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Movement of skeletal-muscle fibers is generated by the coordinated action of several

cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann

cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could

impede or hinder coordinated muscle movement and cause a neuromuscular disease

(NMD) or determine its severity. Studying fragments of the circuit cannot provide a

comprehensive and complete view of the pathological process. We trace the historic

developments of studies focused on in-vitro modeling of the spinal-locomotion circuit

and how bioengineered innovative technologies show advantages for an accurate

mimicking of physiological conditions of spinal-locomotion circuit. New developments

on compartmentalized microfluidic culture systems (cµFCS), the use of human induced

pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address

limitations of current study models and three main challenges on neuromuscular

studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved

and the evaluation of independent and interdependent roles of each one; (ii) mimic

the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii)

develop, tune, implement, and combine cµFCS, hiPSC, and 3D-culture technologies

to ultimately create patient-specific complete, translational, and reliable NMD in-vitro

model. Overcoming these challenges would significantly facilitate understanding the

events taking place in NMDs and accelerate the process of finding new therapies.

Keywords: neuromuscular circuit, compartmentalized microfluidic culture systems (cµFCS), hiPSC, 3D-culture,

in-vitro models

INTRODUCTION

From the physiological and anatomical points of view, the mechanosensory-motor circuit is
complex, involving several cell-types with specific natural environments. Traditionally, it has been
studied coculturing different cell-types on the same platform from animal origin in 2D (Vilmont
et al., 2016; Charoensook et al., 2017; Happe et al., 2017) and 3D (Morimoto et al., 2013; Martin
et al., 2015; Smith et al., 2016), or from human origin (Guo et al., 2011; Demestre et al., 2015),
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or mixed species (Yoshida et al., 2015; Prpar Mihevc et al., 2017).
These models provide valuable information in understanding
some of the mechanisms underlying the system; but to
the date they have not been able to replicate the exact
human complexity of physiological functional-units formed by
the connection of different cell-types, arising from separated
microenvironments. Compartmentalized microfluidic culture
systems (cµFCS) (Bhatia and Ingber, 2014) represent an
alternative to overcome those problems and, combined with 3D-
culture techniques and the use of human induced pluripotent
stem cells, they could help recreating neuromuscular physiology
of humans in-vitro.

This review aims to: (i) provide basic insights about
the locomotion circuit and neuromuscular diseases required
for its in-vitro modeling; (ii) review the breakthrough of
bioengineered technologies for neuromuscular-systems; (iii)
discuss the limitations and challenges of current study models
and future prospects.

LOCOMOTION CIRCUIT AND
NEUROMUSCULAR DISEASES (NMDs)

Locomotion circuit, also known as mechanosensory-motor
circuit or reflex-arc circuit, is responsible for executing voluntary,
and reflex skeletal-muscle movement, alternating flexion, and
extension of the muscle (McCrea, 2001; Purves et al., 2004; Kiehn
and Dougherty, 2013). The coordinated-action of cells taking
part within is what generates movement: (i) motor-neurons
(MN) are in charge of carrying information from the central
nervous system to the muscle (Kandel et al., 2013); (ii) sensory-
neurons (SN) carry information from the periphery of the body
(the muscle in this case) to the central nervous system (Kandel
et al., 2013); (iii) interneurons innervate motoneurons and are
linked to their pattern of sensory input (Côté et al., 2018);
(iv) Schwann cells are small cells that form a myelin-sheath
around MN and SN axons that insulates them and enhances
signal conduction (Kandel et al., 2013); (v) astrocytes maintain
synapses, modulate the transmission of the signal, regulate blood
flow, and availability of oxygen, nutrients, and survival factors
onto neurons (Rindt et al., 2015); (vi) microglia are phagocytic
and immunocompetent cells within the central nervous system,
able to induce MN cell-death (Sargsyan et al., 2005; Frakes
et al., 2014); (vii) skeletal-muscle cells are multinucleated and
elongated cells, with sarcomeric striations that form muscle-
fibers distributed in fascicle fashion and are the last executors
of voluntary and reflex skeletal-muscle movement (Marieb, 2015;
Tortora and Derrickson, 2017).

