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reference for investigators seeking alternatives to the use of Ordinary 

Portland Cement (OPC) in building sector because of its high 

environmental impact. The research group developed a MPC formulated with 

low-grade MgO (LG-MgO) by-product, which could be considered as a 

sustainable MPC (sust-MPC). This research focuses on the incorporation of 

different percentages of Microencapsulated Phase Change Materials (MPCM) 

into sust-MPC, due to their ability to reduce energy consumption of 

heating, ventilating, and air conditioning (HVAC) systems. The study 

consists of an exhaustive characterization of thermal sustainable MPC 

(TS-MPC) dosages which incorporate air-entraining additive (AEA) and MPCM 

to improve their thermal behaviour. Thus, TS-MPC would reduce the use of 

HVAC systems contributing to the decrease of CO2 emissions and increasing 

energy efficiency in buildings. Moreover, properties such as bulk 

density, porosity, thermal conductivity, modulus of elasticity, 

compressive strength, and flexural strength are analysed to evaluate the 

potential use of these cements as a part of a passive conditioning 

system. Results show the proper behaviour of these cements to reduce 

thermal oscillation in buildings. Experimental results demonstrated the 

relation between the amount of the MPCM and the AEA percentage as well as 

the thermal and mechanical properties of the TS-MPC due to their 

contribution to increase the porosity. Furthermore, it should be noted 

the increase of porosity and the reduction of thermal conductivity of the 

optimal formulation, which are 60% higher and 50% lower than the sust-MPC 

obtained without MPCM and additive, respectively. 
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* All commercial names are to be deleted. 

The authors of the article consider necessary the complete description of the raw materials used 
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has been replaced by: 
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Abstract 

Magnesium Phosphate Cement (MPC) has become an essential reference for 

investigators seeking alternatives to the use of Ordinary Portland Cement (OPC) in 

building sector because of its high environmental impact. The research group developed 

a MPC formulated with low-grade MgO (LG-MgO) by-product, which could be 

considered as a sustainable MPC (sust-MPC). This research focuses on the 

incorporation of different percentages of Microencapsulated Phase Change Materials 

(MPCM) into sust-MPC, due to their ability to reduce energy consumption of heating, 

ventilating, and air conditioning (HVAC) systems. The study consists of an exhaustive 

characterization of thermal sustainable MPC (TS-MPC) dosages which incorporate air-

entraining additive (AEA) and MPCM to improve their thermal behaviour. Thus, TS-

MPC would reduce the use of HVAC systems contributing to the decrease of CO2 

emissions and increasing energy efficiency in buildings. Moreover, properties such as 

bulk density, porosity, thermal conductivity, modulus of elasticity, compressive 

strength, and flexural strength are analysed to evaluate the potential use of these 

cements as a part of a passive conditioning system. Results show the proper behaviour 

of these cements to reduce thermal oscillation in buildings. Experimental results 

demonstrated the relation between the amount of the MPCM and the AEA percentage as 

well as the thermal and mechanical properties of the TS-MPC due to their contribution 

to increase the porosity. Furthermore, it should be noted the increase of porosity and the 

reduction of thermal conductivity of the optimal formulation, which are 60% higher and 

50% lower than the sust-MPC obtained without MPCM and additive, respectively. 

 

Keywords: Magnesium Phosphate Cement, Magnesium Oxide, Low-grade magnesium 

oxide, Phase Change Materials, thermal conductivity. 



1. Introduction 

The energy demand and the resource extractive activity are some of the 

environmental issues that have generated major interest in modern society [1,2]. Their 

consumption patterns, population growth, and economic development have led to an 

increase of energy consumption and waste generation, with the consequent appearance 

of problems such as increasing greenhouse gases (GHG), global warming, and depletion 

of natural resources. 

In the framework of building, energy consumption is also very high and has a big 

impact in both economy and environment. Pérez-Lombard et al. [3] highlighted the 

global contribution from buildings towards energy consumption has raised up between 

20 % and 40 %, depending on the country or building use, outstripping other important 

sectors like industry and transportation. Among this quantity of consumed energy, 

around 50 % is due to the use of heating, ventilating, and air conditioning (HVAC) 

systems to keep the thermal comfort and to improve the quality of life in buildings [3]. 

