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1. SUMMARY 

Nowadays, the interest on the use of peptides as drugs is increasing due to their unique 

properties, such as high selectivity and low toxicity. As a result, pharmaceutical industry has 

more than 500 peptides that are currently in preclinical development and it is estimated that the 

peptides market involves 25.4 million dollars per year.1 

This project was carried out in the Smbiocom research group, which collaborates with a 

pharmaceutical company which aims to synthetize a bioactive peptide with oncological 

properties and scale the method up to a pilot plant production. The strategy taken in the 

laboratory has consisted on a convergent synthesis of a fragment with eleven amino acids of 

the target peptide. In the first place, different peptide fragments have been synthetized in solid 

phase and finally they have been coupled in solution.  

Five different protected peptide fragments of 4, 5, 6 and 9 amino acids have been 

synthetized by solid-phase methodology using the Fmoc/tBu strategy (1.2 mmol, 1.9 mmol, 1.1 

mmol and 1.8 mmol scales) with a 2-CTC solid support resin. The reactions have been carried 

out using DIC as a coupling reagent, HOBt as an additive and finally each fragment has been 

characterized by HPLC-MS using reverse phase chromatography. 

Furthermore, the C-terminal protected dipeptide fragment of the target peptide has been 

synthetized in solution and has been coupled to the nonapeptide in solution. The resulting full 

protected undecapeptide has been characterized by HPLC-MS. 

Keywords: solid-phase synthesis, convergent synthesis, protected peptide, DIC, HOBt 
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2. RESUMEN 

Hoy en día el interés en el uso de péptidos como medicamentos está aumentando debido a 

sus propiedades únicas, como por ejemplo su alta selectividad y baja toxicidad. Como 

resultado, la industria farmacéutica tiene más de 500 péptidos en desarrollo preclínico y se 

estima que el mercado de los péptidos involucra 25.4 millones de dólares anualmente.1 

Este proyecto se ha desarrollado en el grupo de investigación Smbiocom, el cual colabora 

con una compañía farmacéutica que tiene el objetivo de sintetizar un péptido bioactivo con 

propiedades oncológicas y escalar la metodología hasta una producción de planta piloto. La 

estrategia seguida en el laboratorio ha consistido en una síntesis convergente de un fragmento 

de once aminoácidos del péptido final. En primer lugar, se han sintetizado diferentes 

fragmentos en fase sólida y finalmente se han acoplado en solución. 

Cinco péptidos protegidos diferentes de 4, 5, 6 y 9 aminoácidos se han sintetizado 

mediante la metodología de fase sólida usando una estrategia Fmoc/tBu (en una escala de 1.2 

mmol, 1.9 mmol, 1.1 mmol y 1.8 mmol) usando la resina 2-CTC como soporte sólido. Las 

reacciones se han llevado a cabo usando DIC como agente de acoplamiento, HOBt como 

aditivo y finalmente cada fragmento se ha caracterizado por HPLC-MS usando una 

cromatografía de fase inversa. 

Además, se ha sintetizado en solución el dipéptido protegido C-terminal del péptido final y 

se ha acoplado con el nonapéptido en solución. El undecapéptido resultante completamente 

protegido se ha caracterizado por HPLC-MS. 

Palabras clave: síntesis en fase sólida, síntesis convergente, péptido protegido, DIC, HOBt 
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3. INTRODUCTION 

3.1. PEPTIDES AS DRUGS 

Peptides play many different roles in the organism. The most important ones are as 

intercellular communicators in the form of hormones, their participation in the immune system in 

the form of antibodies or as transport of molecules through membranes, amongst others.2 Their 

relevance in a large number of biological processes makes their use as drugs an important field 

because of their potentially usefulness in many different diseases.  

Nowadays, some peptides are commercially available and they can be applied 

therapeutically in cancer, HIV or osteoporosis, amongst other diseases.3 The main drawbacks 

are their low oral availability, which leads to the need of injections for their administration, or 

their low lifetime in the body due to the peptide degradation system by enzymes. In contrast, the 

main advantages are their high specificity, so very low concentrations of the drug are required, 

and their low toxicity because peptides are easily metabolized by enzymes of our body.4 

For a long time, attempts have been made to synthesize peptides by chemical methods. 

Theodor Curtius was the first one capable to synthetize and characterize a N-protected 

dipeptide in 1882. Some years later, Emil Fisher synthetized the first free dipeptide in 1901. 

Curtius and Fisher achieved their synthesis in traditional solution phase. However, the main 

problem of solution synthesis is the rapid decrease of yield due to not reaching quantitative 

conversions and the need of purification in each step. In 1963 Merrifield published the first 

SPPS and he was awarded with the Nobel prize for it.2,5 This methodology avoids the need for 

purification of intermediate products and conversions are quantitative, so the yield does not 

decrease in each step. This is achieved by attaching the amino acid to a solid support and then 

adding excess of reagents to ensure quantitative reactions and different solvents to clean by-

products of the reactions. 
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3.2 CHEMICAL SYNTHESIS OF PEPTIDES 

Peptides are formed by amino acids that are bound by amide bonds between them. In 

traditional synthesis, the α-carboxylic acid reacts with the α-amino group of another amino acid 

by a condensation reaction to generate the peptide bond. This reaction is carried out at room 

temperature thanks to the use of coupling reagents, which activates the carboxylic acid and acts 

as a dehydrating agent. Therefore, the other functional groups of the amino acid should be 

protected to avoid side reactions (Scheme 1). In biological processes, the elongation is from N-

terminal to C-terminal but by chemical synthesis the reverse process is usually preferred 

because it has less side reactions such as razemization.2 

 

Scheme 1. Peptide bond formation of a dipeptide, where PG are protecting groups 

The two main methodologies in peptide synthesis are the solid phase peptide synthesis 

(SPPS) and the solution phase peptide synthesis. The most used method is the SPPS and will 

be discussed later. Solution phase synthesis requires purification after each step, so it is only a 

good option in peptides of few amino acids such as dipeptides, or for couplings of peptide 

fragments in a convergent synthesis. 

However, large scale peptide synthesis nowadays continues being a difficult field. Usually 

peptides can be synthetized in a SPPS method up to 50 Amino acids in small amounts,6–8 but 

this method is not optimal if large quantities are required. A convergent synthesis which consists 

on synthetizing short fragments by SPPS and then coupling them in solution is usually the 

preferred method. 

