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1. SUMMARY 

The synthesis of enantiomerically pure compounds is one of the main challenges in organic 

synthesis. Particularly, γ-chiral alcohols are a valuable chemical motif and a useful building block, 

especially in the pharmaceutical industry. Even though there are several synthetic methodologies 

already studied, they offer poor atom economy reactions and there is a need of separation steps, 

consequently lowering the final yield. For this reason, a new approach would be highly desired. 

Most promising approaches undergo isomerization reactions that are highly atom economy 

efficient and generate low to no residues. Still there is not a selective procedure to the 

isomerization of oxetanes. 

In this work, a new general and greener synthetic pathway has been developed. This new 

approach is based on the Lewis-acid-promoted selective isomerization of oxetane rings. 

Afterwards, the correspondent olefin is subjected to an asymmetric hydrogenation using iridium-

based catalysts.  

A standard substrate has been tested in order to optimize the methodology. Finally, a broad 

scope of substrates has been studied to generalize the process. 

 

 
 

Retrosynthetic approach towards γ-chiral alcohols 

Keywords: γ-chiral alcohol, atom efficient, Lewis acid, selective isomerization, oxetane, 

asymmetric hydrogenation.  
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2. RESUM 

Els compostos enantiomèricament purs són un dels principals reptes de la síntesi orgànica. 

Particularment, els alcohols quirals en la posició γ són un útil bloc sintètic, especialment en la 

indústria farmacèutica. Tot i que moltes estratègies sintètiques han estat estudiades, ofereixen 

reaccions poc eficients en termes d’economia atòmica i necessiten separacions addicionals que 

disminueixen el rendiment final. Per aquest motiu, un nou enfoc en aquesta síntesi seria molt 

apropiat. 

Els processos més prometedors es basen en reaccions d’isomerització, ja que són molt 

eficients pel que fa a la seva economia atòmica i generen pocs o cap residu. De totes maneres, 

encara no hi ha un procediment cap a la isomerització selectiva d’oxetans.  

En aquest treball, una nova via sintètica més general i verda ha estat desenvolupada. Aquest 

nou enfoc es basa en la isomerització selectiva d’anells d’oxetà catalitzada per àcids de Lewis. 

A continuació, la corresponent olefina és sotmesa a una hidrogenació asimètrica utilitzant 

catalitzadors basats en iridi.  

Un substrat estàndard ha estat estudiat per la optimització del mètode. Finalment, un ampli 

rang de substrats ha estat analitzat per generalitzar el procés.   

 

 
 

Enfoc retrosintètic cap a la obtenció d'alcohols γ-quirals 

Paraules clau: Alcohol γ-quiral, economia atòmica, àcid de Lewis, isomerització selectiva, 

oxetà, hidrogenació asimètrica.   
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3. INTRODUCTION 

3.1. INTRODUCTION TO CHIRALITY AND ASYMMETRIC SYNTHESIS 

The synthesis of enantiomerically pure compounds is one of the main challenges in organic 

synthesis, especially in the pharmaceutic field, where the properties of the two enantiomers can 

be completely different. One enantiomer can have positive effect towards some diseases and the 

other one not even have any effect or, even worse, lead to other health problems. For this reason, 

asymmetric reactions are highly desired by pharmaceutical companies. 

To prepare enantioriched compounds, several techniques can be used. However, there is not 

a general procedure to do so, as it depends on the starting product. Depending on it being a 

racemic sample, a non-chiral compound or a pure enantiomer, the techniques used might vary. 

A simple way of obtaining an enantioriched product from a racemic sample is a kinetic 

resolution. This method is based on one of the two enantiomers reacting faster than the other, 

or even only reacting with one of them. By stopping the reaction early, a starting enantiomer that 

has not reacted yet and the product of the reaction can be collected and separated, obtaining an 

enantioriched mixture as the product. The problem with the kinetic resolution is that half of the 

starting material is lost as it did not react. 

Another synthetic strategy aiming the same result was developed by the use of a chiral 

auxiliary. This auxiliary is bonded covalently to the starting material. A diasteroselective reaction 

will give the two corresponding diastereomers. Afterwards, the two diastereomers can be 

separated easily, the auxiliary is cleaved, and the pure enantiomer can be obtained. Unless it 

could be a proper solution, it still involves adding two new steps to the synthesis and the loss of 

yield in the separation of the two isomers. 

To solve the problem, asymmetric synthesis is presented as a better solution, as with this 

method, achiral compounds can be used to prepare chiral enantioriched products, reaching high 

yields and selectivities. Ultimately, asymmetric catalysis has been stablished as the best 

method so far. By the use of a catalytic specie with chiral ligands that can interact with the 

substrate, chirality is induced to an achiral compound. Using this approach, only a catalytic 

amount of catalyst needs to be used, making this process very atom economy efficient, thus 

obtaining valuable enantioriched compounds from racemic mixtures. 
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3.2. ASYMMETRIC HYDROGENATION 

Asymmetric hydrogenation has stood out as one of the best examples of asymmetric 

catalysis. It has been widely studied, aiming to reduce unsaturated compounds using hydrogen 

and a chiral catalyst, furnishing enantioriched reduced compounds. The first example of 

successful asymmetric hydrogenation was performed by S. Knowles and co. workers, in 1980’s, 

using a rhodium metal catalyst with the chiral ligand ethane-1,2-diylbis[(2-

methoxyphenyl)phenylphosphane] (DIPAMP). The enamine was reduced to the corresponding 

primary amine (L-DOPA) with high enantiomeric excess (Figure 1).1 

 

 
Figure 1: Reduction of the enamine performed by Knowles to the L-amino acid 

Conveniently, our group has a long experience in phosphorus chiral ligands and their 

application in asymmetric catalysis.2–4 Particularly, various (P,P)- and (P,N)-ligands have been 

studied to prepare iridium and rhodium-based catalysts. For instance, MaxPHOS was one of the 

first ligands developed in the group (Figure 2).4 

 
 

Figure 2: Reduction of enamines using Rh-MaxPHOS 

Furthermore, the Ir-MaxPHOX family of catalysts has been recently developed. These 

catalysts are formed by the coordination of iridium with the MaxPHOX ligand. This bidentate 

ligand can be easily synthetized from a borane protected chiral phosphinous acid, an amino 

alcohol and an amino acid. The final catalyst is stabilized by the coordination with a 

cyclooctadiene group, and a BArF anion (Figure 3).5 
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Figure 3: Synthetic scheme of Ir-MaxPHOX catalyst 

As seen in Figure 3, these ligands are highly modular. They present three different chiral 

centres, so up to four diastereomers can be obtained. Moreover, the oxazoline substituent can 

induce steric hindrance with the substrate, interacting with it in a particular orientation (Figure 4). 