Moreover, in terms of material resources consumption, the building sector consumes 

around 24 % of raw materials extracted from the lithosphere [4]. Thus, it also means 

that resource extractive activity caused by building material industry generates large 

amounts of CO2 and requires high quantity of energy. The ordinary Portland Cement 

(OPC), together with steel, is the most demanded material and, consequently, its 

environmental and energetic impact is an important threat to the Earth. The OPC 

production generates about 5 to 7 % of CO2 global emissions [5] and consumes 2 % of 

global energy demand [6]. Hence, those studies show the need to move towards a more 

sustainable economic and social model based on avoiding excessive and uncontrolled 

consumption of energy and available material resources. Besides, it is important to 

potentiate some aspects such as recyclability and the valorisation of waste generated by 

the industry, towards a circular economy. One of the available solutions from the 



materials engineering field is the design and use of eco-friendly building materials and 

systems, as the developed and investigated material in the present research work. 

This research contributes into the development of eco-friendly building materials 

with new data on Magnesium Phosphate Cements (MPC) and Microencapsulated Phase 

Change Materials (MPCM). MPC is an acid-base cement that is part of the family of 

Chemically Bonded Phosphate Ceramics (CBPC). Due to its quick setting and early 

high strength, the main CBPC applications have been defined in the field of dentistry 

[7], stabilisation and encapsulation of hazardous and toxic wastes [8-10], and finally 

rapid repairing of roads, flooring, and concrete bridges [11,12]. However, in recent 

years, there is a tendency to expand their applications in other fields such as building. 

Apart from MPC properties, one reason of the great interest generated by this material is 

the ecological and environmental benefits that provides when compared with OPC [13]. 

The energy consumed to produce 1000 kg of OPC is approximately 5 GJ and the 

amount of CO2 generated reaches 900 kg [14]. Nevertheless, in the study of Wagh [15] 

is showed that CO2 emissions generated by the MPC production are reduced up to 40 % 

compared with OPC. This same study also highlights the process of producing MPC 

requires four times less amount of heat than the production of OPC. In addition, for the 

MPC formulation, it has been used a low-grade magnesium oxide (LG-MgO) obtained 

as a by-product from the calcination process of natural magnesite (MgCO3) from the 

production of magnesia (MgO). The MPC formulated through the use of LG-MgO has 

been successfully already obtained in other studies [16–18]. Hence, LG-MgO 

potentiates its sustainable and environmental criteria, valorising an industrial by-

product, and reducing natural resource extraction activities for the pure MgO 

production; on this manner, it is named sustainable MPC (sust-MPC) mortars [18].  

The second material used in this study is MPCM which allows maintaining the 

thermal comfort in buildings because of its physical properties [19–23]. MPCM has 



been successfully incorporated in several construction materials such as lime, gypsum, 

and concrete, in order to reduce the energy consumption and CO2 emissions generated 

by the use of HVAC systems and to improve energy efficiency in buildings [19–23]. 

During the phase change process, Phase Change Materials (PCM) has the tendency to 

leak to the surface of the matrices in which they are contained. However, the leakage 

process can be avoided by an encapsulation process, producing MPCM. Therefore, the 

mixture between sust-MPC and MPCM will expand their range of applications, mainly 

for thermal purposes; consequently, in this research work, this kind of formulations has 

been named thermal sustainable MPC (TS-MPC).  

The main goal of the present study is the evaluation of the potential use of an air-

entraining agent (AEA) and MPCM as admixtures on sust-MPC to improve their 

thermal behaviour, as well as to use this material as a passive conditioning system. 

Porosity and density of different dosages of TS-MPC have been evaluated to relate them 

to their thermal and mechanical properties. Furthermore, the influence of MPCM 

amount on the thermal conductivity and the thermal cycles behaviour of TS-MPC have 

been also studied. 

 

2. Experimental Details 

2.1. Materials 

In the present study, a by-product of LG-MgO supplied by Magnesitas Navarras 

S.A. and a food grade monopotassium phosphate (MKP) supplied by J. Norken S.L. 

were used for the TS-MPC formulation. These two commercial products were 

characterized elsewhere by Formosa et. al. [16]. In addition, MPCM and AEA were 

used as admixtures. 

