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Abstract: A distillation device that acquires continuous and synchronized measurements of 14 

temperature, percentage of distilled fraction and NIR spectra has been designed for real-time 15 

monitoring of distillation processes. As a process model, synthetic commercial gasoline 16 

batches produced in Brazil, which contain mixtures of pure gasoline blended with ethanol 17 

have been analyzed. The information provided by this device, i.e., distillation curves and NIR 18 

spectra, has served as initial information for the proposal of new strategies of process 19 

modeling and multivariate statistical process control (MSPC). Process modeling based on 20 

PCA batch analysis provided global distillation trajectories, whereas multiset MCR-ALS 21 

analysis is proposed to obtain a component-wise characterization of the distillation evolution 22 

and distilled fractions. Distillation curves, NIR spectra or compressed NIR information under 23 

the form of PCA scores and MCR-ALS concentration profiles were tested as the seed 24 

information to build MSPC models. New on-line PCA-based MSPC approaches, some 25 

inspired on local rank exploratory methods for process analysis, are proposed and work as 26 

follows: a)MSPC based on individual process observation models, where multiple local PCA 27 

models are built considering the sole information  in each observation point; b) Fixed Size 28 

Moving Window – MSPC, in which local PCA models are built considering a moving 29 

window of the current and few past observation points; and c) Evolving MSPC, where local 30 

PCA models are built with an increasing window of observations covering all points since the 31 
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beginning of the process until the current observation. Performance of different approaches 32 

has been assessed in terms of sensitivity to fault detection and number of false alarms. The 33 

outcome of this work will be of general use to define strategies for on-line process monitoring 34 

and control and, in a more specific way, to improve quality control of petroleum derived fuels 35 

and other substances submitted to automatic distillation processes monitored by NIRS. 36 

Keywords: Near-infrared spectroscopy; on-line multivariate statistical process control 37 

- MSPC; process modeling; distillation process; petroleum. 38 

  39 
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1. Introduction 40 

Distillation curves are frequently used for quality control of petroleum products. The 41 

evolution and shape of these curves is directly related to the composition and chemical 42 

characteristics of these products and, hence, a temperature deviation from normal distillation 43 

behavior may be an indicator of adulteration. ASTM D86 [1] is the standard test method 44 

required to obtain distillation curves and classical process control is made by comparing the 45 

temperature at specific distillation points with standard specification limits. 46 

However, distillation curves, based only on boiling temperature monitoring, are not 47 

conclusive to identify adulterations in product composition. Adulterants can nowadays be 48 

chosen so that the modified petroleum products show normal distillation curve behavior. 49 

Near-infrared spectroscopy (NIRS) may help to overcome such scenario because of the rich 50 

physicochemical information associated with this spectroscopic technique and the existence 51 

of many NIR sensors designed for on-line process monitoring. Along this line, distillation 52 

devices that incorporate NIR sensors and collect synchronized distillation temperatures and 53 

related NIR absorption spectra measurements, as proposed by Pasquini and Scafi, are a 54 

suitable solution [2]. Thus, the fiber optic probes coupled to NIR spectrometers can be located 55 

directly in the distillation process stream, allowing continuous real-time in-process 56 

measurements [2–4]. Therefore, information representing both physical and chemical 57 

properties of the distilled sample can be derived from each distillation batch. 58 

In Brazil, commercial gasoline is blended with ethanol. Thus, gasoline derived 59 

directly from refineries without ethanol addition is denominated “type A”. Gasoline “type C” 60 

is the commercial mixture of gasoline “type A” and (27 ± 1)% of ethanol (% v/v) [5]. As a 61 

process model for this work, a study of quality control of Brazilian gasolines regarding 62 

ethanol content specification is proposed. To do the experimental process monitoring, an 63 

improved version of the automatic distillation device monitored by NIRS proposed by 64 

Pasquini and Scafi [2], which allows continuous and synchronized data acquisition and 65 

storage of distillation temperatures, distilled mass and related NIR spectra, is proposed. 66 

Detailed description of the experimental setup is found in section 2 below. 67 

The distillation curves and NIR spectra collected from distillation batch processes can 68 

be modelled with principal component analysis (PCA) [6] and multivariate curve resolution – 69 

alternating least squares (MCR-ALS) [7] for better process understanding and use of this 70 

information in further process control. PCA batch analysis provides global distillation 71 
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trajectories, whereas MCR-ALS offers the additional value of describing the temperature-72 

dependent evolution and characterization of the different distilled fractions during the process. 73 

MSPC has being used to control processes related to very diverse fields, such as 74 

pharmacy [8–11], petrochemistry [12–14] and biotechnology [15,16]. Batch MSPC using 75 

NIRS has been described in recent works [3,4,8–11,16,17]; however, no MSPC using NIRS 76 

to monitor batch distillation process has been reported in the literature. 77 

In this study, different off-line process control models are studied using complete 78 

batch information collected during the distillation process monitored by NIRS. Distillation 79 

curves, original NIR spectra, as well as the compressed spectral information contained in 80 

PCA scores or MCR-ALS concentration profiles are used to build off-line PCA-based 81 

multivariate statistical process control (MSPC) models. To our knowledge, there is no report 82 

in the literature about using the concentration profiles from MCR-ALS analysis as starting 83 

information to build PCA-based MSPC models. In this framework, the description of the 84 

separate components of the process provided by MCR-ALS would allow for using all 85 

concentration profiles on the MSPC model or profiles of selected compounds that could be 86 

envisioned as more specific indicators of process evolution. 87 

NIR measurements obtained from distillation processes are also used to build on-line 88 

batch MSPC models. On-line batch MSPC approaches commonly used are based on the 89 

methods proposed by Nomikos and MacGregor [18–20] and Wold et. al. [21]. Other 90 

approaches are proposed by Rännar et. al. for adaptive batch monitoring using hierarchical 91 

PCA [22], by Zhao et. al using multiple PCA models for local model building at each 92 

observation point [23] and using moving window [24]. In this work, chemometric tools 93 

typically used to perform local exploratory analysis of the evolution of processes, such as 94 

evolving factor analysis (EFA) or fixed size moving window - EFA (FSMW-EFA) [25,26], 95 

have been adopted to propose new on-line batch MSPC strategies. The performance of these 96 

on-line MSPC approaches has been studied in terms of sensitivity to fault detection and 97 

number of false alarms. 98 

The outcomes of this study will be of general applicability, as guidelines for process 99 

modeling and control based on spectroscopic measurements, and suppose a significant 100 

improvement on the specific field of quality control based on distillation processes, both from 101 

the instrumental point of view and from the way to handle the derived information from 102 

coupled temperature-NIR distillation curves. 103 
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2. Experimental 104 