3.2.1 Solid-phase Peptide Synthesis (SPPS) 

The general methodology of this type of synthesis is to attach the peptide chains to a solid 

support, grow the chains until the desired peptide is complete, and then cleave the peptide from 

the resin achieving a good purity and high yields. (Scheme 2)  
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Scheme 2. general SPPS synthesis 

This type of synthesis is based in three different steps. In the first one, the first N-protected 

Amino acid is attached to the resin usually through an ester bond. In this sense, the solid 

support is considered a protecting group of the carboxyl group of this amino acid that will remain 

intact until the last step of the synthesis. (Scheme 2)  

The second step is the elongation of the peptide chain on the resin. In order to do that, the 

N-terminal protecting group of the amino acid attached to the resin is removed and then, the 

next N-protected amino acid is coupled after activation of its carboxyl group. This step is 

repeated until the final assembly of the desired peptide chain. Finally, the third step consist on 

cleaving the peptide from the solid support under acidic conditions with concomitant removing of 

side chain protecting groups.9  

This scheme is very general to most of the SPPS, but other strategies such as the N-

terminal to C-terminal synthesis, partial deprotection to perform reactions in a peptide side chain 

or to cleave protected peptides from the resin can also be done by varying the protecting 

groups, the type of resins or the conditions of each step.2 

3.2.2. Strategies in SPPS: Protecting groups 

Molecules that have more than one functional group may involve several undesirable side-

reactions if a reaction is carried out. To perform more selective reactions, the problematic 

functional groups are protected. In peptide chemistry, there are two main types of protecting 

groups: temporal and permanent. The former can be easily removed under mild conditions 

during peptide elongation (Nα-protecting groups), and the latter are stable in such conditions 

and they are removed during the final cleavage step (side chain protecting groups). 
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According to the mentioned above, there are two main strategies in SPPS, the Fmoc/tBu 

and the Boc/Bzl. The Boc/Bzl strategy consists on the use of the tert-butyloxycarbonyl group 

(Boc) to protect the Nα of the amino acid, and benzyl-based groups (Bzl) to protect the side 

chains of trifunctional amino acids.2 Both protecting groups are acid labile, so the strategy is 

partially-orthogonal. However, the deprotection conditions are milder for the Boc group (TFA) 

than for Bzl like groups (HF), so it is possible to obtain a good chemoselectivity. The main 

shortcoming of this strategy is the use of HF for the final full deprotection of the peptide chain 

due to its toxicity and difficulty to handle. 

Regarding to the Fmoc/tBu strategy, it is based on the protection of Nα of the amino acid 

with the 9-fluorenylmethoxycarbonyl group (Fmoc), which is labile under basic conditions 

(piperidine), while the permanent side chain protecting groups are based on tert-butyl, tert-

butoxy or trityl groups (Figure 1), which are acid labile (TFA). This strategy is fully orthogonal 

because the removal of temporal and permanent groups is carried out under basic and acid 

conditions respectively.  

 

Figure 1. Protecting groups used in the Fmoc/tBu strategy 

In this project the Fmoc/tBu strategy has been used because it requires deprotection 

conditions milder that those used with the Boc/Bzl strategy.10 Therefore, this project is focused 

in Fmoc chemistry. 

3.2.3. Solid support 

Nowadays, different resins are used in Fmoc chemistry, and they vary in the introduction of 

the first amino acid, the cleavage conditions and the nature of the remaining functional group at 

the C-terminal after cleavage of the peptide from the resin. For example, 2-Chlorotrityl chloride 

(2-CTC), hypersensitive acid labile (HAL) and 2-(4-Hydroxymethil-phenoxy)-acetylaminomethyl 

(HMPA) resins provide a carboxylic acid group after cleavage while the super acid sensitive 
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resin (SASRIN-NH2) and Sieber amide resin are used to obtain an amide in the C-terminal of 

the peptide2,11 (Figure 2). Some polymeric supports allow cleavage of the peptide but not the 

other protecting groups, a propriety that is advantageous to perform a subsequent convergent 

synthesis. 

 

 
Figure 2. solid supports for SPPS 

The resin must be physically and chemically stable and have a good swelling to the 

solvents. Most of the active points of the resin are inside beads, so a good swelling will 

determine the kinetics of the reaction, which is diffusion controlled, and therefore it will be 

crucial in the conversion achieved.2,12  

In this project 2-CTC resin has been used (Figure 2). The peptide is attached to this 

polymeric support through an ester bond that is labile under acidic mild conditions (TFA) that 

allow to cleave the peptide chains from the resin while maintaining the protecting groups of side 

chains. Moreover, the 2-chloro group and the size of triphenylmethyl group provide enough 

stearic hindrance to avoid the formation of 2,5-diketopiperidines (DKP), one of the main side 
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reactions that occur when removing the Fmoc group of the second amino acid attached to the 

resin, as seen in the Scheme 3. 

 

 
Scheme 3. formation of DKP under basic conditions. 

3.2.4. Coupling reagents 

Carboxylic acids are poorly reactant groups. The direct condensation reaction between a 

carboxylic acid and an amine is only possible at very high temperatures to remove the water 

formed and shift the equilibrium. At room temperature they will react by means of an acid-base 

reaction that inactivate the nucleophile character of amine group. In order to avoid this, the 

carboxylic acid must be activated by converting the hydroxyl group into a good leaving group 

before the reaction with the amine.  

Traditionally, in organic synthesis, the carboxylic acid is activated in the form of acyl 

chloride, but this method is too harsh and usually many side reactions are involved.13 That is 

why other activating agents such as carbodiimides are used in peptide synthesis to form the 

peptide bond under mild conditions. The most common carbodiimides are N,N’-

dicyclohexylcarbodiimide (DCC),  N,N’-diisopropylcarbodiimide (DIC) or N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC·HCl) (Figure 3).  

 

Figure 3. Common carbodiimides used in peptide synthesis. 

As explained in Scheme 4, these reagents activate the carboxylic acid forming an active 

species (O-acylisourea) that reacts with the amine (reaction A) to form a urea as a by-product 

that can be easily removed by filtration or extraction methods. The O-acylisourea could 

provoque side reactions such as an irreversible process to form N-acylisourea (reaction C), and 
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racemization (reactions D and E). Usually additives such as 1-hydroxybenzotriazole (HOBt) or 

1-hydroxy-7-azabenzotriazole (HOAt) are required (reaction B) to prevent racemization through 

oxazolone formation (reaction E) and keto-enol equilibrium (reaction D). 