The MPCM used was Micronal
®
 DS 5008X from BASF company, which consist in 

a paraffin with a phase change temperature of 23˚C and a melting enthalpy value of 135 



kJ·kg
-1

. The commercial AEA used was Centrament Air 207 from MC Bauchemie 

company. 

 

2.2. Samples Preparation 

The TS-MPC mortars were prepared by mixing LG-MgO, MKP, MPCM, tap 

kneading water, and the AEA according to the designed formulations as shown in Table 

1. All mixtures were prepared in the same way, i.e.: the solid reagents (LG-MgO, MKP, 

and MPCM) with a total mass of 3 kg were added and weighed successively into the 

mixer. Subsequently, the liquid reagents (tap kneading water and AEA) in order to 

continue with mixture procedure were properly added. On the other hand, tap water and 

the additive were mixed to be subsequently introduced into the mixer with the rest of 

the components. The mixture was first mechanically stirred at low speed during 120 s, 

and then at high speed during 60 s, with 60 s as intermediate stop between both. Later, 

the mixture was poured into moulds and compacted in three steps by using a vibrating 

table, during 10 s for the first and second step and 5 s for the third one. Among each 

steps the vibration was stopped during 60 s. The moulds were introduced into a 

humidity chamber at 25˚C ± 1˚C for 24 hours (relative humidity of 95% ± 5%). Finally, 

the specimens were unmoulded and cured at 20˚C ± 1˚C (relative humidity of 10 % ± 5 

%) until constant weight, up to 7 days. Three prism shaped specimens of 40 x 40 x 160 

mm and three plate shaped specimens of 150 x 150 x 35 mm were prepared for each 

formulation. Table 2 summarizes the conducted tests.  

 

Fig. 1 shows a flowsheet of the experimental measurements carried out. The plate 

shaped specimens were used for thermal conductivity, thermal cycling test, and bulk 

density and porosity measurements at the age of 7, 8, and 10 days, respectively. For the 

bulk density and the porosity, the specimens were cut in order to obtain three samples of 



40 x 75 x 35 mm. Furthermore, Modulus of Elasticity (MOE) and flexural and 

compressive strength were determined in the prism shaped specimens at the age of 7-

21-28 and 28 days, respectively. The measurements were performed per triplicate for 

each formulation.  

 

 

Fig. 1. 

 

2.3. Property measurements 

2.3.1. Thermal conductivity 

The thermal conductivity was determined by using a Quickline-30 Thermal 

Properties analyser equipment. The analyser comes after a dynamic measurement 

method, based on the ASTM standard D5930 [24], using a surface probe placed in a 

planar area of the shaped plate sample. The used probe has a measuring range of 0.3 to 

2.0 W·m
-1

·K
-1

. For each plate, three measurements at different temperatures (12˚C, 

20˚C, and 29˚C) were measured per triplicate at the age of 7 days, and then the average 

value of the thermal conductivity was determined. The selected values represent the 

upper and lower temperatures of the MPCM phase change, as well as at room 

temperature (around the phase change). 



 

2.3.2. Thermal cycling test 

The shaped plate specimens were subjected to sudden temperature changes to 

evaluate the thermal inertia of the TS-MPC mortars. As shown in Fig. 2, the plate was 

first thermally stabilized in a fridge at 12˚C during 24 hours, and then introduced into an 

oven at 40˚C. After 3 hours, the sample was once again introduced into the fridge 

during 3 more hours. This cycling procedure aims to simulate real environmental 

variations during the day and night (e.g. Mediterranean climate). The surface and 

internal temperature data of the sample were collected during this complete cycle, by 

using thermocouples and a thermal data-logger. Thermal cycling tests were performed 

one day after measuring the thermal conductivity (i.e. at the age of 8 days). 

 

 

Fig. 2. 

