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Abstract 15 

Sexual development is integral to the transmission of Plasmodium parasites between 16 

vertebrates and mosquitos. Recent years have seen great advances in understanding the gene 17 

expression that underlies commitment of asexual parasites to differentiate into sexual 18 

gametocyte stages, then how they mature and form gametes once inside a mosquito. Less 19 

well understood is how parasites differentially control development to become males or 20 

females. Plasmodium parasites are haploid at the time of sexual differentiation, but a clonal 21 

haploid line can produce both male and female gametocytes, so they presumably lack the sex-22 

determining alleles present in some other eukaryotes. Though the molecular switch to initiate 23 

male or female development remains hidden, recent studies reveal regulatory proteins needed 24 

for the sex-specific maturation of male and female gametocytes. In this issue, Yuda and 25 

collaborators report the characterization of a transcription factor necessary for female 26 

gametocyte maturation. With renewed attention on malaria elimination, sex has been an 27 

increasing focus as transmission-blocking strategies are likely to be an important component 28 

of elimination efforts. 29 

  30 

Introduction 31 

To transmit from vertebrate to mosquito hosts, Plasmodium parasites must form sexually-32 

differentiated gametocytes that can be ingested in a mosquito blood meal. Inside the 33 

mosquito midgut, these haploid gametocytes quickly transform into male and female 34 

gametes, which must fuse to form diploid zygotes in order to continue the life cycle. Parasites 35 

within a vertebrate must strike a balance between forming replicating asexual stage parasites 36 

that maintain an infection and producing enough non-proliferative gametocyte to ensure 37 

transmission (Schneider et al., 2018). The rate of commitment to gametocyte forms compared 38 

to asexual linages varies between parasite lines and between environmental conditions, 39 

suggesting that an interplay between host and pathogen factors influences gametocyte 40 

commitment (Josling et al., 2018).  41 

 42 

A transcription factor of the ApiAP2 family termed PfAP2-G is the conserved master 43 

regulator of sexual conversion in all Plasmodium species (Kafsack et al., 2014, Sinha et al., 44 

2014, Zhang et al., 2017). The current model stands that in asexual parasites, the ap2-g gene 45 

is silenced by epigenetic mechanisms that involve heterochromatin at this locus. Activation 46 

of the gene, which in P. falciparum requires displacement of the heterochromatin protein 1 47 

(HP1) in a process that depends on the gametocyte development 1 protein (GDV1) (Filarsky 48 
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et al., 2018) ,  results in sexual commitment. Several downstream regulators, including the 49 

transcriptional repressor AP2-G2 (Sinha et al., 2014, Yuda et al., 2015), contribute to the 50 

following steps of sexual differentiation. In addition to the “choice” between asexual and 51 

gametocyte lineages, there is another other step where alternative developmental options are 52 

possible for the parasite: to become either male or female gametocyte. As with the basic 53 

commitment to sexual stages, the differential production and survival of males and females 54 

relies on parasite and host factors (Tadesse et al., 2019). However, why, how, and when 55 

parasites become male or female is incompletely understood.  56 

 57 

Working with the murine malaria parasite P. berghei, Yuda and colleagues shed some light to 58 

the mechanism of female gametocyte development with the description of an ApiAP2 59 

transcription factor previously named AP2-G3 and here referred to as AP2-FG (FG stands for 60 

female gametocyte)  (Yuda et al., 2019). They show that this transcription factor is expressed 61 

specifically in female gametocytes. Disruption of the gene results in arrested maturation of 62 

female gametocytes at an early stage of development, which makes them non-viable for 63 

productive mosquito infection. In contrast, the development of male gametocytes is not 64 

affected by absence of this protein. However, early female gametocytes are observed in 65 

parasite lines lacking AP2-FG, indicating that other factors operating upstream determine the 66 

male or female sex. These data suggests that AP2-FG plays a specific role in driving the 67 

expression of genes necessary for female gametocyte maturation. In support of this view, 68 

disruption of AP2-FG results in reduced expression of a number of female-transcribed genes 69 

(Yeoh et al., 2017), and Chip-Seq analyses show that this protein binds preferentially to the 70 

regulatory region of genes involved in various processes in female gametocyte biology. 71 

Binding appears to occur via a newly identified 10 bp motif (Yuda et al., 2019). Altogether, 72 

