, which is present in the samples, in order to correct the possible 

quenching processes occurring in the matrix. Due to the results obtained, a calibration with 

CH3NO2, which is known to be a chemical quenching agent(20), has been performed. 

Figure 9 shows the SQP(E) values of standards proportioned by the instrument and the 

corresponding detection efficiencies calculated for the calibration with HNO3. 
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Even though it had been thought that HNO3 could cause colour quenching by its thermal 

decomposition to NO2 or by nitration of the scintillation vial plastic, no yellow colour has been 

observed in the samples. The calibration curve has shown a constant trend in detection 

efficiency of 89.2% (0.7) (RSD=0.8%) regardless the different SQP(E) values, situated in a 

range of 731 to 814, which indicates that HNO3 has been acting as a chemical quenching agent. 

Thus, a polynomial fit has not been shown. 

Figure 10 shows the spectra obtained for standard vials prepared with different HNO3 

volumes. 

 

 

 

 

 

 

 

 

 

Figure 10. Spectra of the energy in every channel in front of the count 
rate of the standard vials containing HNO3, from S1 to S9. 

Figure 9. SQP(E) quench calibration curve representation for increasing volumes of HNO3. 
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Even when the quenching causes the shift of the spectra to lower energies (in channels), 

caused by the increasing volumes of HNO3 in standards (S1 does not contain HNO3 and S9 

contains the maximum HNO3 amount), it has been proved to not be enough to see a loss of 

count rate in the low energy part of the spectra (channels from 0 to 100) and hence a decrease 

in detection efficiency. It is due to the high energy of the beta particles that 40K emits, most of 

them appearing in channels from 600 to 800. 

As HNO3 has been proved to not produce such quench to see changes in detection 

efficiency, CH3NO2 has been used to calibrate the chemical quenching effects present in the 

matrix. 

Even though CH3NO2 nitro electronegative group presence, which captures the π electrons 

associated with the scintillation cocktail aromatic solvent reducing the energy transfer from the 

beta emission, same results has been observed than the ones obtained for HNO3 calibration: a 

constant trend in detection efficiency of 91.7% (0.9) (RSD=1%) regardless the different 

quenched standards situated in a range of 770 to 815 SQP(E) values. The shift of the spectra to 

lower energies for increasing volumes of CH3NO2 is even lower than the one observed in HNO3. 

Therefore, the constant detection efficiency of 91.7% obtained by CH3NO2 calibration has been 

selected for the posterior samples measuring (Appendix 2). 

Figure 11 shows the sample spectra obtained and Table 4 includes the SQP(E) and net 

count rate values for each sample vial. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Spectra of the energy in channels in front of the count rate for the 
sample replicates. 



26 Serra Ventura, Joan 

 

The sample spectra has been situated in the 600-800 channels window and no other 

interfering peaks corresponding to different radionuclides has been observed. Even though a 

Savitzky-Golay smoothing has been applied, fluctuations in the sample spectra have been 

observed due to its count rate order of magnitude in comparison with the one for standards.  

Table 4 shows the 40K concentration and the deduced total K concentration in the samples 

prepared, as well as the SQP(E) values and the net count rate obtained for each replicate. 

Sample SQP(E) Net count 
rate (cpm)(a) 

Activity per 100 g of 
banana (Bq/100 g) 

[K] per 100 g of 
banana (mg/100 g) 

1 796.3 5.181 13.02 411.2 

2 803.2 5.119 12.91 407.6 

3 805.4 5.337 13.45 424.8 

(a) Net count rate has been obtained by subtracting the integrated, average counts obtained of the three blanks prepared from the 
count rate measured for each sample vial. Average blank count rate = 3.297 cpm. 
Table 4. Calculated 40K and total K concentrations in the replicates. In addition, SQP(E) and net count rate 

values proportioned by 1220 Quantulus have been shown. 