By modifying the R1 substituent with a phenyl (Ph), an isopropyl (iPr) or a tert-butyl (tBu) group, 

some interactions are favoured, possibly improving the enantiomeric excess values. 

 
Figure 4: Ir-MaxPHOX family of ligands 

This family of catalysts have been applied in the asymmetric hydrogenation of imines, cyclic 

and aryl alkyl enamines with excellent results affording high enantiomeric excess values.5–7 

 

3.3. ASYMMETRIC SYNTHESIS OF γ-CIHRAL ALCOHOLS 

Enantioriched chiral alcohols with stereocentre in the γ-position are highly demanded 

chemical compounds, especially in pharmacy and perfume industry, as this functional group is 
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present in a lot of natural products. Furthermore, it is a versatile building block that can be used 

as an intermediate for multistep synthesis and a desired chemical motif. A good example of that 

is citronellol, which has a γ-position chiral alcohol. It is present in citronella oils and oils of rose, 

and it is used in perfume industry to generate rose oxide, a fragrance chemical used in perfumes 

and to flavor fruits and wines (Figure 5).8 

 
Figure 5: Example of γ-chiral alcohol and a particular application 

3.3.1. Current synthetic strategies 

Nowadays, several methods have been studied leading to the synthesis of γ-chiral alcohols. 

Most of them are based in a multistep sequence involving an initial enantioselective 

transformation on a functionalized substrate, followed by the adjustment of the oxidation state of 

the resulting product. The main methodologies are summarized in Figure 6: 9 

 
Figure 6: Methodologies to the synthesis of γ-chiral alcohols (X = Cl, OR, H) 

In route a, an allylic substitution is carried out under metal-catalysed conditions. The second 

substituent is added to the γ-position enantioselectively by the use of a nucleophile alkyl group 

such as organomagnesium and organolitium reagents. Then, the alkene is either hydroborated 

or oxidised to produce the terminal alcohol.10 
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Routes b and c present a different approach, starting from the α,β-unsaturated carbonyl 

compounds. The first one is based on an asymmetric hydrogenation of the unsaturated bond to 

generate the chiral centre and the subsequent reduction of the ketone derivative.11 The second 

is based in a 1,4-addition of the second substituent enantioselectively in the β-position using a 

Grignard reagent in presence of a copper catalyst and a chiral auxiliary, generating the chiral 

position, and followed by the reduction of the ketone derivative. 

In a similar manner, routes d and e use γ,γ’-disubstituted primary allylic alcohols. Firstly, route 

d is able to obtain the chiral alcohol in a single clean step via asymmetric hydrogenation using 

catalytic species as the ones shown in 3.2.9 On the other hand, route e presents an iridium 

catalysed isomerization to the correspondent aldehyde in an enantioselective manner, to then 

easily reduce it to the primary alcohol with a reducing agent in mild conditions  

Taking a closer look into this last route, isomerization reactions are well desirable, being highly 

atom economy efficient, as they represent a rearrangement of the main substrate by the usage 

of a catalytic amount of catalyst. Enantioselective isomerization of allylic alcohols leads to the 

aldehyde that can be easily reduced to the primary alcohol. Mazet, Andersson and others have 

widely investigating this field, showing great enantiomeric excesses, obtained when employing 

chiral (P,N)-Iridium catalysts in an expanded scope of substrates.12,13 In this reactions, the allylic 

alcohol is isomerized into the correspondent enol, which then, by a keto-enol equilibrium forms 

the aldehyde without the loss of enantioselectivity, especially with large substituents (Figure 7). 

 

 
 

Figure 7: Isomerization of allylic alcohol to the correspondent aldehyde, and its reduction to the chiral 
primary alcohol  

Moreover, Pfaltz and co. workers performed direct asymmetric hydrogenation of allylic 

alcohols using chiral (P,N)-iridium catalysts too, achieving high enantiomeric excesses as well 

(Figure 8).9 However, one of the main drawbacks of this work was that high hydrogen pressures 

were needed to induce high enantioselectivity. 
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Figure 8: Asymmetric hydrogenation of allylic alcohol to the chiral primary alcohol 

A general methodology used to synthetize γ-chiral alcohols from commercially available 

ketones is presented in Figure 9. In this process, the allylic alcohol is obtained by a Horner-

Wadsworth-Emmons reaction, followed by a reduction of the ester. With the allylic alcohol in hand, 

either selective isomerization using organometallic ruthenium, iridium and rhodium complexes 

followed by the reduction of the obtained aldehyde, or via asymmetric hydrogenation process 

using chiral (P,N)-iridium catalysts, the enantioriched primary alcohol can be obtained. 

   

 
Figure 9: Example of a general procedure to the generation of γ-chiral alcohols 

However, both catalytic methods present a huge drawback. The problem resides in the 

olefination of the ketone, usually done through a Horner-Wadsworth-Emmons reaction. This step 

is a poor atom efficient step, as the released phosphorene is not recovered. Furthermore, LiAlH4 

or DIBAL-H are necessary in the reduction step. Also, this reaction is not always selective to the 

same isomer, as it can generate both the E and Z isomers. Due to this selectivity problem, the 

alkene environment is different for both isomers, and either in the hydrogenation or the 

isomerization, they will behave differently, possibly generating opposite enantiomers and lowering 

the enantiomeric excess drastically. Consequently, a separation step is needed before 
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undergoing the asymmetric catalytic reaction. Due to the similarity between both E and Z isomers, 

most of the times the separation cannot be performed with standard column chromatography and, 

even if separated, the addition of a separation step will cause a huge drop on the total yield.  