2.1. Automatic distillation device setup 105 

The automatic distillation device designed is shown in Figure 1. It is formed by a 106 

distillation glassware setup (125 ml), a transmittance flow cell connected through optical 107 

fibers to a FT-NIR spectrophotometer (Rocket, ARCoptix ANIR, Switzerland), an analytical 108 

balance (XS204, Mettler-Toledo, Switzerland), a thermocouple and heater controlled by a 109 

data acquisition device and a personal computer with a data acquisition software that connects 110 

and controls the distillation setup. Heating mantle power applied is automatically controlled 111 

based on a feedback controller to keep distillation rate constant rather than keeping constant 112 

power as in [2]. 113 

(Insert Figure 1) 114 

2.1. Batch distillation process 115 

For every distillation batch, 100 mL from the suitable sample, previously weighed, are 116 

introduced in the distillation flask. The heater is started and once the initial boiling point 117 

(IBP) is automatically detected, distillation process starts and synchronized measurements of 118 

temperature, distillation recovered percentage (wt%) of initial sample weight and NIR 119 

absorption spectra (900 – 2600 nm) are taken every five seconds until the end point (EP) is 120 

reached. Data are stored in MATLAB format in such a way that values every 1 wt% are 121 

saved. Temperature and NIR spectra are averages of all measurements recorded during every 122 

1 wt% distillation interval. 123 

Synthetic gasoline (type C) batches were distilled using the designed automatic 124 

distillation device. The gasoline batches were prepared by mixing ethanol AR (99% Sigma-125 

Aldrich) and pure gasoline (type A, from Petrobras refinery) at different ratios. A set of 23 126 

blends was performed: 11 samples containing 27 %(v/v) ethanol (on-specification gasolines) 127 

and 12 with 10-25 %(v/v) and 30-40 %(v/v) ethanol (off-specification gasolines). Table 1 128 

describes the gasoline batches prepared with their related composition. These batch ID labels 129 

will be used to identify the batches throughout the manuscript. 130 

(Insert Table 1) 131 



6 

 

3. Data treatment  132 

3.1. Raw data and preprocessing 133 

Temperature, distilled weight and NIR spectra were obtained synchronously every 5 s 134 

and averaged measures were stored every 1 wt% of distilled weight increment from IBP until 135 

EP. The final process range considered was from 5 to 90 wt% distilled weight, which 136 

corresponded to K = 86 observation points. Observations at the beginning (< 5 wt%) and end 137 

(> 90 wt%) of the distillation process were unstable and, therefore, not used for process 138 

control. NIR spectra working wavelength range was 1103 – 2228 nm due to high noise 139 

observed in measurements out of these wavelength boundaries. This range contained J = 573 140 

spectral channels. For each distillation batch, a column-vector sized (K x 1) with the 141 

temperatures associated with the distillation curve and a matrix sized (K x J) with the related 142 

NIR infrared spectra were obtained. 143 

Data obtained from on-specification batch B07 are used to illustrate the typical data 144 

obtained at the end of a batch distillation run. Figure 2(a) shows the distillation curve with the 145 

recorded boiling temperatures, Figure 2(b) the related raw NIR spectra and Figure 2(c) the 146 

raw NIR spectra at the four observation points indicated in Figure 2(a). 147 

(Insert Figure 2) 148 

NIR spectra were preprocessed for baseline correction by Savitzky-Golay derivative 149 

[27] (1st order derivative, 2nd order polynomial function and 9 points window) followed by 150 

signal intensity fluctuation corrected by spectral normalization, see Figure 3(b). 151 

(Insert Figure 3) 152 

3.2. Data analysis  153 

Process modeling. Principal Component Analysis (PCA) and Multivariate Curve 154 

Resolution-Alternating Least Squares (MCR-ALS). 155 

The matrices with the NIR data from each on-specification batch were arranged one 156 

on top of each other into a column-wise augmented multiset structure, D, and modeled using 157 

principal component analysis (PCA) and multivariate curve resolution-alternating least 158 

squares (MCR-ALS). PCA provided a global model of trajectories explaining the overall 159 

process evolution, whereas MCR-ALS provided a model describing the evolution and 160 
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chemical identity of each component (distinct distilled fraction) in the distillation batches 161 

analyzed. 162 

PCA was used to reduce the dimensionality of the spectral data from the distillation 163 

processes by compressing the high-dimensional mean-centered original NIR data matrix into 164 

a low-dimensional subspace of principal components. These components explain most of the 165 

data variability and are orthogonal linear combinations of the original spectroscopic variables 166 

[6]. The PCA model of column-wise augmented matrix D is expressed as: D = TPT, where T 167 

are the scores, related to the observations of the distillation process and PT are the loadings, 168 

related to the importance of the NIR wavelengths in the description of the principal 169 

components. The scatter plot of scores provides the global trajectories of the processes 170 

analyzed. 171 

The same multiset structure was modeled using multivariate curve resolution - 172 

alternating least squares (MCR-ALS). MCR-ALS assumes a bilinear model, D = CST, which 173 

is the multiwavelength extension of the Lambert-Beer’s law [7,28–30]. ST contains the pure 174 

spectra of the components needed to describe the distillation process and C the concentration 175 