Yuda et al. provide compelling evidence for the first clear identification of a transcription 73 

factor that regulates sex-specific expression. 74 

 75 

Differences between species 76 

Intriguingly, a previous study in P. berghei was unable to generate a knockout of AP2-FG in 77 

asexual stages, suggesting a potential role in this phase (Modrzynska et al., 2017), whereas 78 

disruption of the orthologous gene in P. yoelii (where it was named AP2-G3) produced a 79 

more profound reduction in male than in female gametocytes (Zhang et al., 2017). In P. 80 

yoelii, AP2-FG/AP2-G3 was proposed to play a role in gametocyte development upstream of 81 

AP2-G. The data regarding the stage-specificity of the expression of this gene are also 82 
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conflicting. Previous transcriptomic studies didn’t detect an enrichment in P. falciparum 83 

gametocytes or asexual parasites commited to gametocytogenesis  (Le Roch et al., 2003, 84 

Pelle et al., 2015, Lopez-Barragan et al., 2011), or reported only a mild increase in transcript 85 

abundance in females compared to males (Lasonder et al., 2016). Likewise, RNAseq 86 

experiments in P. berghei also show no enrichment of AP2-FG/AP2-G3 in gametocytes (Otto 87 

et al., 2014) , and transcript abundance is higher in males rather than in females (Yeoh et al., 88 

2017).  89 

 90 

There are several possible explanations for the apparent discrepancies. First, transcript levels 91 

of this transcription factor may increase in the female lineage only for a very short time as an 92 

intermediate step in a cascade of transcription factors. Transcriptional analysis of bulk 93 

purified male or female gametocytes includes mRNA from a wide temporal window, so 94 

might miss transient expression early in the female lineage. Second, post-transcriptional 95 

control mechanisms are known to play a major role during sexual development (Mair et al., 96 

2006, Shrestha et al., 2016, Miao et al., 2010). Differential post-transcriptional regulation of 97 

AP2-FG between parasites at different stages or of different sex may explain the discrepancy 98 

between the female-specific expression of AP2-FG-GFP fusion proteins reported by Yuda et 99 

al. and the more promiscuous expression of ap2-fg transcripts described by others. Last, 100 

while the regulation of some steps of sexual development appears to be conserved among 101 

malaria species (e.g. commitment mediated by activation of the master regulator ap2-g), 102 

other steps may rely on different regulators in different Plasmodium species. For example, 103 

the above-mentioned GDV1 is present in human-infecting Plasmodium species but absent in 104 

many other species. In this regard, it is important to mention that gametocyte maturation 105 

differs dramatically between species in its duration and in the morphological changes that 106 

ensue (Ngotho et al., 2019). Caution in extrapolating the function of ApiAP2 proteins from 107 

one species to another is warranted. 108 

 109 

How and when do parasites undergo sex determination? 110 

Until recently, the prevailing model was that once a parasite commits to sexual development, 111 

it must go through an additional round of replication before starting to differentiate, such that 112 

all merozoites arising from the same schizont produce only asexual forms or only 113 

gametocytes (Bruce et al., 1990). However, recent research in P. berghei and P. falciparum 114 

has shown that parasites can also commit to sexual development and start differentiating into 115 

sexual forms within the same cycle (Kent et al., 2018, Bancells et al., 2019) . It is generally 116 
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accepted that the commitment to become a male or female is tightly linked with the overall 117 

commitment to become a gametocyte, or occurs soon thereafter. Evidence for this model is 118 

based on plaque assays, where schizonts are allowed to develop in a monolayer of 119 

immobilized erythrocytes. In such assays, plaques of parasites arising from the same schizont 120 

generally contain only male gametocytes or only female gametocytes, rather than a mixture 121 

of both (Smith et al., 2000, Silvestrini et al., 2000).  122 

 123 

Nonetheless, several non-mutually exclusive routes to sexual differentiation are possible. In 124 

scenario 1 (Figure 1), parasites receive a transcriptional signal mediated by AP2-G 125 

production, that drives them to differentiate into gametocytes (Sinha et al., 2014, Kafsack et 126 

al., 2014). These parasites simultaneously commit to becoming either male or female, driven 127 

by as-yet-undiscovered male- or female-specific transcription factors. Parasites undergo an 128 

additional round of replication, but offspring of the committed progenitor will be all male 129 

sexual gametocytes, or all female sexual gametocytes, and not a mixture of both. Under 130 

scenario 2, ring stage parasites receive a transcriptional signal driven by AP2G to 131 

differentiate into gametocytes without undergoing a further proliferative cycle, and 132 

simultaneously commit to becoming either male or female, driven by sex-specific 133 

transcription factors. Under scenario 3, parasites first receive a transcriptional signal to 134 

differentiate into gametocytes, with or without and additional round of multiplication, but 135 

only later during sexual development commit to becoming either male or female. This 136 

scenario would predict that parasites arising from the same schizont could form a mixture of 137 

male and female gametocytes, which has not been observed so far in plaque assays. 138 