Other usual coupling reagents are the uronium/aminium salts, which some of them are 

derivatives of HOBt or HOAt, such as O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium 

Hexafluorophosphate (HATU) or O-(benzotriazol-1-yl)-1,1,3,3–tetramethyl-uronium 

hexafluorophosphate (HBTU). They react with the amino acid under basic conditions through 

the formation of -OBt/-OAt active esters. 

 
Scheme 4. Carbodiimide mediated amide bond formation 

In this project, the coupling system DIC/HOBt has been used to assembly the peptide 

chains on solid phase since this carbodiimide generates a urea soluble in most common organic 

solvents, so it can be removed washing the resin.  
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4. OBJECTIVES 

The research group Smbiocom has been working during the last three years on the scale up 

to a pilot plant of the synthesis of a 17 amino acid peptide. In this sense, a strategy had to be 

chosen to minimize the cost of the synthesis without losing purity of the final product. The first 

approach consisted in the linear synthesis of the full peptide in solid phase, but it was not a 

successful method and it was changed to a convergent strategy in which the peptide was 

divided into smaller fragments in order to synthetize them in solid phase and to further assembly 

the peptide chain in solution.  

The selection of the fragments is critical to avoid undesirable side reactions. Optimally, the 

C-terminal residues of the fragments should be proline or glycine since their avoid the risk of 

racemization at the C-terminal position. N-acylamino acids, such as the C-terminal amino acid 

of a peptide, are more prone to racemize during activation than acyloxycarbonylamino acids 

(Fmoc-amino acids). As the target peptide does not have proline or glycine, arginine (Arg) and 

leucine (Leu) were the amino acids chosen for the C-terminal position of the fragments, as 

reported in the literature.14 Considering this issue and the fact that sequences of short peptide 

lengths are preferred, the two strategies shown in Figure 4 were chosen. In this project the 

different protected fragments required for both strategies were prepared. 

 

 

Figure 4. target peptide fragmentation strategies.
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5. RESULTS AND DISCUSSION 

5.1. SOLID PHASE SYNTHESIS 

As mentioned above (section 3.2.1.2), all peptides were prepared using the Fmoc 

chemistry on a 2-CTC resin (2 g, 1.4 mmol/g). Protections for trifunctional amino acids were tert-

Butyl (tBu) for Aspartic acid (Asp), Serine (Ser), Glutamic acid (Glu) and C-terminal Leucine 

(Leu), tert-butyloxycarbonyl (Boc) for Lysine (Lys) and N-terminal Isoleucine (Ile), Trityl (Trt) for 

Glutamine (Gln) and 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl (Pbf) for Arg. 

5.1.1. Coupling of the first amino acid 

The first coupling was performed by a SN1 reaction between the carboxylate anion 

generated with a non-nucleophile base such as N,N’-diisopropylethylamine (DIPEA) and the 2-

chlorotrityl group (Scheme 5). The reaction time used was shortened for some fragments to 

avoid a high functionalization (over 1 mmol/g), which is undesirable because the peptide chains 

can form aggregates by hydrophobic interactions, which difficult the coupling reactions.7,12 

 

Scheme 5. Attachment of the first amino acid to the 2-CTC solid support 

After the coupling, the resin must be capped with methanol to block the unreacted 

chlorotrityl groups. This is done to avoid chain deletions that would yield peptides shorter than 

the desired product, thus hampering its final purification. 

The removal of the Fmoc group is done with piperidine (20% in DMF) through a base-

catalyzed decarboxylation process that affords dibenzofulvene. This by-product reacts with 

piperidine to form 1-(9H-fluoren-9-yl)methyl)piperidine that is used for quantification purposes 

(Scheme 6. See experimental section 6.2.1).  
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Scheme 6. Removal of the Fmoc group with N,N-dimethylformamide 

It is important to reach this step to store the resin for a long time if required, because acid 

traces can cleave some peptide chains from the resin. However, any acid traces are neutralized 

with the free terminal amino group. 

5.1.2. Elongation of the peptide chain 

The coupling of the amino acid is performed using a large excess of DIC, HOBt and amino 

acid (3-4 eq) in the minimum quantity of DMF to increase the rate of the coupling reaction as 

much as possible and to assure the completion of the reaction (1 or 2 h). A ninhydrin test is 

performed (see experimental section 6.2.2) and, if the reaction is not complete (a positive blue 

test), a recoupling is performed under similar conditions, a protocol that has been proved by the 

research group to be more efficient than lengthening reaction times. 

The resin is washed with different solvents to change the swelling of the resin depending on 

the polarity of the solvent.12 Therefore, all possible reagents of the previous couplings and by-

products are eliminated from inside the resin. 

Ile derivatives were the most difficult amino acids to perform coupling reactions because 

recouplings and higher excess of reagents were usually required to complete the reaction. That 

is because this amino acid has a branched structure which provides more stearic hindrance 

than other amino acids do. 

The second synthesis of nonapeptide was especially problematic because there were 

problems with ninhydrin tests. The coupling of second amino acid (Fmoc-Lys(Boc)-OH) was 

performed overnight to assure a complete coupling but the next day ninhydrin test was green 

instead of yellow. Therefore, an aliquot of the resin was treated with TFA and analysed the 
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resulting product by HPLC. Only one peak appeared in the chromatogram, so it was confirmed 

that the coupling was complete. After that period of time the polymeric support was affected, the 

filtration of solvents was slower and the remaining amino acids required recouplings or longer 

reaction times.  

5.1.3. Cleavage of the peptide from the resin 

Finally, the cleavage is done by a treatment of TFA 1% in DCM that affords the peptide fully 

protected because higher acid concentrations are required to remove side chain protecting 

groups. 

Different variants of the same methodology were performed (see experimental section 

6.2.3.1). The main issues encountered were that some fragments (pentapeptide and 

tetrapeptide) were not highly soluble in DCM and they precipitated easily before the extraction. 

Moreover, filtration was difficult and long times were required to isolate the product.  

A qualitative assay of the solubility of tetrapeptide was studied in different solvents (20 mg in 

0.7 mL) in order to modify the work-up. The results showed that tetrapeptide was not much 

soluble in most organic solvents and only THF formed a clear solution, but the peptide was 

unstable in this solution.  

To solve these problems, the work-up was changed to a direct precipitation of the peptide in 

diethyl ether (Et2O) that afforded a solid easier to filter, resulting in a common methodology for 

all fragments studied.  