For this reason, a new more general synthetic strategy towards the production of these kind 

of chiral alcohols employing a stereoselective isomerization process would be highly desired. 

3.4. METAL CATALYZED ISOMERIZATION OF HETEROCYCLIC COMPOUNDS 

Metal catalysed isomerization of strained 3-membered ring heterocyclic compounds has been 

widely explored in our group. Particularly, the isomerization capacity of iridium based 

organometallic complexes have proven to be a point of interest. For instance, N-sulfonyl-

aziridines have been isomerized to its correspondent allylic amines with excellent 

enantioselectivity when using Crabtree’s catalyst, without any external activation and with only 

1% of catalyst loading.14 Using a similar synthetic protocol, in which the catalyst was activated 

with hydrogen, di- and trisubstituted epoxides were also selectively isomerized into the 

correspondent carbonyl analogue. The reactions were carried out under very mild conditions and 

showing an excellent functional group tolerance (Figure 10).   

 
Figure 10: Previous work in heterocycle isomerization using Crabtree's reagent 

Regarding to this, and in our efforts to expand the applicability of this isomerization processes, 

we wonder how 4-membered ring would behave in terms of selectivity. In the literature, there are 

some precedents in which the formation of homoallylic alcohols as reaction by-products is 

common when dealing with nucleophilic ring-opening reactions of oxetanes. With this in mind, we 

envisioned that oxetanes could be precursors for the synthesis of γ-chiral alcohols via a tandem 

isomerization / asymmetric hydrogenation process. Oxetanes are highly reactive heterocyclic 

compounds that have been widely investigated in cationic ring opening polymerization (ROP),15 

nucleophilic ring opening and ring expansion reactions.16 However, and to the best of our 
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knowledge, there is not any precedent for their selective isomerization. Therefore, a general 

synthetic protocol for the selective isomerization of oxetanes would be highly valuable. 

 

 

4. OBJECTIVES 

4.1. NEW APPROACH TO THE SYNTHESIS OF γ-CHIRAL ALCOHOLS 

In this work, oxetane ring isomerization is going to be studied, aiming to selectively obtain one 

of the possible products; either the homoallylic or the allylic alcohol (E or Z). Being able to 

selectively isomerize oxetane rings to the corresponding alcohol will lead us to a new synthetic 

protocol to obtain these γ-chiral compounds. This new approach is based on the formation of the 

correspondent 2,2’-disubstituted oxetane through a double Corey-Chaykovsky reaction from the 

corresponding ketone, the catalytic selective isomerization of the ring and the final asymmetric 

hydrogenation of the isomerized specie using the Ir-MaxPHOX catalysts. (Figure 11). 

 
Figure 11: New approach towards the selective formation of γ-chiral alcohols 

For this reason, the main focus of this work is to find a standard procedure towards the 

selective isomerization of 2,2’-disubstituted oxetanes, avoiding the formation of the other possible 

isomers or side reactivity.  

 

1) Catalyst screening. For this purpose, we are going to screen different iridium based 

species and Lewis acids to find the one that gives best yields and selectivity under mild conditions. 

With this objective in mind, oxetane 2a is going to be used in all the screening process. 
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Figure 12: Standard substrate 2a (2-aryl-2-methyloxetane) used in the screening 

2) Screening of other reaction parameters. Modify the catalyst loading, temperature, 

concentration or reaction time to find the most optimal conditions. 

3) Scale-up of the process. Perform the isomerization in gram scale. 

4) Substrate scope. With the optimal conditions in hand, a wide range of oxetanes will be 

synthesized and tested to see how the variability in the substituents is going to affect the process. 

Particularly, one of the main focus is going to be on the effect that the aryl substituents can have 

on the selectivity of the isomerization process. 

5) Asymmetric hydrogenation. Finally, the asymmetric hydrogenation step is going to 

be carried out to obtain the desired γ-chiral alcohols. In this process, the different Ir-MaxPHOX 

catalysts are going to be tested to find out the one that gives a higher enantiomeric excess. 

5. RESULTS AND DISCUSSION  
 
5.1. OXETANES 

Oxetanes are not a common intermediate in organic chemistry, mainly because their high 

reactivity makes them susceptible to ring opening and side reactions such as polymerization. 

However, these heterocyclic rings are present in natural products such as Paclitaxel, sold under 

the name of Taxol, used as chemotherapy medication to treat several types of cancer (Figure 13).  
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Figure 13: Structure of Paclitaxel 

5.1.1. Synthesis 

Multiple synthetic methods can be found in the literature for the synthesis of oxetane rings. 

For instance, a well-known preparation method goes through the intramolecular substitution of 3-

chloropropyl acetate, treated with concentrated potassium hydroxide under high temperature 

conditions.17 Another example is the [2+2] photochemical cycloaddition of a carbonyl group and 

an olefin.18 However, both methods are carried out under harsh conditions, possibly undergoing 

undesired side reactions (Figure 14).  

 
Figure 14: Synthetic approaches to oxetane synthesis 

Nevertheless, a general procedure towards the production of 2,2’-disubstituted oxetanes from 

the correspondent ketone was described by H. Ohta.19 In this procedure, oxetanes were prepared 

from the corresponding ketone through a double Corey-Chaykovsky reaction, using 

trimethylsulfoxonium iodide and potassium tert-butoxide as the main reagents (Figure 15). This 

process is highly convenient, especially because dimethyl sulfoxide is the only by-product of the 

reaction. 

