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Low soil fertility is one of the factorsmost limiting agricultural production, with phosphorus

deficiency being among themain factors, particularly in developing countries. To deal with

such environmental constraints, remote sensing measurements can be used to rapidly

assess crop performance and to phenotype a large number of plots in a rapid and

cost-effective way. We evaluated the performance of a set of remote sensing indices

derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared)

data as phenotypic traits and crop monitoring tools for early assessment of maize

performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under

field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization

conditions. Remote sensing measurements were conducted in seedlings at two different

levels: at the ground and from an aerial platform. Within a particular phosphorus level,

some of the RGB indices strongly correlated with grain yield. In general, RGB indices

assessed at both ground and aerial levels correlated in a comparable way with grain

yield except for indices a∗ and u∗, which correlated better when assessed at the aerial

level than at ground level and Greener Area (GGA) which had the opposite correlation.

The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an

active sensor also correlated better with grain yield than the NDVI derived from the

multispectral camera mounted in the aerial platform. Other multispectral indices like the

Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the

aerial level but overall, they correlated in a weaker manner with grain yield than the

best RGB indices. This study clearly illustrates the advantage of RGB-derived indices

over the more costly and time-consuming multispectral indices. Moreover, the indices

best correlated with GY were in general those best correlated with leaf phosphorous

content. However, these correlations were clearly weaker than against grain yield and

only under low phosphorous conditions. This work reinforces the effectiveness of canopy

remote sensing for plant phenotyping and crop management of maize under different

phosphorus nutrient conditions and suggests that the RGB indices are the best option.
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INTRODUCTION

Sub-Saharan Africa (SSA) has one of the world’s fastest growing
populations but the growth rate of food production has not
kept pace with this, leading to a food deficit (Mclntyre et al.,
2009). Low levels of soil phosphorous (P) and nitrogen (N), are
the main constraints to crop growth in these areas (Buerkert
et al., 2001). Phosphorous fertilizers are relatively costly in
SSA and are scarce in some countries, partly due to poorly
developed markets, and so phosphorous application is low
(1 kg ha−1 compared with 14.3 kg ha−1 in Asia) (Smalberger
et al., 2006). Plant scientists face the challenge of solving these
limitations while taking into account the additional implications
of climate change on food security (Cairns et al., 2012, 2013a).
In that sense, affordable technologies capable of monitoring crop
performance for agronomical purposes, yield prediction or to
assess phenotypic variability for breeding are bottlenecks in the
pathway to full exploitation of this technology (Reynolds et al.,
2012; Araus and Cairns, 2014).

Remote sensing has become an important methodology for
the application of agricultural monitoring and to improve
precision and throughput in phenotyping. There is a growing
body of literature demonstrating the usefulness of remote
sensing for a wide range of applications in agriculture: growth
monitoring, yield prediction, stress detection, nutrient deficiency
diagnosis, and control of plant diseases (Fiorani and Schurr,
2013). In the case of phenotyping, these methodologies offer the
opportunity to screen large numbers of genotypes at a lower
cost and faster than conventional phenotyping and provide to
breeding programs the opportunity to assess genetic diversity
under field conditions. Remote sensing methods enable detailed
non-invasive information to be captured throughout the plant
life cycle. Among the different remote sensing techniques,
the most usual indices used are derived from Red-Blue-
Green (RGB) images (Casadesús et al., 2007) and multispectral
(Thenkabail et al., 2002), hyperspectral (Blackburn, 2007) and
thermal sensors and images (Araus and Cairns, 2014; Deery
et al., 2016). However, large differences exist in the price
of the different equipment deployed (e.g., spectrometers vs.
conventional red/green/blue cameras).