 

2.3.3. Bulk density and porosity 

Specimens used for thermal cycling tests were previously conditioned to determine 

bulk density (ρ) and porosity (ϕ) (cut and dried at 40ºC during 24 hours). Hence, both 

properties were studied for a better understanding of thermal and mechanical properties 



of the TS-MPC mortars (i.e. at the age of 10 days). The values were determined at room 

temperature following the Archimedes principle, as Eq. (1) and Eq. (2) show: 

                           
 

      
          

                
 (1) 

                                
                         

                
     (2) 

 

2.3.4. Modulus of Elasticity, flexural and compressive strength 

MOE measurements were carried out through a non-destructive test following the 

standard UNE-EN 12504-4 [25]. Tests were carried out by means of acoustic waves’ 

application in the longitudinal direction of shaped-prism specimens. Then, the wave 

delay time along the length of each specimen was measured with a C368 Matest 

equipment. The results from tests were obtained assuming that the expressions used in 

the estimation of MOE were valid at both isotropic and homogeneous media [17]. MOE 

of each formulation was determined with the wave delay time value according to Eq. (3) 

and Eq. (4): 

                                           (3) 

                                                (4) 

 

where ρ (kg·m
-3

) is the density, V (m·s
-1

) is the longitudinal passage velocity, L (m) is 

the prism length, and   (Hz) is the longitudinal vibration frequency.  

The compressive (σc) and flexural strength (σf) tests at 28 curing days of the TS-

MPC mortars were determined according to UNE-EN 196-1 [26] using an Incotecnic 

MULTI-R1 equipment. A progressive load until fracture was applied in both cases, with 

a loading rate of 240 kg·s
-1

 and 5 kg·s
-1

 for compressive and flexural strength, 

respectively. Regarding σf test, it was first measured the maximum applied load for each 

of the three prism shaped specimens and then σf was determined. In the case of σc test, 



each of the two halves obtained in the flexural test was used; hence, 6 values of 

maximum applied load were determined.  

 

2.3.5. Microstructure and morphology 

The microstructural and morphological investigation of TS-MPC mortars were 

carried out with a scanning electron microscope (SEM) FEI Quanta 200. The 

micrographs were collected at voltages of 20 kV and working distance of 10 mm. The 

preparation of the samples for SEM observation consisted of cutting the plate shaped 

specimens after thermal cycling tests. Consequently, a diamond disc cutter at low 

velocity (140 min
-1

) has been used to avoid the degradation of the microcapsules. Two 

planar samples of one cm
2
 in size were obtained from each formulation. The samples 

were coated with graphite due to the non-conductive nature of the TS-MPC mortars. 

 

3. Results and discussion 

3.1. Thermal properties 

3.1.1. Thermal conductivity 

Fig. 3 depicts the thermal conductivity trend of TS-MPC mortars, measured at 12˚C, 

20˚C, and 29˚C, as a function of MPCM and AEA added. As expected, the results show 

an inverse relation between the added admixtures amount and the thermal conductivity 

obtained. As expected, in the sust-MPC (0% MPCM) thermal conductivity increases as 

increasing the temperature. The MPCM used in this research are mainly composed of 

heptadecane and octadecane [27]. Therefore, MPCM presents a lower thermal 

conductivity than the k-struvite [28–30]. Hence, the higher amount of MPCM in the 

mixture, the lower thermal conductivity of the obtained TS-MPC mortars, as it is shown 

in  Fig. 3. Regarding thermal conductivity at 29ºC in TS-MPC mortars, its value was 

lower than those at 20ºC, due to liquids’ thermal conductivity is lower than solids.  



 

Fig. 3. 
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As it can be observed in Fig. 4, an increase of the porosity produced by increasing 

the amount of admixtures has a positive effect on the thermal conductivity decrease of 

TS-MPC mortars because air into pores hinder the heat transfer. 

 

 

Fig. 4. 

 

3.1.2. Thermal cycling test 

Through these tests a greater understanding of the relationship between the 

admixtures amount and the thermal inertia were obtained. Fig. 5 depicts the room 

temperature (RT) where was the plate and the internal temperature of shaped plate 

specimen during a complete heating-cooling cycle for each formulation. Regarding the 

thermal inertia of the TS-MPC mortars, the effect of MPCM and AEA can be analysed 

by observing the shape of the obtained curves. In the first case, the increase of MPCM 

quantity involves an increase of latent heat storage capability, which means a greater 

thermal inertia on the TS-MPC mortars. This phenomenon is specially observed when 

the mortar temperature is around 23ºC (e.g. Fig. 5c). At this temperature takes place the 

solid–liquid phase change of the paraffin contained in the microcapsules (MPCM) [31]. 



After approximately one hour of the heating and cooling cycle, it can be observed that 

there is a substantial difference in temperature among mortars containing and not 

containing MPCM. On the other hand, the increase on the amount of MPCM and AEA 

leads to an increase in the porosity, which involves in turn a decrease of the thermal 

diffusivity. This behaviour suggests that the porosity counteracts the effect of increasing 

the thermal inertia produced by increasing the amount of MPCM. 
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Fig. 5. 