(distillation profiles). In contrast to PCA, MCR-ALS gives real meaningful concentration and 176 

spectral profiles of pure components of the system. MCR-ALS works by alternatingly 177 

optimizing C and ST under constraints. Initial estimates of ST were performed by using a pure 178 

variable selection method based on SIMPLISMA [31]. Constraints applied in this work were 179 

non-negativity and unimodality, i.e., presence of a single maximum per profile, for the 180 

concentration (𝐂𝐂) profiles. Local rank constraints, i.e., setting the absence of certain 181 

compounds in observations of the concentration profiles, were used to improve the quality of 182 

the resolved spectral signatures [32]. This was done by appending pure ethanol NIR spectra to 183 

the column-wise multibatch structure (in this case, only the ethanol was set to be present in 184 

the concentration elements linked to the appended pure ethanol spectra). 185 

MCR-ALS provides a much more detailed description of the process than PCA in 186 

terms of characterization of process profiles and spectral signatures, related to distillation 187 

fractions in this case. However, the single process trajectory provided by the scatter score plot 188 

of PCA is a global description of process evolution and a quick visual way to observe when a 189 

batch process evolves as NOC batches or does differently. Being complementary views about 190 

the evolution of a process, we found relevant to include both in this study. Both PCA scores 191 
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and MCR C profiles are afterwards used as starting information for off-line batch MSPC 192 

models described in the next section. 193 

Process control 194 

From the batches analyzed, nine on-specifications or NOC (Normal Operation 195 

Conditions) batches (batches B01-09), were selected to build PCA-based MSPC models (see 196 

Table 1). These models were afterwards used to detect whether a new batch (or observations 197 

within it) is in or out of control [33]. Two on-specification batches (B10-11) and twelve off-198 

specification batches (B12-23) were used to test the MSPC models. 199 

The PCA-based MSPC model is built using the preprocessed and mean-centered data 200 

matrix of NOC batches, 𝐗𝐗𝐍𝐍𝐍𝐍𝐂𝐂, sized (nr. of NOC batches × observed measurements per batch) 201 

according to the equation below, 202 

 𝐗𝐗𝐍𝐍𝐍𝐍𝐂𝐂  =  𝐓𝐓𝐍𝐍𝐍𝐍𝐂𝐂𝐏𝐏𝐍𝐍𝐍𝐍𝐂𝐂𝐓𝐓  + 𝐄𝐄𝐍𝐍𝐍𝐍𝐂𝐂 (1) 

where 𝐓𝐓𝐍𝐍𝐍𝐍𝐂𝐂 is the scores matrix of all NOC batches and 𝐏𝐏𝐍𝐍𝐍𝐍𝐂𝐂𝐓𝐓  is the loadings matrix. The 203 

number of components used in an MSPC model is a critical parameter and has been 204 

established by cross-validation [34]. 205 

The scores for new batches are obtained multiplying the measured preprocessed batch 206 

information, 𝐗𝐗𝐍𝐍𝐄𝐄𝐍𝐍, with the loadings matrix 𝐏𝐏𝐍𝐍𝐍𝐍𝐂𝐂𝐓𝐓  from the model built with the NOC 207 

batches, using the following equation: 208 

 𝐓𝐓𝐍𝐍𝐄𝐄𝐍𝐍  =  𝐗𝐗𝐍𝐍𝐄𝐄𝐍𝐍𝐏𝐏𝐍𝐍𝐍𝐍𝐂𝐂 (2) 

Then, the residuals are obtained using the new batch scores, as: 209 

 𝐄𝐄𝐍𝐍𝐄𝐄𝐍𝐍  =  𝐗𝐗𝐍𝐍𝐄𝐄𝐍𝐍 − 𝐓𝐓𝐍𝐍𝐄𝐄𝐍𝐍𝐏𝐏𝐍𝐍𝐍𝐍𝐂𝐂𝐓𝐓  (3) 

From the PCA model built with NOC batches, two MSPC control charts can be built, 210 

in which observations of new batches are represented: a) Hotelling’s T2 chart, usually referred 211 

as D-statistic (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.), represents the estimated Mahalanobis distance from the center of the 212 

latent subspace, representing the average in control conditions of a batch, to the projection of 213 

a new batch (or observation) onto this subspace and the b) Q-statistic chart (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.)accounts 214 

for the residual part of the process variation not explained by the PCA model. 215 

The Hotelling statistic, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠., was calculated using the following equation: 216 
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 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝐭𝐭TΘ−1𝐭𝐭  (4) 

Where 𝐭𝐭 is the vector containing the scores of a new given batch with the A retained 217 

principal components (PC’s), and Θ is the scores covariance matrix with (𝐴𝐴 × 𝐴𝐴) size. The 218 

control limit for this chart is calculated according to the equation proposed by Jackson [35]. 219 

 𝐷𝐷𝐶𝐶𝐶𝐶 =
𝐴𝐴(𝐼𝐼 − 1)
𝐼𝐼 − 𝐴𝐴

𝐹𝐹(𝐴𝐴, 𝐼𝐼 − 𝐴𝐴,𝛼𝛼) (5) 

where 𝐼𝐼 is the number of in control batches used to build the model with 𝐴𝐴 PC’s and 𝐹𝐹(𝐴𝐴, 𝐼𝐼 −220 

𝐴𝐴,𝛼𝛼) is the 100(1 − 𝛼𝛼) percentile of the corresponding 𝐹𝐹 distribution. 221 

The 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. for the ith new batch 𝒙𝒙𝑖𝑖 is given by 222 

 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝒆𝒆𝑖𝑖𝑇𝑇𝒆𝒆𝑖𝑖 
(6) 

where 𝒆𝒆𝑖𝑖 is the residual vector of the ith new batch from the PCA model. Regarding the 223 

control limit for the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. chart, Jackson and Mudholkar[36] showed that an approximate 224 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. critical value at significance level 𝛼𝛼 is given by 225 

 𝑄𝑄𝐶𝐶𝐶𝐶 = 𝜃𝜃1 �
𝑧𝑧𝛼𝛼�2𝜃𝜃2ℎ02

𝜃𝜃1
+ 1 +

𝜃𝜃2ℎ0(ℎ0 − 1)
𝜃𝜃12

�
1/ℎ0

 (7) 

where, 𝜃𝜃𝑘𝑘 = ∑ 𝜆𝜆𝑗𝑗𝑘𝑘  𝑟𝑟𝑠𝑠𝑟𝑟𝑘𝑘(𝑋𝑋)
𝑗𝑗=𝐴𝐴+1 and ℎ0 = 1 − (2𝜃𝜃1𝜃𝜃3/3𝜃𝜃22), 𝜆𝜆𝑗𝑗 are the eigenvalues of the PCA 226 

residual covariance matrix and 𝑧𝑧𝛼𝛼 is the 100(1 − 𝛼𝛼)% standardized normal percentile. 227 

Two MSPC approaches were applied in this work, devoted to off-line and on-line 228 

control, respectively. Both approaches and related control charts are explained below. 229 