The average SQP(E) value obtained for the replicates has been approximately of 802, 

inside the calibration range of SQP(E) values obtained, which has indicated a low HNO3 

concentration and hence a low quenching effect in the samples. 

The 40K activity calculated per 100 g of banana has been 13.1 Bq/100 g (0.3) (RSD=2%) 

and the total K concentration per 100 g of banana has been 415 mg/100 g (9) (RSD=2%). 

High precision in the 40K determination results have been observed for the LSC 

measurements of banana ashes solution. The result obtained for total K concentration per 100 g 

of banana deduced from the 40K determination by LSC has been close to the reference value of 

496 mg/100 g obtained for total K concentration by FAES. Closer results to the total K 

concentration obtained by FAES were expected due to the clean matrix used, banana ashes 

solution, with no signal attenuation caused by the density component, in addition to the non 

geometry dependence of LSC in comparison with the other radiochemical techniques that have 

been used in this work. 

6.4. 40K DETERMINATION BY GAMMA EMISSION 

The second technique that has been tested for the 40K determination has been HRGS. The 

results obtained for HRGS measurements of 40K gamma emissions of crushed banana and 
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banana ashes matrices are shown hereunder along with the technique calibration that has been 

performed. 

Crushed banana geometries have been prepared by duplicate, one of them spiked with 

solid KCl standard for the technique detection efficiency calibration. Dried KCl has been used as 

the standard instead of a radioactive 40K standard because the same geometries for HRGS 

measurements have been used for the later simple procedure for 40K determination, whose 

objective is to be implemented in teaching environments where radioactive standards presence 

is not common. Heterogeneities in the crushed banana matrices, probably caused by 

encapsulated air between crushed banana layers, have been observed even though it has been 

tried to achieve geometries as much homogeneous as possible (Appendix 3). 

After its measurement, a calcination step has been performed over the geometry contents to 

obtain the next ashes geometries, in order to minimise matrix effects. 

Gamma spectrum of crushed banana (GA1) and crushed banana spiked with KCl (GB1) 

geometries obtained are shown in Figure 12 and 13, where gamma emission energies have 

been represented in front of the count rate registered (pulses/min). 
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Figure 12. Representation of the gamma emissions of GA1 geometry 
containing crushed banana. 
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Figure 13. Representation of the gamma emissions of GB1 geometry 
containing crushed banana and spiked with KCl. 

 

 

 

 

 

 

 

 

 

 

 

 

The gamma emissions corresponding to the 40K decay to the 1460 keV excited state of 40Ar 

by electron capture have been observed in the spectra at 1460.75 keV in both cases, giving a 

higher net count rate in the case of GB1: 2.78·10-1 pulses/s in front of the 4.67·10-2 pulses/s of 

GA1 and a total activity of 592 Bq for GB1 in front of the total activity of 99 Bq corresponding to 

GA1, all due to the KCl mass that has been added into the geometry. Since the technique only 

registers the gamma disintegrations, count rates have been clearly lower in comparison with the 

ones registered in LSC, where beta negative emissions have been registered, due to the 

10.55% probability of gamma emissions in front of the 89.25% probability of beta negative 

emissions in the case of 40K.  

The second more intense peak that has been observed at 511 keV corresponds to a photon 

emission by a positron annihilation, procedure that happens with only a 0.002% probability. This 

peak have been only seen in GA1 spectrum due to the intensity relation with the 40K peak. No 

more significant peaks corresponding to other natural radionuclides have been observed, hence 

the radiation within banana sample has been assumed to be caused only by 40K. 

The spiked geometry (GB1) has been used for the detection efficiency calibration and 

therefore the calculation of the crushed geometry (GA1) 40K content and total K concentration 

deduced (Table 5). 



Determination of the radioactive potassium content in bananas.  29 

 

Geometry Net count rate 
(pulses/s) (a) 

Activity per 100 g of 
banana (Bq/100 g) 

[K] per 100 g of 
banana (mg/100 g) 

GA1 4.667·10-2 18.05 570.0 

(a) Net count rate has been obtained by subtracting the background contribution to the measure, which turned out to be 0.165 
pulses/min. 