5.1.4. Results of peptide fragments synthesis in SPPS  

Two batches of nonapeptide, one of tetrapeptide, one of pentapeptide and one of 

hexapeptide were synthetized starting from 2 g of resin of a functionalization of 1.4 mmol/g. The 

functionalization after the first coupling was determined by Fmoc quantification (Table 1. See 

experimental section 6.2.1), and the final yield was determined after cleavage by weight 

considering that all coupling reactions were quantitative by the ninhydrin test. 
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 Peptide 
Fmoc quantification 

(mmol) (a) 
Yield (%) (b) 

Chromatographic 
purity (%) 

Nonapeptide batch 1 1.05 68.0 96.0 

Nonapeptide batch 2 1.06 66.9 96.7 

Tetrapeptide  1.18 72.8 93.4 

Pentapeptide 1.95 92.1 95.1  

Hexapeptide 1.83 94.3 98.3 

(a) mmol of amino acid that were attached to the solid support after the coupling of the first amino acid 

(b) Calculated from Fmoc quantification results 

Table 1. Results of peptide fragments synthetized by SPPS 

The purity of the protected peptides was determined by HPLC at λ = 220 nm and the identity 

of the product was confirmed by MS. Moreover, the protected tetrapeptide was analysed by 

NMR spectroscopy using the 1H, 13C, COSY and TOCSY. (see experimental section 6.3.2.3, 

and Appendix 2, A.1.) The first spectra were not clear due to heavy signals of protecting 

groups, so an aliquot of tetrapeptide was treated with a mixture of TFA, H2O and TIPS (see 

experimental section 6.3.2.4) to remove side chain protecting groups. Then, the 1H-NMR was 

recorded (see Appendix 2, A.2.) and were compared with the 1H-NMR of the individual amino 

acids in order to facilitate the peak assignment and help at the same time to analyse the purity 

of the reagents used for the SPPS. Full assignment of the signals are presented in experimental 

section 6.2.3.3 and 6.2.3.4.  

5.2. SOLUTION PHASE SYNTHESIS 

In this project, the C-terminal dipeptide was synthetized in solution phase since only one 

coupling reaction and deprotection was required. Moreover, an assay of the convergent 

synthesis with the nonapeptide was performed in solution. 

5.2.1. Synthesis of Fmoc-Cys(Trt)-Leu-OtBu 

This synthesis is based in the reaction of the protected amino acids Fmoc-Cys(Trt)-OH and 

H2N-Leu-OtBu in the presence of the carbodiimide EDC·HCl, which is very used in solution 

because it is soluble in water, so any excess or by-products are easily removed in the work-up, 

and HOBt to minimize racemization (Scheme 7). The Leu derivative was a hydrochloride salt, 
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so DIPEA was required to neutralize it in order to have the amino group free for the coupling 

reaction. 

 
Scheme 7. coupling reaction of dipeptide 

The synthesis was performed at 2 g scale and the desired product was obtained as a white 

solid (87.5%) that was used for the next reaction. 

5.2.2. Synthesis of H-Cys(Trt)-Leu-OtBu 

The Fmoc removal was carried out with 10% piperidine (3 eq) in DCM (Scheme 8) and the 

resulting product was purified using flash chromatography (78% yield).  

 
Scheme 8. deprotection of dipeptide 

The final yellow product was characterized by HPLC (See experimental section 6.1.3.1) 

and only one peak at 22.4 min confirmed the presence of the desired unprotected product.  

5.2.3. Convergent synthesis of the protected undecapeptide  

The research group was studying different methodologies to optimize this particular coupling 

(Scheme 9). The main problem was the epimerization side reaction that is produced through 

the direct enolization and oxazolone mechanism (Scheme 4, reactions D and E).  
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Scheme 9. Convergent synthesis of the protected undecapeptide 

The reaction was carried out using the HATU/HOAt coupling system, which were the 

conditions that a priori minimize epimerization. Aminium/uronium salts are usually more efficient 

than carbodiimides,14 and HOAt based compounds more effective than HOBt because of a 

neighbouring effect that facilitates the reaction with the amine with the active ester (Scheme 

10).  

 

Scheme 10. neighbouring effect of HOAt 

HATU and DIPEA were added dropwise at the same time to prevent nonapeptide from 

remaining in the O-acylisouronium (Scheme 11) form and to have a low base concentration, 

which should avoid the epimerization reactions.  
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Scheme 11. Mechanism of HATU 

These conditions were successful, and the final product was obtained as a white solid with a 

yield of 89.2% with a chromatographic purity of 89.5% with only 3% of epimer product.  
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6. EXPERIMENTAL SECTION 

6.1. MATERIALS AND METHODS 

 6.1.1 Reagents and solvents 

Entry Product Supplier 

1 Amino acids Esteve Química S.A 

2 2-CTC resin Irish-Biotech 

3 DIPEA Carlo Erba Reagents 

4 TFA Fisher Bioreagents 

5 DIC TCI 

6 Piperidine Panreac 

7 DMF Carlo Erba Reagents 

8 DCM Scharlau 

9 MeOH Carlo Erba Reagents 

10 Acetone Scharlau 

11 HOBt Esteve Química S.A 

12 HATU Esteve Química S.A 

13 EDC·HCl TCI 

Table 2. Reagents and solvents used during the project 
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6.1.2 Instruments 

Entry Product Brand Model 

1 HPLC-MS Waters LC-20AD 

2 HPLC Shimadzu 2695 separation 
module 

3 UV-Vis spectroscopy Varian Cary 100 

4 Analytical balance Mettler Toledo AB254 

5 Water purification system Milipore 
Mili-Q Plus Water 
purification system 

6 Centrifuge Hettich Rotofix 32 

7 NMR spectroscopy Bruker 
400 Advance III with 

cryoprobe 

Table 3. Instruments used in the project 

6.1.3 Chromatography 

6.1.3.1. High performance liquid chromatography (HPLC) 

A C4 reverse phase column supplied by AerisTM WIDEPORE was used (150x4.6 mm) with 

3.6 m of size particle and pore size of 200 Å. The eluents were H2O with 0.045% TFA (A) and 

ACN with 0.036% TFA (B). The flow rate was settled at 1 mL/min with detection at 220 nm and 

301 nm, being the last one the maximum of absorption of the 1-(9H-fluoren-9-

yl)methyl)piperidine. The elution conditions were isocratic 5% of B for 2 min, from 5% to 100% 

of B for 30 min and isocratic of 100% of B for 10 min. 