The traditional procedure has involved the use of
multispectral sensors and the development of numerous
vegetation indices associated with vegetation parameters such
as above-ground biomass, water and nutrient deficiency, and

Abbreviations: SSA, Sub-Saharan Africa; RGB, Red-Blue-Green; NDVI,

Normalized Difference Vegetation Index; UAV, Unmanned aerial Vehicle; GY,

Grain yield; VIs, Vegetation Indices; HIS, Hue-Intensity-Saturation; GA, Green

Area; GGA, Greener Area; AN, Ammonium Nitrate; CIMMYT, International

Maize and Wheat Improvement Center; masl, meters above sea level; CP-

OES, Inductively Coupled Plasma Optical Emission Spectroscopy; P content,

Phosphorous content; LCC, Chlorophyll Content; PRI, Photochemical Reflectance

Index; SAVI, Soil Adjusted Vegetation Index; MCARI, Modified Chlorophyll

Absorption Ratio Index; WBI, Water Band Index; RDVI, Renormalized Difference

Vegetation Index; EVI, Enhanced Vegetation Index; ARI2, Anthocyanin

Reflectance Index 2; CRI2, Carotenoid Reflectance Index 2; TCARI, Transformed

Chlorophyll Absorption in Reflectance Index; OSAVI, Optimized Soil-Adjusted

Vegetation Index; 1F/Fm′, Effective Fluorescence Quantum yield; NIR,

Near-Infrared.

crop yield (Petropoulos and Kalaitzidi, 2012). The Normalized
Difference Vegetation Index (NDVI) is one of the most well-
known vegetation indices derived from multispectral remote
sensing, as it includes visible and near infrared radiation.
Although, it was originally developed for satellite remote
vegetation sensing, it has also been found useful in ground-
based and aerial applications. In fact, several groups of spectral
variables have been identified as being of value in characterizing
plant performance and empirical indices have been defined.
Among these, some are modifications of the NDVI that takes
atmospheric effects and/or soil influences into account in order to
increase their sensitivity, like the Soil-adjusted Vegetation Index
(SAVI) or the Renormalized Vegetation Index (RDVI) (Wu,
2014). Others, like the Photochemical Reflectance Index (PRI),
aim to assess how efficiently the radiation is used by plants during
photosynthesis, while the Modified Chlorophyll Absorption in
Reflectance Index (MCARI) or the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) (Haboudane et al.,
2002), are focused on quantifying photosynthetic pigments.
Further, other indices also have been used to determine the water
status of plants, like the Water Index (WI) (Peñuelas et al., 1993;
Babar et al., 2006).

The use of information derived from conventional digital
RGB (of red, green, blue) images may represent a low-
cost alternative to the use of multispectral or hyperspectral
information for formulating vegetation indices. The images
can be processed to convert RGB values into indices based
on the models of Hue-Intensity-Saturation (HIS), CIELab, and
CIELuv cylindrical-coordinate representations of colors. The
RGB indices implementation has been extensive and successful
for providing a wide-range of phenomic data about genotypic
performance under different growing conditions (Casadesús
et al., 2007; Casadesús and Villegas, 2014; Vergara-Díaz et al.,
2015, 2016; Zaman-Allah et al., 2015; Zhou et al., 2015; Yousfi
et al., 2016).

The environmental variability throughout the day, like
changes in radiation, temperature or the occurrence of clouds,
affects the phenotypic observations inconsistently and may limit
the accuracy of the time-consuming proximal measurements
at ground level (e.g., the relative chlorophyll content). The
incorporation of these methodologies into aerial based platforms
enables the simultaneous characterization of a larger number of
plots (i.e., spectral reflectance at solar noon), which may help
to minimize the effect of changing environmental conditions
(Araus and Cairns, 2014). This becomes extremely important
with regards to the increasing demand to support and accelerate
progress in breeding for novel traits, which at the same time
requires accurate high throughput phenotyping of a large
numbers of plants. Furthermore, the added cost of the aerial
platforms may be offset by time savings by reducing manual field
labor.

The vegetation indices, formulated from the visible and
infrared spectrum of the light reflected by plants or derived
from RGB conventional digital images are the most usual remote
sensing method to assess plant nutrient status (Vergara-Díaz
et al., 2016). However, while most studies that have focused on
the spectral evaluation of nutrient deficiencies of crops have
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concerned analysis of nitrogen content, such evaluations are
far less common with other nutrients, including phosphorous
(Osborne et al., 2002; Mahajan et al., 2014). In addition to the
reduction in the total biomass, the lack of other mineral nutrients
can also influence the color of leaves. In the case of phosphorus,
it is well-known that leaf darkening is caused by a phosphorous
deficiency, but the relationship between symptoms and leaf color
is less evident than for nitrogen deficiency.