Table 5. 40K and total K concentration results calculated from HRGS measurements of crushed banana 
matrix for the crushed banana geometry (GA1). In addition, the net count rate for the geometry has been 

shown. 

The detection efficiency of the technique has been calibrated for the 500 mL geometry and 

the crushed banana matrix, resulting in a value of 0.44%. It has been slightly higher from the 

calibrated by Servei d’Anàlisis Isotòpiques (Universitat de Barcelona), whose value has been of 

0.40%, due to the lower density of crushed banana matrix in front of water and soil matrices that 

they have been used for the geometry calibration procedure.  

For HRGS measures of crushed banana, 40K activity calculated per 100 g of banana has 

been 18.1 Bq/100 g and the total K concentration deduced from the geometry 40K content has 

been 570 mg/100 g. 

The 40K activity obtained for the HRGS measurements of the crushed banana geometry has 

been of the same order of magnitude and hence comparable with the one obtained with LSC 

(13.1 Bq/100 g). Nevertheless, the total K concentration deduced from the 40K content obtained 

has been far different from the one obtained by FAES (496 mg K/100 g banana) and even more 

for the obtained by LSC (415 mg K/100 g banana), hence has not been comparable. 

Differences between techniques have been attributed to crushed banana matrix attenuation of 

gamma emissions and geometry size, whose height has not allowed gamma rays from the top 

content to be emitted in an angle capable to reach the detection window of the HRGS 

germanium detector. 

After the crushed banana measures, contents of both crushed banana and crushed banana 

spiked with KCl geometries have been calcined and ashes obtained have been placed in 

optimised geometries with a much lower height (100 mL geometry cover) protected with a semi-

transparent, flexible film (Parafilm). Differences between ashes coloration have been 

attributable to a possible impurity from KCl (Figure 7). 

Ashes geometry (GA2) and ashes geometry spiked with KCl (GB2) have come from GA1 

and GB1, respectively. As in the previous case, the spiked geometry has been used for the 
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detection efficiency calibration of the geometry and the ashes matrix and therefore the 40K and 

total K concentrations of the ashes geometry (Table 6). 

Geometry Net count rate 
(pulse/s)(a) 

Activity per 100 g of 
banana (Bq/100 g) 

[K] per 100 g of 
banana (mg/100 g) 

GA2 0.1656 13.07 475.1 

(a) Net count rate has been obtained by subtracting the background contribution to the measure, which turned out to be 1,207 
pulses/min. 

Table 6. 40K and total K concentration results calculated from HRGS measurements of banana ashes 
matrix for the banana ashes geometry (GA2). In addition, the net count rate for the geometry has been 

shown. 

The calibrated detection efficiency for the optimised geometry and the banana ashes matrix 

has turned out to be higher than the one calibrated for the crushed banana geometry, 

specifically of 1.75%. It has been attributed to the great reduction in geometry volume, achieving 

a lower height and hence having the most part of the sample in close contact with the 

germanium detector window, and the change from crushed banana to banana ashes matrix, 

which has provided a lower attenuation of the 40K gamma emissions. It has not been compared 

with Servei d’Anàlisis Isotòpiques because they do not usually use 100 mL geometry covers as 

a geometry for HRGS measurements and therefore they do not have data registered for its 

calibration. 

Gamma emissions corresponding to 40K have appeared at 1460.75 keV and the net count 

rate obtained has been, as expected, higher for the spiked geometry in comparison with the 

banana ashes geometry (approximately 90 Bq of GB2 in front of the 63 Bq corresponding to 

GA2). 

For HRGS measurements of banana ashes, 40K activity calculated per 100 g of banana 

have been 13.1 Bq and the total K concentration deduced from the geometry 40K content has 

been 475 mg/100 g. 