Additional scenarios may involve a “default sex” that will develop and mature in the absence 139 

of diversion to the other sex, as in some other sexual organisms. It is also formally possible 140 

that no transcription factors are involved and sexual dimorphism is regulated only at other 141 

levels (e.g. post-transcriptionally). 142 

 143 

Initiation versus maturation of sexual forms 144 

Whatever the route to male-female differentiation, the observation that parasites that lack 145 

AP2-FG still initiate female commitment and start expressing female-specific markers (Yuda 146 

et al., 2019) indicates that AP2-FG is not itself the switch that determines female sex, but 147 

rather part of a regulatory cascade that is initiated by other factors that precede AP2-FG. So 148 

far, AP2-G is the only known ApiAP2 transcriptional regulator that operates as a 149 

developmental switch, whereas other members of the ApiAP2 family, including AP2-FG, 150 
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regulate the expression of specific genes as part of a regulatory cascade.  151 

 152 

AP2-FG is unique in that in P. berghei it plays a highly specific role in female gametocytes, 153 

but several other factors also show some level of sex-specificity in their function (Figure 1): 154 

disruption of the transcriptional repressor AP2-G2  is more detrimental to males than females 155 

(Sinha et al., 2014), and the disruption of the translational repressors Puf1 and Puf2 156 

preferentially inhibits the development of female gametocytes (Shrestha et al., 2016, Miao et 157 

al., 2010). The mitogen-activated protein kinases MAPK1 and MAPK2 are additional 158 

candidate regulators of female and male-specific maturation, respectively (Walzer et al., 159 

2018). Another translational repressor, CCR4-1, is required for normal development of male 160 

gametes in P. yoelii (Hart et al., 2019). As well as these post-transcriptional actors, a large 161 

number of uncharacterised ApiAP2 transcription factors have been identified as being 162 

differentially expressed between males and females (Yeoh et al., 2017), and timecourses of 163 

gametocyte development (Kent et al., 2018) provide temporal data on their order of 164 

expression. These ApiAP2s are prime candidates for maturation factors for each sex, as well 165 

as potential master-switches for male or female commitment.  166 

 167 

Concluding remarks   168 

In recent years there has been impressive progress in our understanding of the regulation of 169 

life cycle progression in malaria parasites. In all cases studied so far, developmental 170 

transitions involve ApiAP2 DNA binding proteins (Jeninga et al., 2019). The work from 171 

Yuda et al. provides the first identification of a female-specific transcription factor. Notably, 172 

the characterization of the ApiAP2s that regulate specific transitions has revealed a level of 173 

complexity that rules out a simple model in which a linear cascade of transcription factors 174 

operates with each ApiAP2 regulating non-overlapping sets of genes. Instead, a more 175 

intricate model is emerging in which cooperative interactions or competition between 176 

ApiAP2s dominate, and some factors have functions at multiple stages. This enables the 177 

regulation of a complex life cycle with fewer than 30 ApiAP2 transcription factors, in concert 178 

with epigenetic  factors (van Noort & Huynen, 2006, Josling et al., 2019, Jeninga et al., 179 

2019). The data from Yuda et al. supports this view, as the majority of AP2-FG targets (as 180 

determined by ChIP-seq) are still expressed in the KO parasite lines, albeit at lower levels. 181 

This suggests that other transcription factors and epigenetic regulators contribute to the 182 

expression of these genes. Future studies are expected to unravel the full complexity of the 183 

ApiAP2 regulatory network in malaria parasites.  184 
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Figure legend 185 

Fig. 1. Hypothetical routes to sexual differentiation. Under scenarios 1 and 2, sexual 186 

differentiation is determined by male- and female-specific transcription factors (depicted here 187 

as the hypothetical AP2-Male and AP2-Female), activated concomitantly with PfAP2-G, 188 

with (scenario 1) or without (scenario 2) an additional cycle of replication after commitment 189 

(marked by PfAP2-G expression). Under scenario 3, parasites start developing as sexual 190 

forms and only later initiate dimorphic sexual differentiation once sex-specific factors are 191 

activated. Factors involved in male or female development, including AP2-FG, are indicated. 192 

Font size reflects the relative importance for male and female development. 193 

 194 

 195 

 196 

 197 

 198 
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