From this point, eight different 2,2’-disubstituted oxetanes were synthetized and characterized 

in good to excellent yields (2a-2g). The scope of substrates will consist in four different substituted 
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aryl groups with electron withdrawing and electron donating groups; two non-methyl substituted 

oxetanes and a non-aromatic example to generalize the whole process. 

 

 
 

Figure 15: Synthesis of oxetanes through a double Corey-Chaykovksy with respective yields 

5.2. ISOMERIZATION OF OXETANES 

5.2.1. Catalyst screening and condition optimization 

With the oxetane 2a in hand, several catalysts were tested towards its selective isomerization. 

As seen in Table 1, Crabtree’s reagent was first attempted, as it gave very good results when 

using other heterocyclic compounds such as N-sulfonyl aziridines or epoxides. Using 5 mol %, 

low conversion was observed (entry 1, Table 1). When activated with H2, polymerization occurred, 

thus demonstrating that iridium-hydride complexes are highly reactive for this reaction (entry 2, 

Table 1).   
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Table 1: Screening of conditions for the isomerization of 2a 

  
 

The reaction was performed following GP 2. (a) Determined by 1H-NMR spectroscopy. (b) 1H-NMR yield using mesitylene as internal 

standard. (c) The reaction was performed in a pressure tube, using H2 for catalyst activation and, after 1 minute, the vessel was fully 
degassed. (d) Polymerization occurred 

At that point, we moved our attention to the use of inorganic Lewis Acids. First, ZnCl2 was 

used. Again, polymerization of the oxetane occurred (entry 3, Table 1). Moving to more mild Lewis 

acids, such as InCl3 or IrCl3, the reaction improved a lot and we observed that homoallylic alcohol 

3a was selectively formed in front of allylic alcohols 4a, even though in moderate ratio (entries 4 

and 5, Table 1). Finally, widely employed AlCl3 also showed good reactivity and full conversion. 

However, the maximum yield obtained for 3a was 51% (entry 6, Table 1). Next, we moved to the 

use of organic Lewis acids. Commonly used BF3·Et2O, showed null selectivity, as 3a, (E)-4a and 

(Z)-4a were afforded as an equimolar mixture (entry 7, Table 1).  

In general, with usual Lewis acids, moderate yield and selectivity were achieved. For this 

reason, a bibliographic research on Lewis-acid-promoted isomerization was done. B(C6F5)3 was 

found to be an excellent catalyst for the isomerization of epoxides to the corresponding aldehydes. 

Gratifyingly, when tested it with oxetanes, excellent yields and selectivity towards de homoallylic 

form was observed (Entry 1, Table 2).  

Entry Catalyst Solvent Conv. (%) a 3a:4a Yield 3a (%) b 

1 Crabtree’s reagent CH2Cl2 35 - 25 

2 c Crabtree’s reagent CH2Cl2 >99 - 0 d 

3 ZnCl2 CH2Cl2 >99 - 0 d 

4 InCl3 CH2Cl2 50 4:1 39 

5 IrCl3 CH2Cl2 >99 4:1 34 

6 AlCl3 CH2Cl2 >99 5:1 51 

7 BF3·Et2O CH2Cl2 >99 1:2 30 
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Table 2: Screening of conditions for the isomerization of 2a 

 

The reaction was performed following GP 2. (a) Determined by 1H-NMR spectroscopy. (b) 1H-NMR yield using mesitylene as internal 
standard. (c) The reaction was performed at 0 ºC. (d) 0.5 mol % of catalyst was employed, and the reaction was left stirring for 2 hours. (e) 

Isolated yield. (f) Isolated yield performing the reaction at gram scale, using 0.5 mol % of B(C6F5), and the reaction was left stirring 24 
hours3. 

 With this results, B(C6F5)3 was chosen as the best catalyst to proceed with the 

optimization of the oxetanes. The next step was the screening of different solvents to see their 

interaction with the Lewis acid and their effect in the yield / selectivity (entries 2 to 5, Table 2). 

Even though ethyl acetate, tetrahydrofuran and toluene gave really good selectivity, the yields 

were not as high as the ones achieved with the dichloromethane. Acetonitrile was also tested, but 

the yield decreased drastically due to its interaction with the catalyst.  

 With the appropriate catalyst and solvent optimized, the temperature effect was tested 

using an ice-bath. The results showed that reducing the temperature does not affect the course 

of the reaction, as either the selectivity or yield were not modified (entry 6, Table 2). Finally, the 

reaction was carried out reducing the catalyst loading up to 0.5 mol %. We were pleased to see 

that, by 1H-NMR monitoring, the reaction showed full conversion after only 2 hours, with excellent 

stereoselectivity to afford homoallylic alcohol 3a in good yield (entry 7, Table 2). Moreover, the 

reaction was performed at gram scale affording 3a in 84% isolated yield.  

 

 

Entry Catalyst Solvent Conv. (%) a 3a:4a Yield 3a (%) b 

1 B(C6F5)3 CH2Cl2 >99 98:2 82 

2 B(C6F5)3 EtOAc >99 96:4 70 

3 B(C6F5)3 THF >99 98:2 67 

4 B(C6F5)3 Toluene >99 98:2 75 

5 B(C6F5)3 MeCN 33 - 21 

.6 c B(C6F5)3 CH2Cl2 >99 98:2 80 

7 d B(C6F5)3 CH2Cl2 >99 98:2 82     (78 e,84 f) 
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5.2.2. Substrate scope 

Once the screening was done and the conditions were optimized, the substrate scope was 

performed (Table 3). 

Table 3: Substrate scope results 

 

 

 

 

 

 

 

The reaction was performed following GP 2. (a) Determined by 1H-NMR spectroscopy. (b) Isolated yield.  

 Firstly, R1 was substituted by chloride substituted phenyl groups, to test the effect of electron 

withdrawing groups in the aromatic ring. In para- position, the results improved in comparison with 

the standard, both in selectivity and yield (Entry 1, Table 3). In meta- position, the selectivity was 

slightly reduced, but still high selectivity towards the homoallylic form was observed (Entry 2, 

Table 3). Moving to electron donating groups, methyl and methoxide groups were tested. The 

methyl in para- position substitution was well tolerated, while having the methoxide group in meta- 

position, the yield was increased (Entries 3 and 4 respectively, Table 3).  