 

3.2. Bulk density and porosity 

The bulk density and porosity were determined to analyse the thermal and 

mechanical behaviour of the TS-MPC mortars because these properties are strongly 

linked. As illustrated in Fig. 4 and Fig. 6, the effect of increasing the amount of 

admixtures added in the sust-MPC mortars leads to a variation on the values of these 

two above mentioned properties. First, the low MPCM density [32,33] compared to the 

MPC mortars contributes to the decrease of the material bulk density. On the other 

hand, increasing the amount of AEA causes an increase of porosity, as depicted in Fig. 

4, which in turn helps to decrease the bulk density. Furthermore, the trend observed in 

Fig. 4 not only demonstrates that AEA satisfies its main objective of increase porosity 

but also validates that MPCM also contributes. 

c 



 

Fig. 6. 

 

3.3. Mechanical properties 

3.3.1. Modulus of Elasticity 

MOE of the mortars after 7, 21, and 28 days are shown in Fig. 7. Results are related 

to porosity and bulk density of TS-MPC shown in Fig. 4 and Fig. 6, respectively. An 

increase of the porosity leads to a decrease of bulk density, which involves less 

compactness of TS-MPC mortar and lower MOE. When compactness decreases, the 

ultrasound wave propagation through the material decreases as well as the stiffness [17]. 

Likewise, the results reveal that MOE increases when the curing time increases. This 

phenomenon is due to the crystallization, which takes place on the cement matrix of 

mortars [34–36]. The crystallization effect is more noticeable on formulations without 

AEA because their porosity is lower as well as a higher densification of the mortar is 

allowed. Finally, it is important to highlight the effect of MPCM addition, because a 

higher quantity leads to a lower MOE value. This behaviour is due to the lower MOE 

value of the microcapsules [27] compared with the K-struvite cementitious matrix. 
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3.3.2. Flexural strength 

The flexural strength of TS-MPC mortars was measured after 28 days, and the 

results are illustrated in Fig. 8. As it was expected, the addition of admixtures leads to a 

decrease in the mechanical properties. This trend is because of the mortars porosity 

effect on the admixtures. The increase of porosity caused by the MPCM and the AEA 

involves a decrease in flexural strength. The flexural strength remains practically 

constant for mortars without AEA, because the microcapsules decrease the stiffness, as 

it was reported in the previous section, and reduce the negative effect of the porosity 

generated for the AEA addition (see Fig. 4). Flexural strength values comply with 

requirements for the cement flat sheets of European standard [37] excepting 

formulations containing PCM and 5% of AEA. Moreover, the values are comparable to 

other commercial products used for the same purpose. 

 

 

Fig. 8. 

 

3.3.3. Compressive strength 



The compressive strength of the TS-MPC mortars measured after 28 days is 

illustrated in Fig. 9. As for the flexural strength, the addition of admixtures decreases 

the compressive strength, although according to the results these values can be useful 

for certain building applications. The compressive mechanism promotes the closing of 

cavities and a reduction on the speed of cracks propagation [38,39].  

 

 

Fig. 9. 

 

3.4.Morphology and composition 

The micrograph of the TS-MPC mortar, by means of SEM in backscattering mode, 

is shown in Fig. 10. As can be observed, the mortar is mainly formed by a cementitious 

matrix with the typical morphology of K-struvite (sust-MPC matrix). The 

microstructure composition of TS-MPC has been exhaustively studied elsewhere 

[17,18]. The presence of inert phases, such as carbonates and unreacted LG-MgO cores, 

act as fillers improving the mechanical behaviour of the mortar [17]. Finally, it should 

be noted that MPCM (black spherical zones) are proper embedded into the cementitious 



matrix, suggesting an appropriate cohesion and spatial homogeneity between the binder 

matrix and the MPCM added. 

 

Fig. 10. 

 

4. Conclusions 

In this paper, an experimental investigation of sust-MPC mortars containing MPCM 

and AEA are presented. Results corroborate that it is possible to formulate sust-MPC 

with magnesium by-product incorporating an AEA and MPCM as admixture improving 

thermal properties for the energy consumption reduction in HVAC systems. This 

implies the revalorization of the by-product and allows promoting aspects such as 

sustainability and reduction of CO2 emissions due to the reduction of mining activity of 

pure MgO. 