The events that take part within the neuromuscular-circuit
to guide the movement in mammals could be resumed as
follows. Once the brain takes the decision of initiating a
movement, the signal is transmitted from neocortical projecting
neurons through the spinal-cord. Then the spinal-locomotion
circuit takes part of guiding the voluntary and reflex skeletal-
muscle movement (Purves et al., 2004; Kandel et al., 2013;
Tortora and Derrickson, 2017): (1) somatic α-motoneurons
(MNs) arising from the ventral-horns of spinal-cord, send

the input to the synaptic end-bulbs, triggering calcium flows
inwards, and the release of the neurotransmitter acetylcholine
(ACh) in the neuromuscular junction (NMJ) between the
motoneuron and the motor-end plate of extrafusal muscle-
fibers; (2) ACh binds specifically to the skeletal-muscle motor-
end plates’ ACh-receptors (AChR), inducing contraction of
sarcolemma, releasing calcium into the sarcoplasm, that binds to
troponin on the thin filaments, facilitating myosin-actin binding,
and triggering muscle contraction; (3) intrafusal muscle fibers,
located interspersed parallel to extrafusal fibers, change in length
as the whole muscle changes; (4) sensory-neurons (SN) sense
muscle fiber elongation through muscle-spindle—formed by
SN nerve endings wrapped around central areas of intrafusal
fibers—, and contraction through Golgi tendon organ—formed
by encapsulated structures of collagen fibers located at the joint
between muscle fibers and tendons that compress innervating
a single SN axon—propagating an impulse signal back to the
spinal-cord where is modulated by local interneurons and;
(5) γ-motoneurons modulate excitatory input adjusting the
contractibility of the muscle-spindle by stimulating intrafusal
fibers adapting them to an appropriate length; (6) the integration
of both afferent signals from the muscle-spindle and the Golgi
tendon organ travels through the spinal-cord to the brain to have
awareness of the position of the muscle and movement (muscle
extension-flexion state), coordinating movements.

Failures in any part of this circuit can hamper coordinated
muscle movement and be the cause of neuromuscular diseases
(NMDs) or be the consequence that defines their severity
(Gogliotti et al., 2012). The term of NMD comprises several
diseases with different origins and affectations (such as muscular
dystrophy, amyotrophic lateral sclerosis, myasthenia gravis, or
spinal muscular atrophy). The effects of NMDs are reflected in
the mechanosensory-motor circuit at different cellular levels—
including sensory and motor neurons (Jablonka et al., 2006;
Gogliotti et al., 2012), Schwann cells (Hunter et al., 2016; Vilmont
et al., 2016; Santosa et al., 2018), astrocytes (Rindt et al., 2015),
microglia (Frakes et al., 2014; Cooper-Knock et al., 2017), muscle
(Martínez-Hernández et al., 2014; Maimon et al., 2018)—, as well
as in the connections among them—NMJ (Uzel et al., 2016b;
Maimon et al., 2018; Santhanam et al., 2018), muscle spindle
(Rumsey et al., 2010; Guo et al., 2017)—, or intraspinal circuits.
However, they all share symptoms such as: peripheral hypotonia,
muscle weakness, and orthopedic deformities, among others
(Bhatt, 2016; Morrison, 2016; Mary et al., 2018). These symptoms
impoverishes patient’s life-quality (Mary et al., 2018). There is
still no treatment for them. Current study models are far from
mimicking physiology and therefore are limited on helping to
find cures. The technologies here reviewed (Figure 1) aim to help
on that direction.

MIMICKING IN-VITRO HUMAN
SPINAL-LOCOMOTION CIRCUIT WITH
hiPSCs IN 3D

NMD and NMJ in-vitro models have gone through a long
evolution history (Thomson et al., 2012): the use of primary
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FIGURE 1 | Future prospects on in-vitro neuromuscular disease modeling. The implementation and combination of later innovative technologies (hiPSCs, cµFCS, 3D

cell-culture) would facilitate the recreation of patient’s physiological conditions with his own disease-carrying cells mimicking the mechanosensory-motor circuit in 3D

inside a microfluidic compartmentalized device. And finally, it would serve to find specific treatments for each NMD.

cells, cell lines and stem cells; animal-animal cocultures, human-
human cocultures, xeno-cocultures; and disease-specific studies.
But as reported, most of the research has been done until now
by coculturing healthy and diseased cells; primary cells or cell
lines with stem cells; and mostly on rodent models or xeno-
cultures (human-animal models). However, rodent models offer
limited benefit translated into clinic as they do not carry human
genetic background. Therefore, personalized medicine needs
patient-specific isogenic disease models. In this regard, human
induced pluripotent stem cells (hiPSCs) offer the possibility of
obtaining different isogenic cell-types from patient’s somatic
cells, by overexpressing some transcription factors (Takahashi
and Yamanaka, 2006), later reviewed (Amabile and Meissner,
2009). They can serve both for creating study models that mimic
the physiopathology of the patient, with the further development
of future therapeutic transplantation strategies (Su et al., 2013).