Moving into the oxetanes that isomerize into non-terminal homoallylic alcohols, benzyl 

substituted oxetane showed full selectivity to the homoallylic form. Specifically, the E isomer was 

obtained as the major product, although the Z isomer was still observed. 

 
Figure 16: Isomerization of the benzyl substituted oxetane (2f) following GP 2 

Entry Substrate R1 Conv. (%) a 3:4 Yield 3 (%) b 

1 2b p-Cl (Ar) >99 >99 95 

2 2c m-Cl (Ar) >99 95:5 84 

3 2d p-Me (Ar) >99 96:4 79 

4 2e m-OMe (Ar) >99 98:2 92 
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The bicyclic example also showed full conversion to the homoallylic form and, due to the 

strained cycle, no mixture of isomers was obtained.  

 
Figure 17: Isomerization of the tetralone derivate oxetane (2g) following GP 2 

Finally, to show the versatility of the process, a non-aryl substituted oxetane was tested, 

showing lower yields. Still high selectivity was shown towards the homoallylic species. However, 

two different homoallylic alcohols are formed in the process, so a separation step is needed.  

 
Figure 18: Isomerization of the cyclohexyl methyl oxetane (2h) following GP 2 

 
 

 
5.3. ASYMMETRIC HYDROGENATION 
 

Lastly, the hydrogenation step was carried out. To do so, a catalyst screening was first 

performed using the model substrate 3a. Several catalysts were tested using dichloromethane as 

the solvent and leaving the reaction at room temperature, overnight, with 1 bar of H2. The final 

product was characterized by 1H-NMR spectroscopy and the enantiomeric excess value was 

determined by chiral HPLC chromatography. The obtained results are shown in Table 4. 
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Table 4: Optimization tests for the asymmetric hydrogenation of 2a. 

 

The reaction was performed following GP 3. (a) Determined by 1H-NMR spectroscopy. (b) Determined by chiral HPLC chromatography. (c) 
Carried out using 50 bar of hydrogen pressure. 

To optimize the process using the Ir-MaxPHOX, one of the four possible diastereomeric 

combinations has to be selected. To do so, all the isopropyl substituted diastereomers were 

studied, being 1 (Sp,R,S) the best combination affording 70% ee (Entries 1 to 4, Table 4). Once 

the best configuration for the ligand was determined, the next step was to test all the three different 

substituents in the oxazoline ring, keeping this same configuration (Entries 5 and 6, Table 4). The 

best results were obtained with the tert-butyl one with 77% ee.  Finally, a last test was performed 

using 50 bar of hydrogen pressure to see its effect in the enantiomeric excess. However, the 

enantiomeric excess value did not improve (Entry 11, Table 4). 

For future work, a solvent screening and a temperature assessment should be carried out to 

end up the optimization of the reaction conditions. 

 

 

Entry Catalyst Solvent  Conv. (%) a ee (%) b 

1 Ir-MaxPHOX iPr 1 CH2Cl2 >99 70 

2 Ir-MaxPHOX iPr 2 CH2Cl2 >99 11 

3 Ir-MaxPHOX iPr 3 CH2Cl2 >99 11 

4 Ir-MaxPHOX iPr 4 CH2Cl2 >99 43 

5 Ir-MaxPHOX Ph 1 CH2Cl2 >99 44 

6 Ir-MaxPHOX tBu 1 CH2Cl2 >99 77 

7 c Ir-MaxPHOX tBu 1 CH2Cl2 >99 72 
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6. EXPERIMENTAL SECTION 

6.1. MATERIALS AND METHODS 

Unless otherwise indicated, materials were obtained from commercial suppliers and used 

without further purification. All reactions that required anhydrous conditions were performed in 

dried glassware under a dry nitrogen atmosphere. Dichloromethane and THF were degassed and 

anhydrised with a solvent purification system (SPS PS-MD-3). Solvents were removed under 

reduced pressure with a rotary evaporator. Silica gel chromatography was performed using an 

automated chromatography system (PuriFlash® 430, Interchim). 

NMR spectroscopy: 1H and 13C were recorded on the NMR spectrometers of the Centres 

Científics i Tecnològics de la Universitat de Barcelona. The employed spectrometers were a 

Varian Mercury 400 MHz. Chemical shifts (δ) were referenced to internal solvent resonances and 

reported relative to TMS (tetramethylsilane). The coupling constants (J) are reported in Hertz (Hz).  

High Resolution Mass Spectrometry: High resolution ESI-MS spectra were recorded in an 

LC/MSD-TOF G1969A (Agilent Technologies) of the Centres Científics i Tecnològics de la 

Universitat de Barcelona. 

IR spectroscopy: IR spectra were measured in a Thermo Nicolet 6700 FT-IR spectrometer 

using an ATR system, of the Department of Organic Chemistry in the Universitat de Barcelona. 

6.2. PREPARATION OF 3,3-DISUBSTITUTED OXETANES VIA DOUBLE COREY-

CHAYKOVSKY 

 
Figure 19: General scheme for the synthesis of the disubstituted oxetanes 

GP 1: In an oven dried round bottom flask, trimethylsulfoxonium iodide (5.0 equiv.) was 

weighted and dissolved in tBuOH (7.9 mL / mmol). tBuOK (5.0 equiv.) was added to the reaction 

mixture in 4 portions and stirred at 50 ºC for 30 min. resulting a white suspension. Afterwards, a 

solution of the correspondent ketone (1.0 equiv.) in tBuOH (2.0 mL / mmol) was added dropwise. 