Off-line batch MSPC 230 

Off-line batch MSPC charts were built using data provided from completed distillation 231 

processes. Different models were built according to the starting information used, either 232 

temperatures from distillation curves or information derived from NIR spectra, Figure 4. 233 

(Insert Figure 4) 234 

a) Off-line batch MSPC models using distillation curves 235 

The distillation curves from the 9 NOC distillation batches were arranged in a matrix 236 

(I × K), with I = 9 rows and K = 86 observation points of the distillation curve. This matrix 237 

was mean-centered and decomposed by PCA to obtain the model loadings and MSPC limits, 238 
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see Figure 4(a). New batch data were projected into the model to obtain the related statistical 239 

parameters (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.). 240 

b) Off-line batch MSPC models using NIRS data 241 

Different off-line MSPC models were built with the NIRS-derived information. All 242 

models were built on data sets with I = 9 rows and a variable number of columns depending 243 

on the kind of NIRS-derived information, see Figure 4(b). This gave rise to three different 244 

MSPC models: 245 

i. Models based on the original preprocessed NIR data matrix. This 246 

model is done using a matrix containing the NIR readings from each 247 

individual NOC batch row-wise unfolded into a vector, i.e. the matrix of a 248 

batch with dimensions (K×J), where K = 86 are batch observation points 249 

and J = 573 wavelengths, is arranged in a row vector with dimension (1 250 

×KJ), with K = 86 and J = 573. Then, the information of I = 9 NOC 251 

batches was arranged in a matrix sized (I×KJ), on which the MSPC model 252 

was built. 253 

ii. Models based on the batch scores from PCA decomposition of the 254 

NOC multiset structure. The information of a NOC batch are the scores 255 

obtained in the PCA model of the related NIR spectra, row-wise unfolded 256 

into a vector sized (1 ×KA) with A being the number of retained principal 257 

components. Then, the information of I = 9 NOC batches was arranged in a 258 

matrix sized (I×KA), on which the MSPC model was built. 259 

iii. Models based on the resolved concentration profiles from MCR-ALS 260 

decomposition of the NOC multiset structure. The information of a 261 

NOC batch are the concentration profiles obtained in the MCR-ALS model 262 

of the related NIR spectra, row-wise unfolded into a vector sized (1 ×KN) 263 

with N being now the number of MCR contributions needed to describe the 264 

process. Then, the information of I = 9 NOC batches was arranged in a 265 

matrix sized (I×KN), on which the MSPC model was built. Please note 266 

that, generally speaking, the use of only some of the concentration profiles 267 

modeled in a batch could be an option to build the MSPC model, provided 268 

that the selected profiles were proven to be very specific indicators of the 269 
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process evolution or that the discarded profiles belonged to spurious 270 

process contributions, e.g., modeled background contributions if existing. 271 

Please note that even if the use of C-profiles implies a noise-filtered 272 

compression of the original information, the size of the unfolded profiles, 273 

sized (1 ×KN) per each NOC batch, requires a PCA-based MSPC model 274 

for easier interpretability.   275 

The MSPC PCA models built with the different kinds of starting information were 276 

used to extract the related 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts limits. Suitable data from new batches, not 277 

used to build the model, were projected onto the MSPC PCA model to test the performance of 278 

the models built. 279 

On-line batch MSPC 280 

Different on-line MSPC monitoring charts were developed using the data provided 281 

from NIRS measurements. As in the off-line approach, the same unfolded NOC matrix with 282 

the original NIR variables was used in the on-line approach. However, three on-line MSPC 283 

approaches were proposed using multiple PCA models based on different intervals of 284 

observation points, as described below: 285 

a) On-line MSPC based on individual process observation models 286 

This approach is the most straightforward method. An individual model is built per 287 

each observation point using historical data from on-specification completed batches as 288 

illustrated in Figure 5(a). Thus, during a new batch, the new on-line data obtained (NIR 289 

spectrum of current observation) is projected into the respective observation point model and 290 

the statistical parameters compared with the control chart limits. 291 

(Insert Figure 5) 292 

b) On-line MSPC based on Evolving MSPC models 293 

MSPC models with increasing number of observation points are built adding the new 294 

current distillation point in every new model until all distillation process is covered. As 295 

illustrated in Figure 5(b), the first MSPC model is built using only the NIRS data matrix of 296 

the NOC historical data batches at the first recovered point (5 wt%), the second model using 297 

two observation points (5 and 6 wt%) and so on. For new batch monitoring, the data up to the 298 

current observation point are projected into the model for the related observations points and 299 

statistically tested. 300 
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c) On-line MSPC based on Fixed Size Moving Window, FSMW-MSPC, models 301 

Several MSPC models built with a fixed size window (FSMW) including the current 302 

observation and several consecutive past observation points are built using the NOC historical 303 

data. The window slides one observation ahead in each new model until all observation points 304 

are covered. For instance, in Figure 5(c) the window moves from k to k = k + 1 and so on 305 

until k = K. For new batch monitoring, the data from the observation points covered by the 306 

moving window are projected into the model for the respective observations points and 307 

statistically tested. 308 

The three approaches aim at on-line process control, but there are important differences 309 

due to the use of the different information in the models. Thus, the modality looking at 310 

individual process points does not take into account the neighbouring past observations and, 311 

hence, the evolution of the process. In the modalities FSMW-MSPC and evolving MSPC, the 312 

process evolution is taken into account and not only the new process observation of interest. 313 

In the case of the FSMW-MSPC model, only the recent past observation points (those within 314 

the window) are taken into account and the window size established is related to the number 315 

of relevant neighbouring process observations. Instead, the evolving-MSPC takes into 316 

account all process evolution until the present observation, giving potentially the same 317 

importance to all the past observations analyzed. 318 

4. Results and discussion 319 

4.1. Visual interpretation of distillation curve and NIR process data  320 

Prior to chemometric analysis, the distillation curve and raw NIR spectra obtained 321 

during the distillation process were visually interpreted. Figure 2(a) illustrates the distillation 322 

curve of an on-specification batch (B07), the related process raw NIR spectra, Figure 2(b), 323 

and NIR spectra selected at four specific distillation points, Figure 2(c). 324 

A sudden change in temperature can be observed through a simple visual inspection of 325 

the distillation curve between 60 and 70 wt%. This behavior is observed in gasoline-ethanol 326 

blends due to the formation of azeotropes of ethanol and hydrocarbons [37–40]. Distillation 327 

curve for gasoline-ethanol blend show three distinct regions: a plateau or azeotropic region 328 