The 40K activity per 100 g of banana obtained for banana ashes measurements using HRGS 

has been identical to the one obtained for LSC (13.1 Bq/100 g) and very similar, hence 

comparable, to the results obtained for the crushed banana matrix measurements by the same 

technique, HRGS (18.1 Bq/100 g). The total K concentration per 100 g of banana deduced has 

resulted to be the closest to the one obtained by FAES measurements (496 mg/100 g). This 

satisfactory results have been attributed to geometry size reduction and decrease of matrix 

attenuation of gamma emissions due to the crushed banana calcination. The whole set of 
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advantages and precise results obtained have made the gamma emission measurement of 

banana ashes by HRGS the best technique for the 40K determination in bananas among the 

radiochemical techniques that have been used in this work. 

6.5. SIMPLE PROCEDURE FOR 40K DETERMINATION 

Finally, the same crushed banana and banana ashes geometries from HRGS 

measurements have been measured with a routine use Geiger-Müller Counter (GMC), which is 

not specific for radiochemical analyses, in order to establish a simple procedure for 40K 

determination in bananas that could be implemented into teaching environments. The detection 

efficiency calibration has been done by the same procedure than the one employed for HRGS 

measurements: the spiked geometry with KCl has been used for the detection efficiency 

calibration of the geometry and the matrix for GMC measurements for subsequently determine 

the 40K concentration in the non-spiked geometry. 

The results obtained for GMC measurements of 40K gamma emissions of crushed banana 

and banana ashes matrices are shown hereunder along with the technique calibration that have 

been performed. 

Since most of the beta particles do not reach the detection surface because of their 

penetration effect, one may assume the count rate obtained is mainly due to gamma emissions 

only. Nevertheless, for crushed banana matrix, GMC measurements have been performed with 

and without geometry covers to see whether the change causes a filter effect on beta particles.  

GMC have proportioned the β/γ count rate of the geometry contents (Table 7). For the filled 

geometries, the instrument has only been capable to measure the emissions from the top of the 

geometry, concretely the surface of the sample. In the case of background, when measures 

have been performed with covers, the GMC has been measuring the plastic material of the 

cover, while when measures have been performed without covers the GMC has been 

measuring the radionuclides present in the air that have been encapsulated inside the 

geometry. 
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Geometry(a) β/γ count rate (cps) 

Background w/o c 9.13 

Background w/ c 7.85 

GA1 w/o c 8.58 

GA1 w/ c -(b) 

GB1 w/o c 9.26 

GB1 w/ c 8.70 

(a) w/o c = measure performed without geometry covers. w/ c = measure performed with geometry covers. 
(b) Measures for GA1 geometry with cover have not been performed because results obtained for the other geometry measures were 

not satisfactory.  
Table 7. Count rate measured for the background and filled GA1 and GB1 geometries. 

The crushed banana spiked geometry (GB1) has given close but higher count rates 

compared to the ones for the background radiation, regardless the cover presence or not. The 

crushed banana geometry (GA1) has given non satisfactory results: lower count rate than the 

background has been obtained for measures without cover and measures with cover have not 

been performed because worse results have been expected. 

A rectangular 400 mL geometry filled with crushed banana, which has got a bigger surface 

for gamma detection, has been tested to improve the results but again same or lower count 

rates than the background have been obtained. 

The big volume that has represented a crushed banana full filled 500 mL geometry has not 

allowed gamma emissions to reach the GMC detection surface. Hence, a reduction of the 

geometry size and sample volume has been needed in order to obtain relevant results.  

Consequently, calcination of geometry contents has been done for banana ashes 

geometries preparation and the posterior GMC measurements. Results of the β/γ count rate 

registered and 40K activity calculated, along with the total K concentration deduced from 40K 

content, are shown in Table 8. 