The reaction mixture was heated gradually to 70 ºC and stirred for 3 days (or until the reaction 

went to completion after TLC monitoring). Once the reaction was completed, water was added to 

the reaction mixture and the two resulting layers were separated and the aqueous phase was 
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extracted with hexanes (x3). Organic layers were combined, dried over anhydrous MgSO4 and 

concentrated to dryness under vacuum. Purity of the obtained product was checked by 1H-NMR 

spectroscopy. The obtained product was used without further purification. 

6.2.1. Preparation of 2-methyl-2-phenyloxetane (2a) 

 

Yellow oil (1.100 g, 89% yield). 1H-NMR (400 MHz, CDCl3) δ 7.49 

– 7.32 (m, 4H), 7.29 – 7.23 (m, 1H), 4.63 (dt, J = 8.7, 6.3 Hz, 1H), 

4.53 (ddd, J = 8.9, 6.9, 5.9 Hz, 1H), 2.78 (qdd, J = 10.9, 8.7, 6.8 

Hz, 2H), 1.74 (s, 3H). The analytical data for this compound were 

in excellent agreement with the reported data.19 

6.2.2. Preparation of 2-(4-chlorophenyl)-2-methyloxetane (2b) 

Yellow oil (1.120 g, 95% yield). 1H-NMR (400 MHz, CDCl3) δ 

7.26 (d, J = 0.4 Hz, 4H), 4.55 (ddd, J = 8.7, 6.5, 6.0 Hz, 1H), 

4.47 – 4.40 (m, 1H), 2.74 (ddd, J = 10.7, 8.7, 6.9 Hz, 1H), 2.62 

(ddd, J = 10.7, 8.8, 6.6 Hz, 1H), 1.64 (s, 3H). The analytical data 

for this compound were in excellent agreement with the reported 

data.20 

6.2.3. Preparation of 2-(3-chlorophenyl)-2-methyloxetane (2c) 

Yellow oil (0.980 g, 83% yield). 1H-NMR (400 MHz, CDCl3) δ 

7.41 – 7.39 (m, 1H), 7.32 – 7.26 (m, 2H), 7.25 – 7.21 (m, 1H), 

4.66 – 4.59 (m, 1H), 4.52 (ddd, J = 8.8, 6.9, 5.9 Hz, 1H), 2.81 

(ddd, J = 10.8, 8.7, 6.9 Hz, 1H), 2.71 (ddd, J = 10.8, 8.8, 6.6 

Hz, 1H), 1.71 (s, 3H). The analytical data for this compound 

were in excellent agreement with the reported data.21 
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6.2.4. Preparation of 2-methyl-2-(p-tolyl)oxetane (2d) 
 

Yellow oil (0.950 g, 79% yield). 1H-NMR (400 MHz, CDCl3) δ 7.33 – 

7.28 (m, 2H), 7.22 – 7.17 (m, 2H), 4.63 (ddd, J = 8.6, 6.7, 5.9 Hz, 

1H), 4.53 (ddd, J = 8.8, 7.0, 5.9 Hz, 1H), 2.84 – 2.69 (m, 2H), 2.37 

(s, 3H), 1.73 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 145.39, 136.39, 

129.02, 123.72, 86.76, 64.66, 35.79, 30.84, 21.20. HRMS (ESI) 

calculated for C11H15O 163.1117, found 163.1122 [M+H]+. IR (ATR-

FTIR) νmax = 2967, 2922, 2878, 1513, 1442, 1081 cm-1. 

 

6.2.5. Preparation of 2-(3-methoxyphenyl)-2-methyloxetane (2e) 
 

Yellow oil (1.110 g, 94% yield).  1H-NMR (400 MHz, CDCl3) δ 7.32 

– 7.26 (m, 1H), 6.99 (dd, J = 2.6, 1.6 Hz, 1H), 6.93 (ddd, J = 7.6, 

1.6, 0.9 Hz, 1H), 6.80 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 4.62 (ddd, J = 

8.7, 6.6, 5.9 Hz, 1H), 4.52 (ddd, J = 8.7, 6.9, 5.9 Hz, 1H), 3.85 – 

3.79 (m, 3H), 2.84 – 2.68 (m, 2H), 1.74 – 1.70 (m, 3H). 13C NMR 

(101 MHz, CDCl3) δ 159.76, 150.16, 129.48, 116.07, 112.21, 

109.51, 86.71, 64.70, 55.39, 35.72, 30.84. HRMS (ESI) calculated 

for C11H15O2 179.1067, found 179.1067 [M+H]+. IR (ATR-FTIR) ν 

max = 2959, 2885, 2356, 1582, 1288, 1044 cm-1. 

6.2.6. Preparation of 2-benzyl-2-phenyloxetane (2f) 

Yellow oil (0.890 g, 78% yield). 1H-NMR (400 MHz, CDCl3) δ 7.36 – 

7.30 (m, 2H), 7.27 – 7.19 (m, 6H), 7.14 (dd, J = 7.5, 2.0 Hz, 2H), 

4.40 (ddd, J = 8.9, 6.8, 5.7 Hz, 1H), 4.24 (ddd, J = 8.9, 6.5, 5.7 Hz, 

1H), 3.13 (s, 2H), 2.86 (ddd, J = 10.8, 8.8, 6.8 Hz, 1H), 2.69 (ddd, J 

= 10.8, 8.9, 6.6 Hz, 1H). The analytical data for this compound were 

in excellent agreement with the reported data.22 
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6.2.7. Preparation of 3,4-dihydro-2H-spiro[naphthalene-1,2'-oxetane] (2g) 