(ethanol–hydrocarbon azeotropes are boiled) in the beginning of the distillation process, a 329 

transition region (sudden change in temperature) and a dilution-only region at the end of the 330 

distillation (after all added ethanol is boiled-off), as observed by French and Malone[38]. 331 
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Four observation points (10, 50, 70 and 90 wt%) at the start and end of each 332 

distillation region were chosen to visualize the changes in NIR spectra with the evolution of 333 

distillation process. Figure 2(c) shows the complexity of the many superimposed absorption 334 

bands of the NIR spectra acquired during the distillation process. The bands around 1180 nm 335 

correspond to the second overtone, around 1400 nm to the 1st overtone combination and 336 

around 1700 nm to the first overtone region of carbon-hydrogen (C-H) bonds present in all 337 

points observed. The band around 2080 nm observed in the fractions at 10 and 50 wt% is 338 

related to the absorption of a combination of oxygen-hydrogen (O–H) stretching and bending 339 

from ethanol added to the gasoline. An absorbance increment in the band around 2080 nm 340 

was observed as the distillation was evolving from 10 to 50 wt%, mainly related to the 341 

increase of the ethanol relative concentration in the distilled fractions. A new band around 342 

2170 nm appears in the spectra of the fraction at 70 and 90 wt%. This new band is related to 343 

absorption of aromatic compounds in the heavy fractions of the gasoline [41–43]. 344 

4.2. Process modeling of NIR data 345 

Global process description (PCA model)  346 

The NIR data were mean-centered and decomposed by PCA. Venetian blinds cross-347 

validation method was used to find the number of principal components. 3 principal 348 

components explained 98.98 % (PC1 84.64%, PC2 13.11% and PC3 1.23%) representing a 349 

good summary of batch variability. 350 

Figure 6(a) shows the principal components score plot distribution for PC1 and PC2 351 

extracted from NIRS data of batches B01-09 used to build the PCA model (blue dots). The 352 

distribution of scores illustrates the process trajectory of on-specification batches and its 353 

variability. Because of the unstable distillation rate at the start of the distillation process, more 354 

variation was observed in these observation points as compared to the rest of the process. In 355 

addition, the NIRS data collected from the distillations of on-specification gasoline batch 356 

B11, not used in the PCA process modeling, and off-specification batch B13, which had only 357 

15 %(v/v) of ethanol added, were projected in the PCA model. The scores obtained from PCA 358 

projection allowed the observation of the process trajectory of the new projected batches. 359 

Batch B11 (in magenta circles) was observed to follow the same on-specification process 360 

trajectory, while batch B13 (in red triangles) deviated from NOC trajectory, as illustrated in 361 

Figure 6(a). On-specification batch B10 when projected to the PCA model showed the same 362 

behavior as B11. Off-specification batches B12, B14-23 also deviate from NOC trajectory as 363 
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batch B13, (data not shown for clarity). The deviation becomes larger when the ethanol 364 

content is further from the ethanol specification level of NOC batches. 365 

MCR-ALS 366 

The dataset decomposition through MCR-ALS provides a model of process 367 

components easy to interpret and complementary to the global process description provided 368 

by PCA. The multibatch structure with the preprocessed (not mean-centered) data obtained 369 

from the distillation batches was decomposed by MCR-ALS. Four components were found 370 

through singular value decomposition, which agrees with the three contributions found in 371 

PCA of mean-centered data, since the rank decreases in one when mean centering is 372 

performed. 373 

The four components concentration (distillation) and spectral profiles obtained after 374 

MCR-ALS decomposition of the multiset structure are shown in Figure 6(b). The components 375 

resolved from the distillation process are related to the main distilled fractions of gasolines 376 

“type C”: First, light hydrocarbons; second, ethanol; third and fourth, mid to high molecular 377 

weight (MW) hydrocarbons and aromatic compounds, as reported elsewhere [44]. The 378 

identity of these compounds is confirmed when looking at the spectral features found in the 379 

related pure spectra and at the temperature distillation range. 380 

The low MW hydrocarbons fraction is mainly distilled together with ethanol as 381 

azeotropes at the beginning of the distillation, i.e., at lower temperatures, as observed in the 382 

concentration profiles of components (1) and (2), see Figure 6(b). After 70 wt% of the 383 

distillation process, almost all ethanol, component (2), was boiled-off remaining most of the 384 

mid to high MW fractions of gasoline, rich in aromatic compounds, components (3) and (4). 385 

This region was observed in the distillation curves and is characterized by an increase in the 386 

slope of the distillation curve, as observed in Figure 2(a). 387 

For comparison, Figure 6(b) shows the distillation profiles of B13 (with only 15 388 

%(v/v) ethanol). Although the component spectra are the same, all distillation profiles are 389 

shifted to lower wt% of distillate, as expected for a batch with lower ethanol content. 390 



15 

 

4.3. Process control 391 

Off-line batch process control 392 

Off-line batch MSPC charts were built working with data coming from completed 393 

distillation batches. Specificity and sensitivity were adopted as quality parameters to assess 394 

the performance of MSPC charts for off-line batch process control. Specificity stands for the 395 

ratio of NOC batches (on-specification) correctly identified over the total NOC batches used 396 

to test the MSPC charts. Sensitivity is derived as the ratio of out of NOC (off-specification) 397 

batches correctly identified as out of NOC over the total out of NOC tested. 398 

Process control starting information 399 

The starting information used to build off-line batch MSPC models came either from 400 

distillation curves or NIR process data. The different starting information is depicted in 401 

section 3.2. Full distillation curves or observations within a selected temperature range were 402 

used to build off-line PCA-based MSPC models. Derivative form of the distillation curves 403 

was also used to improve the models. As for NIR information, full original preprocessed NIR 404 

spectra or selected spectral ranges were used to build the models. MSPC models were also 405 

built with the PCA scores, extracted from the process modeling by PCA, with all the 406 

distillation concentration profiles or only with the component related to ethanol, extracted 407 

from MCR-ALS decomposition, as described in section 3.2. 408 

Off-line batch MSPC results 409 

Table 2 shows the summary of the results using the different starting information to 410 

build and test off-line batch MSPC models. 411 

(Insert Table 2) 412 

An MSPC PCA model with mean-centered full distillation curve data (5-90 wt%) 413 

from NOC batches was built with 2 PC’s and explained 90.91 % of data variance. MSPC 414 

chart based on 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. parameter correctly identified NOC and off-spec batches used to test the 415 

control charts as observed in Table 2 (row #1 has 100% specificity and sensitivity of 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.). 416 