Geometry β/γ net count 
rate (cps)(a) 

Activity per 100 g of 
banana (Bq/100 g) 

[K] per 100 g of 
banana (mg/100 g) 

GA2 5.18 11.4 373.7 

(a) Net count rate has been obtained by subtracting the background contribution to the measure, which turned out to be 9 cps for an 
empty optimised geometry covered with Parafilm. 
Table 8. 40K and total K concentration results calculated from GMC measurements of banana ashes for the 
geometry content and per 100 g of banana. In addition, the net count rate obtained for the banana ashes 

geometry is shown. 
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Results of the count rate measured for banana ashes (GA2) and banana ashes spiked with 

KCl (GB2) geometries, 14.18 cps and 18.09 cps respectively, have been significantly higher 

than the one measured for background (9 cps). Thus, in contrast with crushed banana GMC 

measurements, it has been possible to use this data for the later activity and total K 

calculations. 

The calibrated detection efficiency for GMC measures of ashes geometry has turned out to 

be surprisingly high, 99.1%, compared with the radiochemical techniques that have been 

previously used. Reduction of the geometry size, concretely in height, has caused an increase 

of gamma emissions detection due to the closer position of the overall ash mass to the 

detection surface of the instrument. In comparison, the overall crushed banana mass had been 

disposed along a bigger geometry (500 mL) where gamma emissions from the bottom content 

had an emission angle that did not enable its detection. In addition, the decrease in sample 

volume and density by calcination of crushed banana to ashes have represented a decrease in 

matrix attenuation of the gamma emissions. 

For GMC measurements of banana ashes, 40K activity calculated per 100 g of banana have 

been 11.4 Bq/100 g and the total K concentration deduced from the 40K content has been 374 

mg/100 g. 

The 40K activity per 100 g of banana obtained for banana ashes matrix GMC measurements 

has been closer to the ones obtained for LSC and HRGS by banana ashes measures (13.1 

Bq/100 g in both cases) than the one obtained for crushed banana measures using HRGS, but 

equally in the same order of magnitude and hence comparable. Calibration through KCl spiking 

has resulted to be satisfactory by giving high precision in the results, regardless the high value 

of measure uncertainty associated to the instrument used. 

The total K concentration per 100 g of banana deduced has resulted to be far from the 

reference value obtained by FAES measurements (496 mg/100) and it has been attributed to 

the Geiger-Müller instrument, which task is not to accurately analyse radioactive samples but to 

quickly detect radiation in surfaces due to accidental leakages in a daily basis. 

Finally, it has been concluded that GMC can be used for 40K determination in bananas by 

using a banana ashes matrix to minimise the matrix attenuation effect over gamma emissions 

and an optimised geometry to ensure the detection of the maximum number of these emissions. 
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6.6. RADIOCHEMICAL TECHNIQUES COMPARISON 

Finally, a discussion over the radiochemical techniques that have been used in this work 

has been done in order to expose the main advantages and disadvantages of each one and 

select which suits in different cases. 

The main advantages of LSC are the low limit of detection due to the high detection 

efficiency that provides in the case of a high-energy beta emitter such as 40K, a low background 

thanks to the lead shielding surrounding the detector and a low measure uncertainty that 

ensures a high precision between replicates. In contrast, the technique requires an important 

sample treatment to achieve a clear matrix without interferences, in addition to large times of 

measurement (easily 40 h for a whole set of standards, samples and blanks) and the difficult 

access to an ultra low level liquid scintillation spectrometer due to its high cost. Thus, LSC is 

appropriate for cases where low activity samples are analysed and instruments for sample 

treatment (such as muffles or sand baths) and measure (1220 Quantulus) are available. 

For the case of HRGS, the main advantages of the technique are the few steps needed for 

sample treatment, allowing to directly measure crushed banana samples obtaining satisfactory 

results or calcine to ashes for improving the results exactitude; the high selectivity between 

gamma emissions due to its resolution characteristic of a spectrometric technique and its low 

background thanks to the shielding surrounding the germanium detector. Instead, it does not 

have such low limit of detection as LSC and the time of measurement for the sample and the 

calibration geometries can reach up to 4 days. Hence, HRGS is appropriate for cases of routine 

measures of samples where sample treatment wants to be skipped for saving time and for not 

adding uncertainties associated with the treatment procedure in the determination. 