Because maize is among the major crops globally, and the
main staple for direct human consumption in SSA (Cairns
et al., 2013b), the aim of this study was to test the efficiency of
different remote sensing methods and tools in assessing the yield
performance and the phosphorus status of a total of 26 maize
hybrids under optimum and no phosphorus fertilization. The
performance of remote sensing assessment from an unmanned
aerial platform and from the ground was compared. Different
categories of sensors were tested, including RGB cameras (placed
on an aerial platform as well as at ground level), alongside a
multispectral camera (on the aerial platform) and a spectrometer
with an active sensor designed to measure the NDVI at ground
level. Measurements were performed at the seedling stage in
order to assess early predictions of plant performance and yield.
Phosphorus fertilization affects plant growth which subsequently
may alter water status (e.g., through differences in the amount
transitive area or in root development) and nitrogen uptake
and assimilation. In that sense, the stable isotope compositions
of C and N (δ13C and δ15N) were measured in leaf samples
as a complementary selection traits, aiming to assess any effect
of phosphorous assimilation on the water status and nitrogen
metabolism of the plant. Thus, for a C4 species such as maize in
spite δ13C composition while barely reflects genotypic variability
in water performance, it may still catch differences between
treatments in the plant water status (Cabrera-Bosquet et al.,
2009); while δ15N may reflect the effect of the treatment on the
uptake and further assimilation of N (Evans, 2001).

MATERIALS AND METHODS

Plant Material and Growing Conditions
Field trials were carried out at the Southern Africa regional
station of CIMMYT (International Maize and Wheat
Improvement Center) located in Harare (−17.800, 31.050,
1498 masl), Zimbabwe. The soil in the station is characterized
by a pH slightly lower than 6, nitrogen as nitrate (NO−

3 ) of
around 4 µg g−1 and phosphorous contents of nearly 20 µg g−1

(Vergara-Díaz et al., 2016).
A set of 25 maize hybrids developed at CIMMYT plus a

local check (CZH131001, CZH0524, CZH141042, CZH0631,
CZH131002, CZH0513, CZH131007, CZH03042, CH12716,
CZH03004, CZH15020, SC513, CZH132210, CZH142125,
CZH132218, CZH142153, CZH142159, SC719, CZH142186,
CZH142212, CZH142074, CZH142003, CZH142206,
CZH142195, and CZH142210) were sown during the wet
season on December 2015. These maize hybrids reflect a large
variability in plant performance to different phosphorous
conditions. The experimental design consisted of two separated

phosphorous treatments with 26 plots each corresponding to
each maize genotype studied (52 plots in total).

Seeds were planted on December 21st 2015, in three rows
per plot; rows were 4m long and 75 cm apart (9 m2/plot), with
17 plants per row and 25 cm between plants in each a row.
A split-plot in a randomized complete block design without
replicates was used. The field was fertilized with 200 kg·ha−1 of
ammonium nitrate (AN) and 250 kg·ha−1 of muriate of potash
before sowing (basal fertilizer), followed with 250 kg·ha−1 AN
for top dressing. In order to generate differential phosphorus
conditions, 400 kg/ha of superphosphate fertilizer were added at
pre-sowing to one half of the trial, corresponding to the optimum
phosphorous fertilized conditions (OP). The other part of the
trial corresponded to the non-phosphorus fertilized conditions
(NPF). The trial was depleted of phosphorus for 1 year. A two-
row border of a commercial maize variety was sown on the
edges of the trial to prevent border effects. Trials were gathered
following the standard procedures of CIMMYT. The central
3.5m of each row was harvested discarding 2 plants at each end,
thus the collected grain yield (t·ha−1) corresponded to the weight
of 7.87 m2.

In addition, these hybrids were also tested in other trials in
Zimbabwe under optimal fertilization conditions comparable to
those of the OP trial of the experimental station. Evaluations
were performed at the Agricultural Research Trust site in Harare
(−17.716, 31.716, 1,516 masl). For these trials, the fertilization
conditions were basically the same than at the OP conditions of
the main study (CIMMYT Station).