However, despite 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. chart correctly identifies NOC batches, some off-spec batches are 417 

below the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. limit, see Figure 7(b), the sensitivity observed was 73.33%, Table 2 row #1. 418 

This may have happened because distillation curves of off-specification batches with ethanol 419 

concentration near to the on-specification level, 27 %(v/v), have extensive distillation ranges 420 
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with similar behavior (except for the points in the steepest zone of the curve) and, when 421 

considered the full curve, stay within the accepted variability of the NOC batches. 422 

Another PCA model was built using the same data used previously, but this time 423 

preprocessed by Savitzky-Golay derivative and mean-centered. Results showed an 424 

improvement on the sensitivity, but still some batches were misidentified in the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.chart, as 425 

reported in Table 2 row #2. All off-specification batches could be correctly identified using 426 

the derivative curve data only in the distillation range between 25 and 75 wt%, (Table 2 row 427 

#3). This range showed most of the variation in the distillation curves due to different ethanol 428 

content and avoided the unstability and, hence, undesired and non-composition related 429 

variability in the beginning of the distillation. 430 

As observed in the MSPC charts built with the distillation curve data, the specificity 431 

and sensitivity of the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. charts for all models built with NIRS data were 100%. However, 432 

different strategies were necessary to improve the sensitivity of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. MSPC charts. 433 

The off-line PCA-based batch MSPC charts built using information from NIR spectra 434 

are explained below. Table 2, row #4, shows the results from a model built using the full 435 

preprocessed spectra (1103 – 2228 nm) and distillation (5-90 wt%) range. Despite of the 436 

100% specificity in 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. chart, none of the off-specification batches was detected as faulty 437 

by the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. chart. The 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. MSPC chart sensitivity was significantly improved to 75% 438 

when the NIRS data were reduced taking only the NIR observations within the distillation 439 

range from 60 wt% to 70 wt%, see Table 2, row #5. NIRS data were also reduced by selecting 440 

the most expressive spectral bands related mainly to hydrocarbons (1600-1800 nm) and 441 

ethanol absorption regions (2000-2200 nm). The MSPC chart built with this reduced spectral 442 

and distillation range improved the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. sensitivity to 83% (row #6), but still some samples 443 

with composition similar to the on-specification batches were missed by the control chart. 444 

Off-line MSPC models were built with the NIR information compressed by PCA and 445 

MCR-ALS. Similar results were observed. The sensitivity for 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. MSPC charts built with 446 

concatenated PCA scores or MCR-ALS concentration profiles (row #7 and #10) improved 447 

when compared with full spectral and distillation range data without data compression (row 448 

#4), see Table 2. MSPC models built with the compressed information extracted from the 449 

NIR observations within the 60-70 wt% distillation range showed an expressive improvement 450 

of the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. sensitivity to 91.67% (row #8 and #11). 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. charts (row #9 and #12) showed 451 

100% sensitivity when MSPC models were built using the Savitzky-Golay derivative of the 452 
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PCA scores or the MCR-ALS concentration profiles within the same distillation range (60-453 

70%). MSPC models were built also using only the ethanol distillation profile. Results are 454 

show in Table 2, rows #13 and #14. The 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. sensitivity was higher than in models built 455 

with all four components for models built with the full distillation range. Moreover, when the 456 

derivative ethanol profile in the 60-70 wt% distillation range, 100 % specificity in 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. chart 457 

was achieved. The improvement of results when using only the ethanol concentration profile 458 

might be related to the better definition of this compound in the MCR-ALS results. 459 

On-line batch MSPC on the NIR data 460 

On-line batch MSPC control charts were built following the strategies described in 461 

section 3.2. For the distillation batches studied, PCA models were calculated for each 462 

observation point (86 models) following each one of the strategies described using the mean-463 

centered data collected from NOC batches. Individual observation models (see Figure 5(a)) 464 

and evolving models (see Figure 5(b)) were calculated as described. For FSMW evolving 465 

models (see Figure 5(c)), the window selected enclosed 15 neighbouring observations. Thus, 466 

for observations nr. 1 to 14, PCA models were calculated as in the evolving strategy (see 467 

Figure 5(b)), whereas from observation nr. 15 and on, the full sliding window of 15 points 468 

was applied, as seen in Figure 5(c). PCA models for individual observation and FSMW 469 

evolving strategies were built with one principal component for all observation points, while 470 

in evolving models, one PC was used in evolving models from 5 to 20 wt% and three PC’s in 471 

the remaining observation points. A confidence interval of 99% was considered to calculate 472 

the MSPC charts limits, 𝐷𝐷𝐶𝐶𝐶𝐶99% and 𝑄𝑄𝐶𝐶𝐶𝐶99%, for each model, as described earlier in section 473 

3.2. 474 

The NIR measurements for a new batch observation were mean-centered according to 475 

the mean of NOC batches and each observation (or set of observations) projected into the 476 

PCA model built for each strategy to extract the MSPC statistics, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. 477 

At this point, it is important to stress the difference between off-line and on-line 478 

MSPC control charts. 479 

Off-line MSPC control charts are based on a single PCA model built on the completed 480 

NOC batches. The final 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts represent the values of these statistics vs. the 481 

batch index of each analyzed new batch. Every new batch is represented by a point. 482 
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On-line MSPC control charts display simultaneously the information of many PCA 483 

models, as many as observations in each batch, see Figure 5. Therefore, each new observation 484 