Last, GMC presents the advantage of its simplicity when it comes to use it due to its real 

task of routine measures of working surfaces in radioactive installations, in addition to the little 

sample treatment needed for the approximate determination of 40K in bananas. In contrast, the 

technique offers a high measure uncertainty and a high background, which is caused by the null 

presence of a shielding to reduce the cosmic radiation that is detected along with the sample 

emissions, in addition to a high limit of detection which forces to have samples with relatively 

high activity to obtain significant results. Nevertheless, if the purpose of the determination is to 

teach radiochemistry to students without knowledge in this field, the simple procedure described 

in this work is entirely valid for 40K determination in bananas.  
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6.7. BANANA DOSE IN HUMANS 

In order to finish this work in the same way it was started, the question of whether the 

banana consumption is harmful to human health has been answered. 

With the banana activity results obtained by measures of banana samples with different 

radiochemical techniques it has been possible to see that an activity of an average 14 Bq/100 g 

of banana is not dangerous for humans. 

However, an approximation of the effective dose received for a single banana ingest has 

been calculated and compared with the dose limits established for the average population, for 

radioactive installations workers and also the considered limit dose for death. The effective dose 

can be described as the sum of the different weighted equivalent doses in the whole tissues and 

organs of human body. 

Assuming that 40K radiation is caused by electrons (β- decay) and photons (γ decay) and this 

particles mainly affect organs and tissues such as stomach, liver, small intestine, large intestine, 

kidney, pancreas, spleen, adrenal glands and bones(21), the effective dose calculated is 3·10-8 

mSv. 

A dose limit of 20 mSv/year is given to workers from a radioactive installation, while for 

members of the public this value decreases to 1 mSv/year. Moreover, an absorbed dose of 

1000-2000 mSv can be deadly in 6 to 8 weeks, while the increase of the dose up to 30000 mSv 

leads to death in no more than 1 day. 

Therefore, with an effective dose of 3·10-8 mSv per banana can be concluded that the 

human banana intake is completely harmless to health. 
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7. CONCLUSIONS 

 After the discussion of the results that have been obtained for 40K determination by the 

different radiochemical techniques used, the following conclusions have been drawn. 

 A procedure to determine 40K in bananas has been established comprising the sample 

treatment of crushed banana and its calcination to ashes, the sample measure by the 40K 

gamma emissions using HRGS, equipped with an intrinsic germanium detector, in the format of 

banana ashes matrix placed into an optimised geometry, which has been a 100 mL geometry 

cover, and the technique calibration by KCl standard spike of a sample geometry. 

FAES technique for the reference value obtainment of total K concentration in bananas has 

been reinforced to be a robust method with low measure uncertainty for the obtention of 

accurate results. 

A procedure for 40K determination by beta emissions has been designed and tested using 

LSC technique. Accurate results have been obtained by using banana ashes solution with 

mainly nitric acid and the subsequent calibration for matrix quenching effects by using 

nitromethane, finally establishing a constant detection efficiency. The technique has provided 

high precision and the possibility to work with low activity samples, which can be a crucial factor 

whether the experiment can not be performed with a big quantity of bananas as it has been in 

this case. 

Finally, a simple procedure for 40K determination in bananas has been designed and 

applied for its future implementation in radiochemistry teaching environments. GMC 

measurements of banana ashes in an optimised geometry with a calibration through KCl spike 

have given significantly higher count rates than the background for the posterior 40K 

concentration calculation, whose result has been quiet satisfactory if the purpose of the 

determination is to teach students without radiochemistry knowledge. 