The use of induced pluripotent stem cells for disease-
modeling, drug-screening, and regenerative therapies of NMDs
has widely evolved in the last years (Selvaraj and Perlingeiro,
2018). Nevertheless, few studies have cultured hiPSC-derived
motoneurons with hiPSC-derived skeletal-muscle cells in-vitro
(Demestre et al., 2015; Puttonen et al., 2015; Maffioletti et al.,
2018; Osaki et al., 2018). Puttonen et al. (2015) reported a

method for the simultaneous differentiation of motoneurons
and myotubes from patient-specific hiPSCs, obtaining neuronal
differentiation, multinucleated spontaneously contracting
myotubes, and functional NMJs on a 2D monolayer. In contrast,
Demestre et al. used hiPSCs from healthy donors differentiated
separately to motoneurons and myotubes, and subsequently
cocultured in 2D. They observed AChR formation in the muscle
and neurites outgrowing from motoneurons within the first
weeks; but AChR aggregation, maturation of muscle cells, and
NMJ formation was not detected until 3 weeks of monolayer
cocultures (Demestre et al., 2015).

The advantages and disadvantages between 2D and 3D hiPSC
cultures for neurodegenerative disease studies were recently
reviewed (Centeno et al., 2018). Briefly, the main outstanding
contributions of 3D cultures on NMDs are that: (i) it has
been proved that 2D monolayers present in some cases altered
gene expression whereas 3D cultures display a genotype more
relevant to in-vivo (Smith et al., 2012; Centeno et al., 2018);
(ii) cells cultured in 3D acquire more in-vivo like phenotype
(lower proliferation rate, areas with different levels of oxygen
distribution, higher cell-to-cell, and cell-extracellular matrix
interactions, increased viability, proliferation, differentiation,
and response to stimuli of other cells) (LaPlaca et al., 2010;
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Antoni et al., 2015; Centeno et al., 2018); (iii) some higher-order
processes, such as angiogenesis, occur inherently in 3D (Baker
and Chen, 2012; Centeno et al., 2018). But so far, only two studies
have been able to mimic the NMJ in 3D using hiPSC-derived
motoneurons and skeletal-muscle cells in-vitro (Maffioletti et al.,
2018; Osaki et al., 2018). Maffioletti et al. (2018) used somatic
cells from muscular dystrophy patients to create hiPSC-derived
isogenic multilineages (skeletal-muscle cells, vascular endothelial
cells, pericytes, and motoneurons), subsequently cocultured
embedded in fibrin hydrogels. Osaki et al. (2018) created
an ALS microphysiological 3D model culturing ALS-hiPSC-
derived neural stem cells with hiPSC-derived skeletal-myoblasts
embedded in collagen-Matrigel composites.

However, there are still no studies utilizing hiPSC-derived
sensory-neurons and hiPSC-derived muscle-cells to mimic the
sensory pathway of the spinal reflex-arc circuit. The latest
advances on this respect were published by the group of J.J.
Hickman using sensory-neurons derived from human neural
progenitor cells and intrafusal fibers generated from human
skeletal-muscle stem cells, cocultured on a 2D monolayer (Guo
et al., 2017).

COMPARTMENTALIZED MICROFLUIDIC
CULTURE SYSTEMS (CµFCS) FOR
SPINAL-LOCOMOTION CIRCUIT IN-VITRO

Traditional coculture methods do not consider: (i) the different
microenvironment requirements of muscle, nerves, and neurons;
(ii) the distal connections as they are physically separated in-vivo.
Furthermore, finding a medium composition compatible for the
long-term coculture of both cell-types could be challenging, as
several medium components ideal for MN are incompatible with
long-term maintenance of skeletal-muscle cells (Thomson et al.,
2012; Tong et al., 2014). Hence, a coculture system between
neurons and muscle offers limited benefits on mimicking the
pathophysiology of NMDs.