(NIR spectrum) acquired in a new batch is tested to see whether it is in- or out of control on a 485 

different PCA model. The process control is done at an observation level and not at a full 486 

batch level, as in the off-line approach. As a consequence, every new batch has a full 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 487 

and a full 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. plot, where the x-axis refers now to the different observations studied along 488 

the process evolution. 489 

Control limits in 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. would change per each new observation analyzed, 490 

since a different PCA model is used for projection every time. To facilitate visualization, the 491 

y-axis represents scaled values of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠., defined as 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠./𝐷𝐷𝐶𝐶𝐶𝐶 and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠./𝑄𝑄𝐶𝐶𝐶𝐶. In 492 

this way, a flat line at value 1 represents the control limits for all models used in 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 493 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. for all observations. On-line 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts, which represent the evolution of 494 

the related scaled statistics as a function of the observation (% distillate) analyzed, allow not 495 

only identifying on- and off-specification batches, but to know when the anomaly in an 496 

abnormal batch starts. 497 

The results after monitoring new batches through the three different on-line MSPC strategies 498 

(individual observation model, FSMW MSPC evolving models and evolving MSPC models) 499 

are summarized in Table 3. Table 3 shows whether a new batch was diagnosed as on-500 

specification or not and which MSPC chart (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠., 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. or both) detected the fault. (Please 501 

note that the behavior of the full distillation batch is analyzed in this section for a better 502 

comparison of the three approaches. In a real on-line control context, the distillation would be 503 

stopped as soon as found to be out of specification). 504 

Observing the information summarized in Table 3, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. on-line MSPC charts 505 

detected correctly a fault in all off-specification batches by using any of the three on-line 506 

strategies. 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts worked generally well, except when using evolving models, which 507 

were not able to detect fault in off-specification batches with ethanol content very 508 

approximate to the accepted specification and above, i.e. batches B17 to B23, see Table 1 and 509 

3. The on-specification batch B11 was wrongly detected as faulty by the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. on-line MSPC 510 

chart using the individual observation model MSPC strategy. 511 

(Insert Table 3) 512 
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Figure 8 shows the 𝐷𝐷 and 𝑄𝑄 statistics on-line control charts from distillation batches 513 

B11 (on-specification, with 27% ethanol added) and B18 (off-specification, with 25% ethanol 514 

added) for the three different on-line batch MSPC strategies. 515 

Some comments need to be done for each on-line strategy according to the observed 516 

results. 517 

a) Individual process observation models 518 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. MSPC charts were observed to be very sensitive to fault detection. Besides, they 519 

show clearly the point where the batch starts to be anomalous. However, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts were 520 

more prone to show false alarms, Figure 8(a). This happens because each model was built 521 

using a single observation point and a slight variation in an individual observation for a new 522 

batch process leads to a fault detection. 523 

b) Evolving MSPC models 524 

The evolving MSPC strategy considered the evolution of the process since the start, 525 

building models with increasing number of observations. This caused less sensitive 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 526 

charts, since past NOC observations may have a lot of weight in the models and batches can 527 

be detected easily as faulty only when the fault observations occurred at the beginning of the 528 

distillation process (batches B11-16).Batches with ethanol concentration near to the 529 

specification value and above were not detected by 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts since the fault occurred too 530 

late and was not large enough to compensate the weight of the large number of initial NOC 531 

observations. Despite of this fact, the evolution of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. values for undetected off-532 

specification batches show a different trend (a clear increase when the abnormal behavior 533 

starts) as compared to on-specification batches (presenting a flat constant tendency), as 534 

observed in 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts Figure 8(b). This may suggest that the 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. chart could still be used 535 

in these instances if the control limits were set empirically. 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts performed more 536 

satisfactorily in fault detection. However, faults were detected later than in individual 537 

observation models due to the excessive weight of past NOC observations as well. 538 

c) Fixed size moving window, FSMW-MSPC models 539 

The FSMW strategy considered only a few past observation points, set according to 540 

the window size (15 observations were used in this study). This feature produced more 541 

sensitive 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts because past NOC observations had less weight in models, Figure 8(c). 542 

FSMW strategy was observed to be less prone to false alarms on 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. charts than individual 543 
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observation charts, Figure 8(a), since individual point fluctuations have less impact in the 544 

window-based PCA models. This strategy has been found to be the most flexible of the three, 545 

showing efficient and easy detection of faults and avoiding false alarms. Obviously the 546 

performance of this approach may depend on the width of the window: if too small, false 547 

alarms may show up in analogy to what happens in individual observation models; if too big, 548 

sensitivity in Dstat. chart may decrease because of the weight of too many past NOC 549 

observations in the chart. This inconvenient is clearly surmountable if the window width is set 550 

by using representative off-spec batches that may allow setting the correct window width to 551 

avoid the malfunctions described in the other two on-line MSPC approaches. 552 

5. Conclusions 553 

The present work provides an improvement of PAT technologies for distillation-based 554 

quality control procedures through the design of an automatic distillation device that allowed 555 

synchronized measurements of the distillated mass percentage, distillation temperature and 556 

NIR spectra during the distillation process. 557 

Process modeling on NIR spectra by PCA and MCR-ALS allowed understanding the 558 

process evolution from a global (scores plot) and component-wise (distillation profiles) point 559 

of view, respectively. In this sense, MCR-ALS provides a good thermal and physicochemical 560 

characterization of distilled fractions, even if coming from a simple distillation process. 561 

MSPC strategies based on the different kinds of data obtained from the designed 562 

device are proposed. Off-line models using distillation curves were able to detect off-563 

specification batches when suitable preprocessing and distillation curve range were used. 564 

Successful off-line MSPC models were built with the NIR spectra information compressed 565 

into PCA scores or MCR-ALS concentration profiles. The possibility to perform a sensible 566 

selection of some of the MCR-ALS concentration profiles, linked to particularly relevant 567 

process contributions has proven to improve MSPC results. 568 

On-line batch MSPC strategies were proposed for fault detection during the 569 

distillation process using the collected NIRS data. Individual process observations MSPC 570 

models showed 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.charts very sensitive to fault detection; however, false alarms were 571 

observed in the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.charts. Evolving MSPC models were able to solve the false alarms 572 

observed with the individual observation strategy, but failed to detect some off-specification 573 

batches with similar composition to NOC batches when using 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.charts. The FSMW-574 

MSPC approached used a flexible combination of the other two strategies and succeeded to 575 
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detect all off-specification batches and correctly identify on-specification batches during the 576 

test with both 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. control charts, avoiding false alarms. 577 
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Table 1 Description of Batch ID and their related composition, as used in this work. 