6.1.3.2. High performance liquid chromatography coupled with electrospray mass spectrometry 

(HPLC-MS) 

HPLC-MS was carried out with a Waters system equipped by a 2695 separation module, a 

PDA detector 2996 and a Micromass ZQ electrospray mass detector (ESI-MS). The eluent and 

column were the same as described in section 6.1.3.1 

6.1.3.3. Thin layer chromatography (TLC) 

TLC was performed on silica gel F254 plates supplied by Merck. 254 nm UV light was used 

in order to reveal the films. 
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6.2. ANALYTICAL METHODS 

6.2.1 Fmoc Quantification 

Quantification of the first amino acid was carried out by UV-Vis Spectrophotometry of the 1-

(9H-fluoren-9-yl)methyl)piperidine formed during the removal of the Fmoc group. 

To perform the quantification, the resin was washed 3 times with MeOH and an aliquot of 50 

mg was taken and dried for 24 h. Afterwards, two replicates of 25 mg each were carried out by 

adding the resin to a solution of 20% piperidine in DMF using a 100 mL volumetric flask. The 

flasks were sonicated for 30 min to assure the complete removal of Fmoc and then it was 

diluted 1:10 in the same solution in order to perform the spectroscopy. A blank was also 

prepared. The concentration could be calculated using the Lambert Beer Law (ε = 7800 M-1cm-1 

at λ = 301 nm and l = 1 cm) 

6.2.2 Ninhydrin test 

Known as Kaiser Test, this assay indicates the presence of primary amines.15 The ninhydrin 

reacts with primary amines to form diketohydrindylidenediketohydrindamine (Scheme 12, C), 

also known as the Ruhemann’s purple. If the coupling of the resin is not successful, the free N-

terminal will react with ninhydrin and a deep blue colour will appear. However, if the coupling is 

complete the solution will remain yellow indicating that there are not free amines. 

 
Scheme 12. ninhydrin reaction with primary amines 

To perform the test three solutions previously prepared are needed: reagent A, 5 g of 

ninhydrin in 5 mL of EtOH; reagent B, 80 g of phenol in 20 mL of EtOH, and reagent C, 2 mL 

NaCN 0.01 M in 98 mL of pyridine distilled over ninhydrin. To carry out the test, an aliquot of 

resin is washed 3 times with MeOH and then 3 drops of every reagent are added and the 

mixture is heated to 100 ºC for 3 min in parallel with a blank. A yellow result is a negative test 

and blue is a positive test.  
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6.3. SYNTHETIC PART 

6.3.1. Solid phase peptide synthesis (SPPS) 

The reactions were carried out in 50 mL polypropylene syringes that contained a 

polyethylene filter. The stirring was done manually with a Teflon stick for the washes of the resin 

and the removal of Fmoc group while in the coupling reaction an automatic stirrer was used 

instead. The solvents and excess of reagents were filtered using a water vacuum pump system. 

(Figure 5) 

 
Figure 5. System used to perform SPPS 

Different protocols were used to wash the resin in different situations (Table 4) 

Treatment Solvents sequence Quantities 

Protocol 1 
DMF, DCM, iPrOH, DCM, 

DMF 
20 mL of each, 2x30 s 

Protocol 2 
DMF, DCM, DMF, DCM, 

DMF, DMF 
20 mL of each, 1x30 s 

Protocol 3 
DCM, DMF, DCM, DMF, 

DCM, DCM 
20 mL of each, 1x30 s 

Protocol 4 DCM 20 mL, 3x30 s 

Table 4. Protocols used to wash the resin 

6.3.1.1. Coupling of the first amino acid  

The resin was washed (Table 4, protocol 3). Afterwards, 1.5 eq of amino acid were 

dissolved in the minimum quantity of DCM and 3 eq of DIPEA were added. After about 2 h of 

stirring, 1.6 mL of MeOH were added (0,8 mL/g resin) and the stirring was continued for 30 min. 
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Then, the mixture was filtered, and the resin was washed (Table 4, protocol 1) and an extra 

wash of iPrOH was performed (20 mL, 2x30 s). At this point an aliquot was taken for the Fmoc 

quantification (see experimental section 6.2.1). The resin was washed (Table 4, protocol 2) 

and it was treated two times with 20 mL of piperidine in DMF (20:80) for 5 min and 10 min. 

Then, the resin was washed (Table 4, protocol 1) and it was stored at this level if necessaire. 

6.3.1.2. Elongation of peptide chain  

The resin was washed (Table 4, protocol 2) and 3 eq of the N-protected amino acid and 3 

eq of HOBt dissolved in the minimum quantity of DMF were added. Then, 3 eq of DIC were 

added and the resulting mixture was stirred for 1 h at rt. A ninhydrin test was performed (see 

experimental part 6.2.1) and, if the test was negative, the mixture was filtered and washed 

(Table 4, protocol 1). However, if the ninhydrin test was positive a recoupling was performed in 

the same conditions.  

6.3.1.3. Cleavage of the peptide from the resin  

The resin was washed (Table 4, protocol 4) and it was treated with a solution of 1% TFA in 

DCM (20 mL, 3x5 min) which was collected in a round bottomed flask containing 40 mL of water 

and 1.5 eq of pyridine. Then, washes of DCM (20 mL 3x1 min) were performed and they were 

collected in the same round-bottomed flask. Afterwards, the resultant organic phase was 

decanted, and it was dried using anhydrous Na2SO4. Finally, Et2O was added until the peptide 

was completely precipitated, and it was recovered by filtration. Yields were determined by 

weight. 

6.3.2 Synthesis of peptide fragments in SPPS 

6.3.2.1. Nonapeptide: Batch 1 

Polymeric support: 2.46 g of 2-CTC resin (1.4 mmol/g).  

First coupling: 3.46 mg Fmoc-Arg(Pbf)-OH (1.55 eq) and 1.76 mL DIPEA in 20mL DCM for 120 

min. Final loading of 0.35 mmol/g (1.05 mmol). 

Coupling of amino acids: 
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Entry Amino acid 
Amino acid 

[g, eq] 
HOBt·H2O 

[g, eq] 
DIC 

[g, eq] 

1 Fmoc-Lys(Boc)-OH 3.41, 6.92 1.11, 6.89 1.20, 3 

2 Fmoc-Ile-OH 1.24, 3.35 0.66, 4.12 0.52, 3 

 recoupling 1.47, 3.96 0.60, 3.72 0.52, 3 

3 Fmoc-Glu(tBu)-OH 1.54, 3.30 0.56, 3.46 0.52, 3 

4 Fmoc-Leu-OH 1.17, 3.14 0.49, 3.06 0.52, 3 

5 Fmoc-Lys(Boc)-OH 1.56, 3.17 0.53, 3.28 0.52, 3 

 recoupling 1.52, 3.09 0.59, 3.65 0.52, 3 

6 Fmoc-Ile-OH 1.29, 3.48 0.50, 3.09 0.52, 3 

 recoupling 1.20, 3.22 0.54, 3.35 0.52, 3 

7 Fmoc-Arg(Pbf)-OH 2.36, 3.46 0.65, 4.00 0.65, 4 

8 Fmoc-Ser(tBu)-OH 1.63, 4.03 0.75, 4.68 0.65, 4 

Table 5. Reagents used in coupling reactions for nonapeptide: batch 1 

Cleavage of the peptide from the resin: 365 mL of Et2O were required to precipitate the product. 