Yellow oil (0.900 g, 76% yield). 1H-NMR (400 MHz, CDCl3) δ 7.91 

(ddd, J = 7.9, 1.4, 0.5 Hz, 1H), 7.30 (dddt, J = 8.0, 7.3, 1.5, 0.8 Hz, 

1H), 7.19 (td, J = 7.5, 1.4 Hz, 1H), 7.05 (ddq, J = 7.6, 1.4, 0.8 Hz, 

1H), 4.76 – 4.65 (m, 2H), 2.86 – 2.72 (m, 3H), 2.63 (ddd, J = 11.1, 

8.5, 6.3 Hz, 1H), 2.35 (dddd, J = 12.7, 6.6, 2.8, 1.0 Hz, 1H), 2.10 

(dddd, J = 12.7, 11.5, 3.0, 0.8 Hz, 1H), 1.99 – 1.89 (m, 1H), 1.82 – 

1.68 (m, 1H). The analytical data for this compound were in 

excellent agreement with the reported data.23 

6.2.8. Preparation of 2-cyclohexyl-2-methyloxetane (2h) 

Yellow oil (0.750 g, 61% yield). 1H-NMR (400 MHz, CDCl3) δ 4.50 

(dddd, J = 8.8, 7.0, 6.1, 0.6 Hz, 1H), 4.42 – 4.32 (m, 1H), 2.47 (ddd, 

J = 10.8, 9.1, 7.0 Hz, 1H), 2.21 (dddt, J = 11.1, 8.8, 6.4, 0.6 Hz, 1H), 

1.78 (dt, J = 18.0, 7.1 Hz, 6H), 1.34 (d, J = 0.6 Hz, 3H), 1.19 – 1.13 

(m, 3H), 0.97 – 0.87 (m, 2H). The analytical data for this compound 

were in excellent agreement with the reported data.20 

6.3. ISOMERIZATION OF THE OXETANES THROUGH LEWIS ACID CATALYSED 

ISOMERIZATION OF 3,3-DISUBSTITUTED OXETANES 

 
Figure 20: General scheme for the isomerization of the oxetanes to the homoallylic alcohol 

GP 2: An oven dried vial with a stirring bean was taken into a GloveBox. B(C6F5)3 (0.005 

equiv. 0.5 mol%) was weighted in the vial. The vial was taken out of the GloveBox and the 

corresponding oxetane (1.0 equiv.) dissolved in anhydrous dichloromethane (1 M) was added. 

The reaction mixture was stirred at room temperature for 2 hours. Afterwards, water was added 

to the reaction mixture and the two phases were separated. The aqueous layer was extracted 

with dichloromethane (x2) and the organic layers were combined, dried over anhydrous MgSO4 
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and evaporated to dryness under reduced pressure. The product was further purified by flash 

column chromatography (SiO2, equilibrated with 2% of Et3N, and eluted in hexanes/EtOAc, 4:1) 

and characterized by 1H-NMR. 

6.3.1. Preparation of 3-phenylbut-3-en-1-ol (3a) 

Colourless oil (45 mg, 78% yield). 1H-NMR (400 MHz, CDCl3) δ 7.44 

– 7.39 (m, 2H), 7.36 – 7.26 (m, 3H), 5.41 (d, J = 1.4 Hz, 1H), 5.17 – 

5.15 (m, 1H), 3.72 (t, J = 6.4 Hz, 2H), 2.79 (td, J = 6.4, 1.2 Hz, 2H). 

The analytical data for this compound were in excellent agreement 

with the reported data.24 

 

6.3.2. Preparation of 3-(4-chlorophenyl)but-3-en-1-ol (3b) 

Colourless oil (68 mg, 95% yield). 1H-NMR (400 MHz, CDCl3) δ 7.38 

– 7.28 (m, 4H), 5.40 (d, J = 1.2 Hz, 1H), 5.18 (q, J = 1.2 Hz, 1H), 

3.72 (q, J = 5.9 Hz, 2H), 2.76 (td, J = 6.4, 1.2 Hz, 2H). The analytical 

data for this compound were in excellent agreement with the 

reported data.25 

 

6.3.3. Preparation of 3-(3-chlorophenyl)but-3-en-1-ol (3c) 

Colourless oil (60 mg, 84% yield). 1H-NMR (400 MHz, CDCl3) δ 7.40 

(q, J = 1.5 Hz, 1H), 7.31 – 7.26 (m, 3H), 5.42 (d, J = 1.1 Hz, 1H), 

5.25 – 5.20 (m, 1H), 3.73 (q, J = 5.8 Hz, 2H), 2.76 (td, J = 6.6, 1.2 

Hz, 2H). The analytical data for this compound were in excellent 

agreement with the reported data.26 
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6.3.4. Preparation of 3-(p-tolyl)but-3-en-1-ol (3d) 

Colourless oil (50 mg, 79% yield). 1H-NMR (400 MHz, CDCl3) δ 7.32 

(dt, J = 7.0, 2.1 Hz, 2H), 7.16 – 7.14 (m, 2H), 5.12 (q, J = 1.3 Hz, 

1H), 3.72 (t, J = 6.4 Hz, 2H), 2.78 (td, J = 6.4, 1.2 Hz, 2H), 2.35 (s, 

3H).The analytical data for this compound were in excellent 

agreement with the reported data.25 

 

6.3.5. Preparation of 3-(3-methoxyphenyl)but-3-en-1-ol (3e) 

Colourless oil (64 mg, 92% yield). 1H-NMR (400 MHz, CDCl3) δ 7.25 

(d, J = 7.7 Hz, 1H), 7.01 (ddd, J = 7.7, 1.7, 0.9 Hz, 1H), 6.95 (dd, J 

= 2.6, 1.7 Hz, 1H), 6.84 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 5.41 (d, J = 