Batch ID %(v/v) Gasoline %(v/v) Ethanol Class 

B01-B11 73 27 On-specification 

B12 90 10  

B13 85 15  

B14-B16 80 20  

B17-B18 75 25 Off-specification 

B19-B20 70 30  

B21-B22 65 35  

B23 60 40  
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Table 2 Off-line batch MSPC results. 

     %Specificity  %Sensitivity 
# Description NC %EV  Dstat. Qstat.  Dstat Qstat. 
 Distillation Curves         
1 DistRange (5-90 wt%) 2 90.91  100 100  66.67 100 
2 DistRange(5-90 wt%)_1stdiff.SG 2 94.83  100 100  91.67 100 
3 DistRange(25-75 wt%)_1stdiff.SG 2 98.36  100 100  100 100 
          
 NIR information         
 Unfolded NIRS data         
4       FullSpec_DistRange(5-90%) 3 68.91  100 100  0.00 100 
5       FullSpec_DistRange(60-70%) 2 92.56  100 100  75.00 100 
6       SelSpec_DistRange(60-70%) 2 94.54  100 100  83.33 100 
          
 scores from PCA modelling (3 PC’s)         
7       DistRange(5-90%) 2 87.53  100 100  66.67 100 
8       DistRange(60-70%) 2 96.52  100 100  91.67 100 
9       DistRange(60-70%)_1stdiff.SG 2 98.67  100 100  100 100 
          
 C profiles from MCR-ALS modelling 

(4comp) 
        

10       DistRange(5-90%) 2 81.07  100 100  33.3 100 
11       DistRange(60-70%) 2 94.33  100 100  91.67 100 
12       DistRange(60-70%)_1stdiff.SG 2 96.99  100 100  100 100 
13 DistRange(5-90%)_EtOHcomp 2 90.60  100 100  58.33 100 
14       DistRange(60-70%)_1stdiff.SG_EtOHcomp 2 99.65  100 100  100 100 
# Model number, NC number of PCA principal components, %EV cumulative explained variance by NC principal components, diff.SG 
Savitzky-Golay derivative, DistRange Distillation Range used to build the model, FullSpec Complete NIRS measurement range, SelSpec 
Small more selective to ethanol signal, EtOHcomp component 2 related to ethanol.  
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Table 3 On-line batch MSPC results on test batches B10-23. 

Test Batch    Method    
  Ind. 

Obs.a 
 FSMWb  Evolvingc  

on-spec        
B10  on-spec.d  on-spec.  on-spec.  
B11  Qstat.  on-spec.  on-spec.  
off-spec        
B12  Qstat., Dstat.  Qstat., Dstat.  Qstat., Dstat.  
B13  Qstat., Dstat.  Qstat., Dstat.  Qstat., Dstat.  
B14  Qstat., Dstat.  Qstat., Dstat.  Qstat., Dstat.  
B15  Qstat., Dstat.  Qstat., Dstat.  Qstat., Dstat.  
B16  Qstat., Dstat.  Qstat., Dstat.  Qstat. , Dstat.  
B17  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B18  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B19  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B20  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B21  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B22  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
B23  Qstat., Dstat.  Qstat., Dstat.  Qstat.  
a Ind.Obs., Individual observation MSPC models. 
b FSMW, fixed size moving window MSPC models. 
c Evolving MSPC models. 
d On-spec means the batch is on-specification according to both Dstat  and 
Qstat.. Dstat means the batch is off-spec according to Dstat chart. Qstat. means the 
batch is off-spec. according to Qstat. chart. 
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90 wt% indicated in (a), the spectra were vertically offsetted for clear comparison. 
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curves, (b) NIR information, from top to bottom: Original preprocessed NIR variables,  concentration 

profiles from MCR-ALS and scores from PCA extracted from the multibatch structure for process 

modeling. 

Figure 5 Different evolving on-line MSPC models approaches. a) Individual process observation models, b) 

Evolving MSPC models and c) FSMW-MSPC models. 

Figure 6 Process modeling. (a) PCA map of the 3PC’s scores from on-specification batches B01-09 used to 
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Individual process observation models, b) Evolving MSPC strategies and c). FSMW evolving MSPC. 
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Figure 1 Experimental setup of the automatic distillation device with on-line NIRS monitoring. 
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Figure 2 Process data from distillation batch B07. (a) Distillation curve, (b) On-line raw NIR spectra vs. 
percentage of the distilled fraction [wt%] and (c) raw NIR spectra at distilled fraction at 10, 50, 70 and 90 wt% 
indicated in (a), the spectra were vertically offsetted for clear comparison. 
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Figure 3 Plot of the (a) raw and (b) preprocessed NIR spectra obtained from the distillation batch B07 
between 5 – 90 wt% with 1 wt% interval, 5 wt% (blue) → 90 wt% (red). 
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Figure 4 Different starting information used to build off-line PCA-based batch MSPC models (a) Distillation 

curves, (b) NIR information, from top to bottom: Original preprocessed NIR variables,  concentration profiles from 
MCR-ALS and scores from PCA extracted from the multibatch structure for process modeling. 
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(b) 

 
(c) 

 
 

Figure 5 Different evolving on-line MSPC models approaches. a) Individual process observation models, b) 
Evolving MSPC models and c) FSMW-MSPC models. 
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Figure 6 Process modeling. (a) PCA map of the 3PC’s scores from on-specification batches B01-09 used to 

build PCA model, and after projection in the PCA model batches B11 (on-specification) and B13 (off-specification). 
Start (5 wt%), transition region (60-70 wt%) and end (90 wt%) of distillation process are indicated; (b) Multibatch 
MCR-ALS showing from top to bottom the pure spectral profiles, the superimposed concentration profiles for on-
specification batches B01-09 and concentration profiles for off-specification batch B13 (components (1) to (4)). 
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Figure 7 (a) Full distillation curves used to test PCA-based off-line batch MSPC model, on-specification in 

black and off-specification in gray, (b)𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫. and (c) 𝑸𝑸𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫. MSPC charts. Some batches show higher 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫. and 𝑸𝑸𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫. 
values and are not shown for better visualization of the control limits. 
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Figure 8 On-line MSPC charts for batches B11 (on-specification) and B18 (off-specification) for the a) 

Individual process observation models, b) Evolving MSPC strategies and c). FSMW evolving MSPC. 
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