The final yield was 66.2% with a chromatographic purity of 96% at 220 nm. 

6.3.2.2. Nonapeptide: Batch 2 

Polymeric support: 2.03 g of 2-CTC resin (1.4 mmol/g). 

First coupling: 2.61 g of Fmoc-Arg(Pbf)-OH (1.41 eq) and 1.04 g DIPEA (2.83 eq) in 10 mL of 

DCM for 42 min. Final loading of 0.44 mmol/g (1.23 mmol).  

Coupling of amino acids: 
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Entry Amino acid 
Amino acid 

[g, eq] 
HOBt·H2O 

[g, eq] 
DIC 

[g, eq] 

1 Fmoc-Lys(Boc)-OH 1.73, 2.99 0.55, 2.88 0.48, 3.11 

 recoupling 1.66, 2.87 0.64, 3.41 0.49, 3.11 

 recoupling 1.92, 3.31 0.56, 2.97 0.48, 3.09 

2 Fmoc-Ile-OH 1.55, 4.15 0.72, 4.46 0.50, 3.77 

 recoupling 1.42, 3.79 0.62, 3.83 0.53, 3.99 

3 Fmoc-Glu(tBu)-OH 1.40, 3.00 0.51, 3.15 0.45, 3.41 

4 Fmoc-Leu-OH 1.67, 4.47 0.67, 4.16 0.54, 4.05 

 recoupling 1.48, 3.95 0.69, 4.27 0.54, 4.03 

5 Fmoc-Lys(Boc)-OH 1.97, 3.97 0.68, 4.20 0.54, 4.07 

 recoupling 1.95, 3.93 0.66, 4.07 0.53, 4.00 

6 Fmoc-Ile-OH 1.65, 4.41 0.62, 3.80 0.55, 4.11 

 recoupling 1.92, 5.13 0.70, 4.33 0.54, 4.02 

7 Fmoc-Arg(Pbf)-OH 2.90, 4.23 0.66, 4.07 0.55, 4.12 

 recoupling 2.82, 4.12 0.68, 4.17 0.55, 4.09 

8 Fmoc-Ser(tBu)-OH 1.66, 4.10 0.64, 3.96 0.55, 4.10 

Table 6. Reagents used in coupling reactions for nonapeptide: batch 2 

Cleavage of the peptide from the resin: 300 mL of Et2O were required to precipitate the 

product. The final yield was 66.9% with a chromatographic purity of 96.7% at 220 nm.  

 

White solid. MS (ESI) m/z calc. for 

C109H169N17O25S22+ [M+2H]2+ 1091.89; found 

1092.0 
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6.3.2.3. Tetrapeptide 

Polymeric support: 2.11 g of 2-CTC resin (1.4 mmol/g).  

First coupling: 2.82 g of Fmoc-Arg(Pbf)-OH (1.47 eq) and 1.16 g of DIPEA (3.05 eq) in 10 mL of 

DCM for 145 min. Final loading of 0.42 mmol/g (1.18 mmol). 

Coupling of amino acids: 

 

Entry Amino acid 
Amino acid 

[g, eq] 
HOBt·H2O 

[g, eq] 
DIC 

[g, eq] 

1 Fmoc-Lys(Boc)-OH 1.64, 2.97 0.54, 2.99 0.54, 3.67 

2 Fmoc-Ile-OH 1.22, 2.93 0.60, 3.36 0.50, 3.38 

3 Fmoc-Glu(tBu)-OH 1.56, 3.00 0.59, 3.30 0.48, 3.27 

Table 7. Reagents used in coupling reactions for tetrapeptide 

Cleavage of the peptide from the resin: Each treatment was collected in a different round-

bottomed flask that cointained 40 mL of water and 1.5 eq of pyridine. The peptide precipitated in 

the flask with the water and it was redissolved with DCM (125 mL, 50 mL and 25 mL for each 

fraction respectively). Then, the organic phases were combined, and it was concentrated under 

vacuum. Finally, it was precipitated with 300 mL of hexane. The final yield was of 72.8% with a 

chromatographic purity of 93.4% at λ = 220 nm.  

 

 

 

 

 

 



30 Galeote Martin, Oriol 

 

 

White solid. 1H NMR (400 MHz, DMSO-d6) δ 7.99 (t, J = 7.5 Hz, 2H, 

H24,H32), 7.88 (d, J = 7.5 Hz, 2H, H76, H75), 7.75 (s, 1H, H21), 7.70 (t, J = 

7.1 Hz, 2H, H79, H72), 7.53 (d, J = 8.1 Hz, 1H, H15), 7.41 (t, J = 7.4 Hz, 

2H, H77, H74), 7.31 (t, J = 7.4 Hz, 2H, H73, H78), 6.70 (s, 2H, H5, H8), 

6.41 (s, 1H, H7), 4.33 – 3.98 (m, 7H, H70, H80, H11, H22, H30, H1), 3.06 – 

2.98 (m, 2H, H4), 2.94 (s, 2H, H44), 2.90 – 2.81 (m, 2H, H37), 2.47 (s, 

3H, H53), 2.41 (s, 3H, H52), 2.20 (p, J = 10.0 Hz, 2H, H17), 1.99 (s, 3H, 

H51), 1.91 – 1.46 (m, 9H, H16, H26, H34, H2, H3), 1.39 (s, 3H, H55), 1.37 

(s, 3H, H54), 1.35 (s, 18H, H57, H58, H59, H62 H63, H64), 1.27 – 0.96 (m, 

2H, H27), 0.83 (dd, J = 6.9, 1.7 Hz, 3H, H28), 0.80 – 0.72 (m, 3H, H29). 

13C NMR (101 MHz, DMSO) δ 11.42, 11.72, 12.73, 15.69, 18.05, 

19.40, 22.95, 23.03, 24.66, 25.87, 27.83, 28.19, 28.73, 28.94, 29.74, 

31.90, 32.11, 37.17, 42.91, 47.10, 52.05, 52.82, 54.27, 57.11, 66.14, 

77.85, 80.17, 86.78, 116.75, 120.57, 124.80, 125.73, 127.54, 128.12, 

131.90, 134.58, 137.73, 141.16, 144.14, 144.31, 150.04, 156.00, 

156.37, 156.53, 157.92, 171.19, 171.62, 171.87, 172.19, 173.83. 