The use of compartmentalized microfluidic culture systems
(cµFCS) is increasingly growing for neurobiology studies due to
the advantages offered compared to classical coculture systems,
reviewed in Box 1.

Most relevantly, they enable independent culture conditions
for neurons and muscle cells, each supplied by its own
microenvironment requirements in different interconnected but
fluidically isolated compartments, whilst axons can still go
through microgroves connecting cells of both compartments.

First compartmentalized microfluidic culture system (cµFCS)
for neurobiology studies on neurotrophic effects of dorsal
rood ganglion cells (Campenot, 1977) used Teflon-made
open compartments, silicone-glue, and microchannels shattered
in glass. Since then, and after soft-lithography fabrication
improvements, cµFCS have widely evolved in the last 10 years
for spinal-locomotion circuit studies (Supplementary Table 1).
Most compartmentalized cocultures are nowadays performed
onto polydimethylsiloxane (PDMS)-based platforms with two
cellular compartments separated through microchannels or, as
described in the only two publications found using a 3D cell

coculture, through a gel region (Uzel et al., 2016b; Osaki et al.,
2018). Different cell sources are used for MN (predominantly
mouse embryonic primary cells) and muscle-cells (using equally
rodent hind limb primary skeletal-muscle cells and C2C12 cell-
line).

Besides, there are progressively more commercial cµFCS
on the market (Zhang and Radisic, 2017), available for
neuromuscular and other neurobiology studies in 2D or
3D, connecting two compartments through microchannels,
microposts, or membranes, from the following companies: (i)
Xona neuron devices (Xona Microfluidics, California), used in
some neuromuscular studies (Southam et al., 2013; Blizzard
et al., 2015); (ii) ANANDA Neuro-Device and Coculture-
Device (Advanced Nano Design Applications Devices, Canada)
employed by Magdesian et al. (2016) combined with AFM
measurements to study neuronal growth; (iii) OrganoPlates for
3D culture (Mimetas BV, Netherlands) used to differentiate
stem cells into neurons in 3D (Moreno et al., 2015) or for
high-throughput evaluation of compounds in glia and neuronal
3D culture (Wevers et al., 2016); (iv) AIM 3D culture chips
(AimBiotech, Singapore), employed mostly in cancer-research
(Jenkins et al., 2018), although with a great potential to be
used in neuromuscular studies, as performed by Uzel et al.
(2016b) with a similar custom made device; (v) Neural Diode
(MicroBrain Biotech, France) to reconstruct oriented neural
network monolayer cultures (Peyrin et al., 2011; Deleglise
et al., 2014); (vi) Idealized coculture chips (Synvivo, USA), with
different options of radial slits or pillars utilized in many cases to
mimic the BBB (Prabhakarpandian et al., 2013), or linear slits for
compartmentalization purposes.

However, and despite the advantages offered by both hiPSC
and cµFCS technologies, at the moment only two studies have
attempted to mimic the spinal-locomotion circuit combining
both technologies (Osaki et al., 2018; Santhanam et al., 2018).
Santhanam et al. (2018) seed healthy donor’s hiPSC-derived MN
and human skeletal-muscle fibers in 2D, for dose-evaluation
study of toxins affecting the NMJ. Osaki et al. create an ALS
microphysiological 3D in-vitro study-model and compare it with
a healthy model (muscle contraction, recovery, and response to
drugs administered via endothelial cell barrier).

LIMITATIONS OF CURRENT STUDY
MODELS AND MAIN CHALLENGES

Combination of hiPSCs, cµFCS, and
3D-Culture Technologies
Uzel et al. (2016b) combine cµFCS with 3D cell-culture
techniques for neuromuscular studies. Additionally, Santhanam
et al. (2018) have attempted to mimic the spinal-locomotion
circuit combining hiPSCs and cµFCS technologies. And
Maffioletti et al. (2018) perform 3D culture of hiPSCs for NMD
studies. But thus far, there is one single study combining 3D
culture, hiPSCs and cµFCS as NMD models (Osaki et al., 2018).
The three innovative technologies offer advantages (Figure 1),
but the novelty itself comes with the challenge of developing,
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Box 1 | Top 10 advantages of compartmentalized micro�uidic culture systems (cµFCS) compared to traditional coculture systems for mimicking spinal-

locomotion circuit in-vitro.