 



Determination of the radioactive potassium content in bananas.  37 

 

8. REFERENCES AND NOTES 
1.  WHO | Development of WHO nutrition guidelines. WHO 2018 [cited 2019 Jun 2]; Available from: 

https://www.who.int/elena/about/guidelines_process/en/ 
2.  Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España. Estudio del Mercado del 

Plátano en España y Portugal. 2002 [cited 2019 Apr 15]. Available from: 
https://www.mapa.gob.es/es/alimentacion/temas/consumo-y-comercializacion-y-distribucion-
alimentaria/platano_espana_tcm30-89322.pdf 

3.  Hardisson A, Rubio C, Baez A, Martin M, Alvarez R, Diaz E. Mineral composition of the banana 
(Musa acuminata) from the island of Tenerife. Food Chem. 2001;73(2),153–61.  

4.  U.S Department of Agriculture (USDA). Food Composition Databases Show Foods -- Bananas, 
raw. 2016 [cited 2019 Feb 27]. Available from: 
https://ndb.nal.usda.gov/ndb/foods/show/09040?fgcd=&manu=&format=Full&count=&max=25&of
fset=&sort=default&order=asc&qlookup=09040&ds=&qt=&qp=&qa=&qn=&q=&ing= 

5.  Ortega Aramburu X, Jorba Bisbal J. Las Radiaciones ionizantes: utilización y riesgos I. Edicions 
UPC. 1996.  

6.  Audi G, Bersillon O, Blachot J, Wapstra AH. The NUBASE evaluation of nuclear and decay 
properties. [cited 2019 Apr 2]. Available from: http://csnwww.in2p3.fr/AMDC/ 

7.  Bé MM, Chisté V, Dulieu C, et al. Monographie BIPM-5, Table of Radionuclides. Bureau 
International des Poids et Mesures, Sèvres, França. 2010;5, 7-12. Available from: 
http://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BIPM-
%0A5_Tables_Vol7.pdf 

8.  Bagán H. Millora de la selectivitat en la determinació de radionúclids per escintil·lació plàstica 
sense generació de residus. Doctoral Thesis. Universitat de Barcelona; 2011.  

9.  Thomson J. Use and preparation of quench curves in LSC. 2004;1–7.  
10.  L’Annunziata MF. Handbook of Radioactivity Analysis 3rd Edition. Academic Press; 2012.  
11.  Radiological Society of North America I. Patient Safety - Radiation Dose in X-Ray and CT 

Exams. 2019 [cited 2019 Apr 18]. Available from: 
https://www.radiologyinfo.org/en/info.cfm?pg=safety-xray 

12.  AOAC. Official methods of analysis. Assoc Anal Communities. 1995;1(5),141–4.  
13.  Sanchez-Castillo CP, Aguirre A, Escamilla I, et al. The mineral content of mexican fruits and 

vegetables. J Food Compos Anal. 2002;11(4),340–56.  
14.  Miller-Ihli NJ. Atomic absorption and atomic emission spectrometry for the determination of the 

trace element content of selected fruits consumed in the United States. J Food Compos Anal. 
1996;9(4),301–11.  

15.  Guiteras J, Rubio R, Fonrodona G. Curso Experimental En Química Analítica. Síntesis SA. 2003. 
214–217.  

16.  Tahvonen R. Contents of selected elements in some fruits, berries, and vegetables on the finnish 
market in 1987-1989. Journal of Food Composition and Analysis. 1993;6,75–86.  

17.  Verrezen F, Loots H, Hurtgen C. A performance comparison of nine selected liquid scintillation 
cocktails. Appl Radiat Isot. 2008;66(6–7),1038–42.  

18.  Luisa Casallas. Evaluación del análisis fisicoquímico del banano común (Musa sapientum I) 
transformado por acción de la levadura Candida guilliermondii. 2015;15-21. Available from: 
https://www.javeriana.edu.co/biblos/tesis/ciencias/tesis605.pdf 



38 Serra Ventura, Joan 

 
19.  Asociación de Organizaciones de Productores de Plátano de Canarias (ASPROCAN). 

Información Nutricional - Plátano de Canarias. [cited 2019 Mar 8]. Available from: 
https://platanodecanarias.es/nuestros-platanos/informacion-nutricional/ 

20.  Tarancón A, Bagán H, García JF. Plastic scintillators and related analytical procedures for 
radionuclide analysis. J Radioanal Nucl Chem. 2017;314(2),555–72.  