HPLC-MS (ESI): m/z calc. for C60H86N8O14S+ [M+H]+ 1175.60; found 

1175.91. MS (ESI): m/z calc. for C60H86N8O14S+ [M+H]+ 1175.60; found 

1176.61. MS (TOF): m/z calc. for C60H86N8O14S+ [M+Na]+ 1197.6; 

found 1197.6. 

6.3.2.4. Assay of full deprotection of the tetrapeptide 

A full deprotection of tetrapeptide fragment was performed in order to characterize the 

product by NMR. The tetrapeptide (87.1 mg) was placed in a glass vial and a mixture of 

TFA/H2O/TIPS 90:5:5 (1 mL) previously prepared in a different glass vial was added using a 

syringe. The mixture was left at rt for 1 h and was transferred to a 15 mL falcon tube with 3 mL 

of Et2O. The resulting mixture was left in the refrigerator overnight, was centrifugated and was 

decanted. To the white solid formed, Et2O (5 mL) was added and the resulting suspension was 

sonicated for 5 min followed by a centrifugation of 6 min and decantation. This procedure was 

repeated twice with Et2O and twice with EtOAc. The peptide was dried under vacuum and was 

analysed by NMR (See Appendix 2, A.2). The software MestReNova and Chemdraw was used 

to analyse all NMR spectra. 
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White solid. 1H NMR (400 MHz, DMSO-d6) δ 8.42-814 (m, 3H, 

H8,H5), 7.89 (d, J = 7.5 Hz, 2H, H48, H55), 7.84 (dd, J = 8.0, 2.6 

Hz, 1H, H21), 7.73 (s, 1H, H), 7.72 – 7.68 (m, 2H, H51, H52), 

7.61 (d, J = 8.1 Hz, 1H, H15), 7.42 (t, 4H, H7, H49, H54), 7.33 (t, 

J = 7.5, 1.2 Hz, 2H, H50, H53), 4.32 – 4.24 (m, 2H, H42), 4.24 – 

4.18 (m, 2H, H1, H43), 4.15 – 3.96 (m, 3H, H11, H22, H30), 3.07 

(s, 2H, ), 2.76 (t, J = 7.2 Hz, 2H, H37), 2.27 – 2.20 (m, 2H, H17), 

1.95 – 1.84 (m, 2H, H16), 1.80 – 1.28 (m, 11H, H26, H2, H34, H36, 

H3, H35), 1.12 – 0.96 (m, 2H, H27), 0.81 (d, J = 6.7 Hz, 3H, H28), 

0.76 (t, J = 7.4 Hz, 3H, H29). HPLC-MS (ESI): m/z calc. for 

C38H54N8O9+ [M+H]+ 767.4; found 767.6. m/z calc. for 

C38H54N8O9+ [M+2H]2+ 384.2; found 384.4. 

6.3.2.5. Pentapeptide 

Polymeric support: 2.14 g of 2-CTC resin (1.4 mmol). 

First coupling: 1.59 g of Fmoc-Leu-OH (1.50 eq) and 1.17 g DIPEA (3.02 eq) in 8 mL DCM for 

129 min. Final loading of 0.71 mmol/g (1.95 mmol).  

Coupling of amino acids: 

 

Entry Amino acid 
Amino acid 

[g, eq] 
HOBt·H2O 

[g, eq] 
DIC 

[g, eq] 

1 Fmoc-Lys(Boc)-OH 2.71, 2.97 0.95, 3.19 0.78, 3.19 

2 Fmoc-Ile-OH 2.04, 2.96 1.02, 3.41 0.71, 2.90 

3 Fmoc-Arg(Pbf)-OH 3.74, 2.95 0.96, 3.20 0.73, 2.95 

4 Fmoc-Ser(tBu)-OH 2.35, 3.14 0.91, 3.05 0.74, 2.99 

Table 8. Reagents used in coupling reactions for pentapeptide 

Cleavage of the peptide from the resin: The peptide precipitated directly when it was 

collected in the water and pyridine containing round-bottomed flask. It was tried to redissolve 

with 460 mL of DCM but it was not possible, so the volatiles were removed under vacuum. 

Finally, the resultant solid was filtered and cleaned with water until neutral pH. The final yield 

was 92.1% with a chromatographic purity of 95.1%. 
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White solid. HPLC-MS (ESI): m/z calc. for 

C64H95N9O14S+ [M+H]+ 1246.7; found 1247.0. MS (ESI): 

m/z calc. for C64H95N9O14S+ [M+H]+ 1246.7; found 

1246.8. m/z calc. for C64H95N9O14S+ [M+Na]+ 1268.7; 

found 1268.9. 

6.3.2.6. Hexapeptide 

Polymeric support: 2.01 g of 2-CTC resin (1.4 mmol/g) 

First coupling: 1.49g of Fmoc-Leu-OH (1.43 eq) and 1.01 g DIPEA (2.78 eq) in 8 mL DCM for 72 

min. Final loading of 0.71 mmol/g (1.83 mmol). 

Entry Amino acid 
Amino acid 

[g, eq] 
HOBt·H2O 

[g, eq] 
DIC 

[g, eq] 

1 Fmoc-Val-OH 1.87, 3.00 0.84, 2.98 0.74, 3.20 

2 Fmoc-Gln(Trt)-OH 1.98, 2.92  0.97, 3.45 0.71, 3.06 

3 Fmoc-Gln(Trt)-OH 1.97, 2.91 0.95, 3.37 0.71, 3.07 

4 Fmoc-Asp(tBu)-OH 2.41, 3.19 0.93, 3.30 0.72, 3.10 

5 Boc-Ile-OH 1.70, 3.99 1.18, 4.19 0.91, 3.91 

 recoupling 1.78, 4.20 1.28, 4.55 0.90, 3.88 

 recoupling 1.75, 4.12 1.09, 3.89 0.87, 3.74 

Table 9. Reagents used in coupling reactions for hexapeptide 

Cleavage of the peptide from the resin: Instead of water, Et2O was used to collect the 

treatments of TFA (1%) in DCM and DCM washes. A ratio of 4:1 Et2O/DCM was maintained 

during the treatments, so 480 mL of Et2O were required. The resultant solid was filtered and 

cleaned with water and Et2O. The final yield was 94.3% with a chromatographic purity of 98.3%.  