1. Fluidic control. Compartmentalization enables to control de fluidic environment and provide each cell-type required nutrients to efficiently mature, facilitating

survival, functionality, and long-term coculture (Park et al., 2006; Tong et al., 2014).

2. Experiment feasibility. Ease to study, enhance, control, and monitor some processes (cell proliferation, differentiation, directional growth, migration, and media

diffusion from one compartment to the other) (Kamm and Bashir, 2014; Esch et al., 2015).

3. Microenvironment spatiotemporal control and monitoring. Independent manipulation of each compartment cells or extracellular matrix hydrogels could be

a critical point to assess some processes. Compartmentalized platforms make possible to dissect molecular and cellular events occurring in somal vs. axonal

compartments (effect of compounds, drug-sensitivitiy test, etc.) (Yang et al., 2009; Hur et al., 2011; Zahavi et al., 2015); to track individual axons through

microchannels (Hosmane et al., 2011); and to assess axon-specific molecules through immunostaining, protein lisate isolation, and mRNA isolation (Saal et al.,

2014; Zahavi et al., 2015).

4. Customisability of cµFCS designs. Control over microchannel geometry and dimensions (and therefore sifting of cells or compounds that can pass from one

compartment to the other), number of compartments (and therefore number or different microenvironments, if required), compartment division tool (micochannels,

microgrooves, membranes), distance between compartments, possibility to include reservoirs, covered, or opened compartments, scalability, and device size

(Park et al., 2009; Yang et al., 2009; Hosmane et al., 2010; Uzel et al., 2016b).

5. Customisable engineering features. Possibility to integrate and take control over parameters: shear-stress flows (Joanne Wang et al., 2008; Shin, 2009);

mechanical (Hosmane et al., 2011), optical (Renault et al., 2015; Jang et al., 2016), and electrical stimuli (Hallfors et al., 2013); topographical cues or micropatterns

(Hoffman-Kim et al., 2010); chemical gradients (Uzel et al., 2016a); and sensory systems (Shen et al., 2004; Jeong et al., 2018).

6. Cost-effectiveness. Low volume of cells and reagents are required (Millet et al., 2007).

7. Control over the polarity of neural development. Culturing somas on one compartment makes possible to take control over axon and dendrite polarity during

the development, and hence, to mimic axon injuries and study post-injury regeneration easily (Peyrin et al., 2011; Tong et al., 2015; Renault et al., 2016).

8. Possibility to mimic neural distal connections. Neurons growing on one compartment can extend their axons to interact with the other compartment cells,

mimicking distal connections (Yang et al., 2009; Zahavi et al., 2015; Maimon et al., 2018).

9. Possibility to integrate control over the polarity of myocyte differentiation. Skeletal-muscle cells usually adopt randomized distribution in-vitro, whereas

the presence of aligned micropatterns for 2D culture, cantilevers for 3D culture, or some stimuli methods (mechanical, electrical, or optical) integrated on the

cµFCS can enhance its appropriate differentiation and functionality (Tourovskaia et al., 2008; Hume et al., 2012; Uzel et al., 2014, 2016b).

10. Better mimicking of physiological conditions and possibility to connect with other microfluidic platforms. This facilitates the study interactions

between different physiological functional-units (Maschmeyer et al., 2015), as well as to integrate blood-flow effects (Maoz et al., 2018), or in a future, to mimic

a full human-on-a-chip (Williamson et al., 2013; Kamm and Bashir, 2014), enhancing the development of therapies or diagnostic tools (Esch et al., 2014, 2015;

Kamm and Bashir, 2014).

tuning, and implementing them together in a unique and
biologically reproducible functional platform.

Consideration of Main Actors and Roles
From the Spinal-Locomotion Circuit
The co-culture of main cell-types participating in the
spinal-locomotion circuit is mandatory to provide a native
microenvironment, including the inherent release of growth-
factors, as well as to support the viability and maturation of
both muscle and neurons, and axon elongation of MNs (Gingras
et al., 2008). For instance, spinal MNs cannot achieve proper
maturation even after long-term maintenance, unless cultured
with muscle-cells, and Schwann cells, as previously reviewed
(Bucchia et al., 2018).