21.  España. Real Decreto 783/2001, de 6 de julio, por el que se aprueba el Reglamento sobre 
protección sanitaria contra radiaciones ionizantes. Boletín Oficial del Estado, 26 de julio de 2001, 
núm. 178, pp. 27284 a 27393. 



Determination of the radioactive potassium content in bananas.  39 

 

9. ACRONYMS 

A Mass number 

BED Banana Equivalent Dose 

CAT Computerized Axial Tomography 

EC Electron Capture 

FAES Flame Atomic Emission Spectroscopy 

FAO Food and Agriculture Organization of the United Nations 

GM Geiger-Müller 

GMC Geiger-Müller Counting 

HRGS High Resolution Gamma Spectroscopy 

IR Infrared 

LOD Limit of Detection 

LS Liquid Scintillation 

LSC Liquid Scintillation Counting 

MCA Multichannel Analyser 

PMT Photomultiplier Tube 

RSD Relative Standard Deviation 

SQP(E) Spectral Quench Parameter of the External Standard 

UV Ultraviolet 

WHO World Health Organization 

Z Atomic number 
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APPENDIX 1: DIAGRAM OF THE WORK 

Figure A1 shows the steps that have been followed in this work, from the initial raw bananas 

sample to the 40K determinations by different radiochemical techniques, going through all the 

sample treatment procedures in order to achieve a suitable matrix. 

 

Figure A1. Diagram of all the procedures involved in the work. 
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APPENDIX 2: LSC CALIBRATION WITH CH3NO2 

Figure A2 shows the SQP(E) values of standards proportioned by the instrument and the 

corresponding detection efficiencies calculated. Quench curve is explained in Section 6.3. 

 

 

 
 
 
 
 
 
 
 
 

 
 

Figure A3 shows the spectra obtained for standard vials prepared with increasing volumes 

of CH3NO2, explained in Section 6.3. 

90,0

91,0

92,0

93,0

94,0

760 770 780 790 800 810 820

D
e

te
ct

io
n

 e
ff

ic
ie

n
cy

 (
%

)

SQP(E)

SQP(E) vs. Detection efficiency (%) 
CH3NO2 quenching curve, LSC

Figure A2. SQP(E) quench calibration curve for increasing volumes of CH3NO2. 

 

Figure A3. Spectra of the energy in every channel in front of the count 
rate of the standard vials containing CH3NO2, from S1 to S9. 
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APPENDIX 3: HOMOGENEITY TEST 

An homogeneity test over the crushed banana geometry spiked with KCl (GB1) has been 

performed to ensure that its preparation by addition of consecutive layers of crushed banana 

and KCl has been correctly done, having an homogeneous distribution between crushed 

banana and the added KCl to achieve significant results in the posteriors measures by HRGS. 

Three 100 mL geometries have been filled up with GB1 content from the top (H1), middle 

(H2) and bottom (H3) of the geometry and have been measured by HRGS, each one during 1 

day. Results obtained are shown in Table A1. 

Geometry Net count rate 
(pulses/s)(a) 

H1 7.82·10-2 

H2 1.06·10-1 

H3 1.20·10-1 

(a) Net count rate has been obtained by subtracting the background contribution to the measure, which turned out to be 1.207 
pulses/min. 

Table A1. Net count rate obtained for the three geometries of the homogeneity test. 

Slightly different net count rates have been obtained for the three homogeneity test 

geometries, attributable to negligible bigger amounts of KCl in the middle and bottom of the 

geometry. Hence, the crushed banana geometry spiked with KCl (GB1) has been considered to 

be homogeneous.  





 

 