Moreover, the study of bulk density and porosity allows determining the influence 

of the admixtures content in the TS-MPC mortars. An increase of the amounts of 

admixtures involves lower bulk density and higher porosity. In addition, the increase in 



content of MPCM and AEA reduces the thermal conductivity. Furthermore, the heat 

storage capacity of the TS-MPC mortars is significantly improved with the addition of 

MPCM. Besides, MOE evaluation of each formulation at different ages shows that the 

value is increased over time, due to the densification and crystallization of K-struvite 

cementitious matrix. The content variation of MPCM and AEA in the TS-MPC dosages 

has a negative effect on the mechanical properties, which shows a downward trend 

when admixtures amounts increase. This behaviour is attributed to an increase of 

porosity and a density decrease. 

Regarding the microstructure analysis of TS-MPC, the main product obtained is K-

struvite, which acts as a binder containing inert phases as fillers. It can also be observed 

that MPCM were well embedded into the binder matrix.  

Finally, it is important to highlight that the present study sheds light on the 

formulating feasibility of a new eco-friendly mortar, named as the TS-MPC. Moreover, 

the TS-MPC thermal behaviour suggests the possibility to be used it as a part of a 

thermal passive conditioning system in order to reduce the consumption of HVAC 

systems. The future authors’ investigations will be focused on the study of stability of 

MPCM on sust-MPC matrix. 
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Tables  

Table 1. Mixture proportion of sust-MPC mortars studied. 

 

Reference 

Solid (S)    

LG-MgO/S 

(wt %) 

MKP/S 

(wt %) 
W/S (wt%)

 MPCM/S 

(wt %) 

AEA/S 

(wt %) 

0AD-0PCM 60 40 34 0 0 

2AD-0PCM 60 40 34 0 2 

5AD-0PCM 60 40 34 0 5 

0AD-5PCM 60 40 34 5 0 

2AD-5PCM 60 40 34 5 2 

5AD-5PCM 60 40 34 5 5 

0AD-10PCM 60 40 34 10 0 

2AD-10PCM 60 40 34 10 2 

5AD-10PCM 60 40 34 10 5 

0AD-15PCM 60 40 34 15 0 

2AD-15PCM 60 40 34 15 2 

5AD-15PCM 60 40 34 15 5 

 

  



Table 2. Conducted tests for each specimen. 

 

Shape 
Dimensions 

(mm) 

Number of 

specimens 
Measured property Specimens age (days) 

Plate 150 x 150 x 35 3 

Thermal conductivity 7 

Thermal cycling test 8 

Bulk density 10 

Porosity 10 

Prism 40 x 40 x160 3 

Modulus of Elasticity 7, 21, and 28 

Compressive strength 28 

Flexural strength 28 

 

  



Figure Captions 

Fig. 1. Flowsheet of the experimental measurements carried out. 

Fig. 2. Thermal cycling test scheme. 

Fig. 3. Thermal conductivity of TS-MPC mortars at 12ºC, 20ºC and 29ºC as a function 

of weight ratio of MPCM added. (a) 0% AEA, (b) 2% AEA, and (c) 5% AEA. 

Fig. 4. Porosity values of TS-MPC mortars as a function of weight ratio of MPCM and 

AEA added. 

Fig. 5. Thermal behaviour of TS-MPC mortars as a function of weight ratio of MPCM 

added. (a) 0% AEA, (b) 2% AEA, and (c) 5% AEA. 

Fig. 6. Bulk density values of TS-MPC mortars as a function of weight ratio of MPCM 

and AEA added. 

Fig. 7. Modulus of elasticity of TS-MPC mortars at different curing days as a function 

of the weight ratio of the MPCM and AEA added. (a) 7 days, (b) 21 days, and (c) 28 

days. 

Fig. 8. Flexural strength of TS-MPC mortars as a function of weight ratio of MPCM and 

AEA added. 

Fig. 9. Compressive strength of TS-MPC mortars as a function of weight ratio of 

MPCM and AEA added. 

Fig. 10. SEM micrograph of TS-MPC microstructure (5AD-15PCM). 

 