1.4 Hz, 1H), 5.17 (q, J = 1.3 Hz, 1H), 3.76 – 3.70 (m, 2H), 2.78 (td, 

J = 6.4, 1.2 Hz, 2H).The analytical data for this compound were in 

excellent agreement with the reported data.24 

6.3.6. Preparation of (E)-3,4-diphenylbut-3-en-1-ol (3f) 

Colourless oil (75 mg, 86% yield). 1H-NMR (400 MHz, CDCl3) δ 7.50 

– 7.45 (m, 2H), 7.43 – 7.35 (m, 6H), 7.34 – 7.27 (m, 2H), 6.86 (s, 

1H), 3.76 – 3.67 (m, 2H), 3.04 (td, J = 6.8, 0.8 Hz, 2H). The 

analytical data for this compound were in excellent agreement with 

the reported data.27 

6.3.8. Preparation of 2-(3,4-dihydronaphthalen-1-yl)ethan-1-ol (3h) 

Colourless oil (57 mg, 84% yield). 1H-NMR (400 MHz, CDCl3) δ 7.27 

– 7.23 (m, 1H), 7.23 – 7.17 (m, 1H), 7.17 – 7.14 (m, 2H), 5.96 (td, J 

= 4.6, 2.2 Hz, 1H), 3.79 (t, J = 6.5 Hz, 2H), 2.79 – 2.72 (m, 4H), 2.29 

(dddd, J = 10.3, 5.8, 2.6, 1.3 Hz, 2H).The analytical data for this 

compound were in excellent agreement with the reported data.29 
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6.3.7. Preparation of 3-cyclohexylbut-3-en-1-ol (3f) 

Colourless oil (24 mg, 56% yield). 1H-NMR (400 MHz, CDCl3) δ 4.87 

(t, J = 1.3 Hz, 1H), 4.78 (q, J = 1.3 Hz, 1H), 3.71 (q, J = 6.1 Hz, 2H), 

2.34 – 2.29 (m, 2H), 1.89 – 1.81 (m, 1H), 1.81 – 1.72 (m, 4H), 1.71 

(d, J = 2.2 Hz, 1H), 1.42 (t, J = 5.8 Hz, 1H), 1.27 (d, J = 12.7 Hz, 

2H), 1.24 – 1.19 (m, 1H), 1.16 (d, J = 11.6 Hz, 2H). The analytical 

data for this compound were in excellent agreement with the 

reported data.28 

6.4. ASYMMETRIC HYDROGENATION OF THE HOMOALLYLIC ALCOHOLS TO THEIR 

REDUCED FORM  

 
 

Figure 21: Scheme for the asymmetric hydrogenation of 3a using Ir-MaxPHOX as the catalyst 

GP 3: Into a low-pressure reactor equipped with PTFE-coated stir-bar, the corresponding 

substrate (1.0 equiv.) and catalyst (0.05 equiv.) were charged and dissolved in anhydrous 

dichloromethane (0.1 M). Once sealed, the reactor was purged and charged with 1 bar of H2. The 

reaction was left stirring at room temperature overnight. The conversion was measured by 1H-

NMR spectroscopy and the enantiomeric excess using chiral HPLC chromatography. 

6.4.1. Preparation 3-phenylbutan-1-ol (5a) 

Colourless oil (full conversion). 1H-NMR (400 MHz, CDCl3) δ 7.33 – 

7.27 (m, 2H), 7.23 – 7.17 (m, 3H), 3.64 – 3.49 (m, 2H), 2.89 (h, J = 

7.1 Hz, 1H), 1.90 – 1.80 (m, 2H), 1.28 (d, J = 7.0 Hz, 3H). HPLC: 

Chiralcel ODH. Heptane / iPrOH 95:5, 0.5 mL/min, λ = 254 nm. t(R) = 

23.0 min, t(S) = 26.5 min.  The analytical data for this compound were 

in excellent agreement with the reported data.30 
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7. CONCLUSIONS 

The main aim of this work was to develop a new synthetic methodology for the formation of 

γ-chiral alcohols through a selective isomerization of 2,2’-disubstituted oxetane rings. This new 

approach has been developed by the formation of these oxetanes, its selective isomerization and 

the subsequent asymmetric hydrogenation. The whole procedure has been tested successfully 

for the commercially available acetophenone. 

A broad scope of 2,2’-disubstituted oxetanes has been synthetized through a double Corey-

Chaykovsky reaction and isomerized selectively to the homoallylic alcohol through a Lewis Acid 

catalysed process, using B(C6F5)3 as the catalyst.  

The substitution of the oxetane ring has proven to be a critical factor for the selectivity of this 

process, as the number of protons of the substituents that are susceptible to be eliminated is key 

to the formation of one unique product. Furthermore, as the aryl substituted oxetanes showed the 

best results, substitution in the aryl ring was also tested, showing that electron withdrawing groups 

in para- position and electron donating groups in meta- position increase the overall yield. 

Finally, the asymmetric hydrogenation has been carried out using Ir-MaxPHOX catalysts. The 

catalytic process shows excellent activity and good chiral induction, achieving 77% enantiomeric 

excess. 

This new approach presents many advantages in comparison with the current methodologies, 

as it involves less synthetic steps and achieves higher yields. Also, it is much more atom economy 

efficient and greener, as the olefination process is done in an isomerization step instead of the 

usual Horner- Wadsworth-Emmons reaction approach.  

Further exploration should be carried out to end the scope of substrates in the asymmetric 

hydrogenation step to be able to generalize this synthetic method.  
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12. ACRONYMS 

 

BArF   Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate 

COD   1,5-cyclooctadiene 

conv.  Conversion 

Cy   Cyclohexyl 

DCM   Dichloromethane 

DIBAL-H  Diisobutylaluminium hydride 

δ    Chemical Shift    

ee   Enantiomeric excess 

equiv.  Equivalents 

Et3N   Triethylamine 

EtOAc  Ethyl acetate 

GP   General Procedure 

h   Hours 

HPLC  High Pressure Liquid Chromatography 

HR-MS  High Resolution Mass Spectrum 

IR   Infra-Red 

iPr    Isopropyl 

IY   Isolated yield 

J   Coupling constant 

LG   Leaving Group 

M   Molar (mol/L) 

NMR    Nuclear Magnetic Resonance 

Ph    Phenyl 

ppm   Part per million 

PTFE   Polytetrafluoroethylene 

r.t.   Room temperature 

SN2   Binuclear Nucleophilic Substitution 

tBu   Tert-Butyl 

THF   Tetrahydrofuran
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APPENDIX 1: SELECTED 1H-NMR SPECTRA  

 
 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