 

 

 

 

White solid. HPLC-MS (ESI): m/z calc. for 

C78H98N8O13+ [M+H]+ 1355.73; found 1356.74. 
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6.3.3. Solution phase synthesis 

6.3.3.1. Synthesis of Fmoc-Cys(Trt)-Leu-OtBu 

Fmoc-Cys(Trt)-OH (1.55 g, 1 eq) and Leu-OtBu (0.65 g, 1.1 eq) were added to a 25 mL 

round bottomed flask and were dissolved in 6 mL of DCM. The solution was cooled in an ice 

bath and 0.38 g of DIPEA were added within 30 min with an automatic injector. Then, 20 mL of 

AcOEt were added and the organic solution was washed with aqueous sat. citric acid and 

aqueous sat. NaHCO3 (3x20 mL each). The resultant organic phase was dried with anhydrous 

Na2SO4 and volatiles were removed under vacuum to yield 1.75 g of the desired product as a 

white solid (87.5%)  

 
Figure 6. Structure of the dipeptide  

 

6.3.3.2. Synthesis of H-Cys(Trt)-Leu-OtBu 

Fmoc-Cys(Trt)-Leu-OtBu (1.39 g, 1 eq) and 10% piperidine in DCM (5.3 mL, 2.9 eq) were 

mixed in a 25 mL round bottomed flask and left for 3.3 h. Then, 15 mL of DCM were added and 

the organic solution was washed with H2O (3x20 mL). The resultant aqueous phase was 

extracted with 10 mL of DCM, and organic phases were combined and dried with anhydrous 

Na2SO4. Finally, volatiles were removed under vacuum and the resulting yellow solid was 

purified by flash chromatography (dry loading in silica) using hexanes/AcOEt 20:80 and 

DCM/MeOH 90:10 to afford 0.768 g of the desired peptide as a yellow solid (78%). 

 
Figure 7. Structure of unprotected dipeptide 
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6.3.3.3. Protected undecapeptide 

Nonapeptide from batch 2 (368.5 mg, 1 eq), H-Cys-Leu-OtBu (102.3 mg, 1.1 eq) and HOAt 

(25.4 mg, 1.1 eq) were added to a 25 mL round-bottomed flask and they were dissolved in 8 mL 

of DMF. HATU (72 mg, 1.1 eq) and DIPEA (43.7 mg, 2.0 eq) were dissolved separately in 1 mL 

of DMF and both solutions were transferred to two different syringes. Then, the round-bottomed 

flask was cooled in an ice/MeOH bath and DIPEA and HATU were added with an automatic 

injector at the same time for 30 min. Finally, an aliquot was injected in the HPLC and the 

undecapeptide was precipitated with 180 mL of water and filtered. Finally, 408.2 mg were 

obtained as a white solid (89.2%). The final product was characterized by HPLC-MS. 

 

 

 

 
 

White solid. HPLC-MS (ESI): m/z calc. 

for C60H86N8O14S+ [M+2H]2+ 1348.2; 

found 1348.3. 
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7. CONCLUSIONS 

- Full protected fragments of a seventeen amino acids peptide have been successfully 

synthetized using Fmoc chemistry and a 2-CTC resin, except of dipeptide which was 

synthetized in solution. These peptides have been prepared at a scale of 2 g of 

polymeric support, coupling the first amino acid with DIPEA in DCM and using 

DIC/HOBt in DMF as a coupling system to assemble the peptide chain. TFA (1% in 

DCM) has been used to cleave the peptide from the resin. 

- The protected nonapeptide has been obtained with overall yields of 68 and 67%, and 

a chromatographic purities of 96 and 97% respectively. The protected tetrapeptide, 

pentapeptide and hexapeptide have been obtained with overall yields of 73, 92 and 

94% respectively, and a chromatographic purities of 93, 95 and 98%. 

- Finally, the protected dipeptide has been synthetized in solution using EDC·HCl/HOBt 

in DCM as the coupling system, with a yield of 88%.  

- The coupling of the protected nonapeptide to the dipeptide has been assayed 

previous deprotection of the latter with 10% of piperidine in DCM (78% yield), using 

HATU/HOAt and DIPEA in DCM as the coupling system. The desired undecapeptide 

has been obtained with a yield of 89.2%, a chromatographic purity of 89.5% and 3% 

of epimerization.  
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9. ACRONYMS/ABBREVIATIONS  
2-CTC 2-Chlorotrityl chloride 
ACN Acetonitrile 
AcOEt Ethyl acetate 
Arg Arginine 
Boc tert-Butyloxycarbonyl 
Bzl Benzyl 
Cys Cysteine residue 
DIPEA  N,N’-diisopropylethylamine 
DCC  N,N’-dicyclohexylcarbodiimide 
DIC  N,N’-diisopropylcarbodiimide 
DCM Dichloromethane 
DMF  N,N-dimethylformamide 
EDC N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide  
Eq Equivalent 
ESI-MS Electrospray Ionization – Mass Spectroscopy 
Et2O Diethyl ether 
Fmoc 9-fluorenylmethyloxycarbonyl 
Glu Glutamic acid residue 
HATU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium  
 Hexafluorophosphate 
HBTU O-(benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate 
HOAt 1-hydroxy-7-azabenzotriazole 
HOBt 1-hydroxybenzotriazole 
Ile Isoleucine residue 
Leu Leucine residue 
Lys Lysine residue 
MeOH Methanol 
Pbf 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 
PG Protecting group 
rt Room temperature 
sat Saturated solution 
Ser Serine residue 
SPPS Solid phase peptide synthesis 
tBu tert-Butyl 
TFA Trifluoroacetic acid 
TLC Thin layer chromatography 
Trt Trityl 
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APPENDIX 1: CHROMATOGRAMS AND MASS 

SPECTRA 

A.1 HPLC and MS of Fragments synthetized by SPPS methodology 
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A.2 HPLC and MS of Undecapeptide. 
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APPENDIX 2: NMR DATA OF TETRAPEPTIDE 

A.1 Protected tetrapeptide NMR spectra 

 
Experimental 1H NMR of protected tetrapeptide 

 

 
Experimental 13C NMR of protected tetrapeptide 
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Experimental COSY spectra of protected tetrapeptide 

 
Experimental TOCSY spectra of protected tetrapeptide 
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A.2 Unprotected tetrapeptide NMR spectra 

 
Experimental 1H NMR of unprotected tetrapeptide 

 





 

 