Besides, both SN andMN could be altered in particular NMDs
(Jablonka et al., 2006; Rumsey et al., 2010; Guo et al., 2017), but
not being many available studies focused on the muscle spindle
(Taylor et al., 2005; Dagberg and Alstermark, 2006; Rumsey
et al., 2010; Bewick and Banks, 2015; Matthews, 2015; Guo et al.,
2017) challenges the task of mimicking and characterizing the
mechanosensory spinal-locomotion circuit. Additionally, glial
cells are also affected and involved in several neuromuscular
pathologies (Lobsiger and Cleveland, 2007; Vilmont et al., 2016;
Bucchia et al., 2018). Yet, most publications do not consider
them.

Most in-vitro NMD studies are focused on the α-MN-muscle
connection (Supplementary Table 1), very few on the γ-MN-
muscle connection (Colón et al., 2017), and some on the SN-
muscle connection (Taylor et al., 2005; Dagberg and Alstermark,
2006; Rumsey et al., 2010; Bewick and Banks, 2015; Matthews,
2015; Guo et al., 2017; Levin et al., 2017) and fewer on the internal
SN-MN connection (Schwab and Ebert, 2014). But there is still
very little known about what happens beyond those connections,
to what extent cell-strategies for synaptic-specificity contribute
on the formation of a functional connection (Fukuhara et al.,
2013; Maimon et al., 2018).

Studying parts of the circuit cannot provide a comprehensive
and complete view of the pathological process, and functional
alterations occurring within it. The big challenge that remains
out there on NMD studies is the modeling of the whole spinal-
locomotion circuit with all cell-types involved, and the evaluation
of independent and interdependent roles of each part of the
circuit on the development of a particular NMD.

Modeling Neurodegeneration in NMDs
In a broad sense, neurodegeneration is a process characterized
by the progressive functional loss of a population of neurons
by intrinsic cell-death or the loss of support cells (i.e.,
oligodendrocytes or astrocytes). Most NMDs are characterized
by this devastating phenomenon (i.e., motoneuron diseases:
amyotrophic lateral sclerosis, or spinal muscular atrophy, etc.).
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Indeed, studying only functional changes in MNs cannot
give a comprehensive and complete picture of the process
as it is also regulated by non-neuronal cells (Lobsiger and
Cleveland, 2007; Bucchia et al., 2018; Maimon et al., 2018). For
instance, a recent study performed by Maimon et al. (2018)
demonstrated that axon degeneration only occurred with both
MN and muscle cells carrying the genetic mutation indicative of
the disorder. Furthermore, the morphology of spinal MN axons
in-vitro differs from the one presented in-vivo: contrary to in-
vivo, axonal terminals in-vitro manifest growth-cones, and are
prone to regenerate and lengthen in response to neurotrophic
factors required for the in-vitro maintenance of the culture
(Bucchia et al., 2018). On top of that, another caveat is the fact
that extrapolating effects of short-term studies to longer-term
disease processes is often not correlated. Therefore, mimicking
neurodegeneration response in-vitro as it occurs in-vivo endures
to this day as a challenge. And consequently, there is no
effective treatment for neurodegenerative NMDs to promote
axonal regeneration yet.

CONCLUSIONS AND FUTURE
PROSPECTS

Finding causes and treatment for NMD requires an accurate
modeling of the microphysiological conditions that the patient
is suffering. But reproducing the complete spinal-locomotion
(reflex-arc) circuit in-vitro is very complex. Later progresses in
neuromuscular-mimicking in-vitro systems, have been achieved
incorporating increasingly evolving technologies of hiPSCs,
cµFCS, and 3D cell-culture techniques here reviewed. The
combination of novel technologies in the proper manner has
proved to result in the acquisition of more reliable results (Uzel
et al., 2016b; Maffioletti et al., 2018; Osaki et al., 2018; Santhanam
et al., 2018). But there is still room for improvement. Future
studies should focus on addressing unsolved questions related
to: mimicking the whole spinal-locomotion circuit (including all
cell-types involved, as well as evaluating the independent and
interdependent roles of each one), defining the specific role of the
factors that determine the NMD and their severity; mimicking

neurodegeneration processes; and above all, finding treatments
for NMD.
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