Proximal and Aerial Data Collection
Remote sensing evaluations were performed on seedlings (<5
leaves) during the last week of January. Vegetation indices
derived from RGB images were evaluated for each plot at ground
and aerial levels. At ground level one conventional digital picture
was taken per plot, holding the camera about 80 cm above the
plant canopy in a zenithal plane and focusing near the center
of each plot. The digital camera used was an Olympus OM-
D (Olympus, Tokyo, Japan). Pictures were acquired at a 16-
megapixel resolution with a sensor using a 14-mm focal length,
triggered at a speed of 1/125 s with the aperture programmed
in automatic mode. NDVI was also determined on individual
plots at ground level using a portable spectrometer (GreenSeeker
handheld crop sensor, Trimble, USA). Additionally, the leaf
chlorophyll content (LCC) of the last developed leaf was
measured using a Minolta SPAD-502 portable chlorophyll meter
(Spectrum Technologies Inc., Plainfield, IL, USA). Eight leaves
were measured for each plot (four per row), each leaf being
the last fully expanded within a plant. For each leaf four
measurements were taken from the middle portion of the lamina.

Further, RGB and multispectral aerial images were acquired
using an unmanned aerial vehicle (UAV) (Mikrokopters OktoXL,
Moormerland, Germany) flying under remote control at around
50m (Figure 1). The camera used for the aerial images was
a Lumix GX7 (Panasonic, Osaka, Japan), a digital single lens
mirrorless camera with an image sensor size of 17.3 × 13.0mm.
Images were taken at 16-megapixel resolution using a 20-
mm focal length. In addition, a multispectral camera covering
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FIGURE 1 | RGB (A) and false-color infrared (B) ortho-mosaics of the plot

images under P fertilization (right plots) and no fertilization (left plots).

wavelengths in the visible and near infrared regions of the
spectrum (MCA12, Tetracam Inc., Chatsworth, CA, US) was also
mounted in the drone. The camera consisted of 12 independent
image sensors, and optics with user configurable filters. It
captured 15.6-megapixels of image data and transferred this to 12
separate flashmemory cards. Both RGB andmultispectral images
were taken at the rate of one every 5 s.

Image Processing
To obtain correct image mosaics from the multispectral images a
3D reconstruction approach was needed to produce an accurate
ortho-mosaic and remove the effects of the UAV flight. Agisoft
PhotoScan Professional (Agi- soft LLC, St. Petersburg, Russia)
was employed for this task using 20–30 overlapping images for

both mosaics (RGB and multispectral) with at least 80% overlap.
Through the open source image analysis platform FIJI (Fiji is Just
ImageJ; http://fiji.sc/Fiji), regions of interest were established at
each row for the plots to be cropped.

RGB pictures were subsequently analyzed using a version
of the Breedpix 0.2 software adapted to JAVA8 and integrated
as a plugin within FIJI; https://github.com/George-haddad/
CIMMYT). This software enables the extraction of RGB
vegetation indices (VIs) in relation to different properties of
color (Casadesús et al., 2007). Essentially, the indices are based
on either the average color of the entire image, in diverse units
related to its “greenness,” or on the fraction of pixels classified
as green canopy relative to the total number of pixels in the
image. In HSI color space, the Hue (H) component describes
the color itself traversing the visible spectrum in the form of
an angle between 0◦ and 360◦, where 0◦ means red, 60◦ means
yellow, 120◦ means green and 180◦ means cyan. Derived from
the Hue, Green Area (GA), and Greener Area (GGA) analyze the
proportion of green pixels in the image. GA is the percentage
of pixels in the image in the hue range from 60 to 180◦, that is,
from yellow to bluish green. Meanwhile, GGA is somewhat more
restrictive because the range of hue considered by the index is
from 80 to 180◦, excluding yellowish-green tones. In the CIELab
color space model, dimension L∗ represents lightness, and the
green to red range is expressed by the a∗ component, with a
more positive value representing a purer red, and conversely a
more negative value indicating a greener color. Meanwhile, blue
to yellow is expressed by the b∗ component, where the more
positive the value the closer it is to a pure yellow, whereas the
more negative the value the closer it is to blue. Similarly, in the
CIELuv color spacemodel, dimensions u∗ and v∗ are perceptually
uniform coordinates, where the visible spectrum starts with blue
at the bottom of the space, moving through green in the upper left
(mostly scaled by v∗) and out to red in the upper right (mostly
scaled by u∗). The multispectral indices, formulated with the
Tetracam camera and detailed in Table 1, were calculated from
the multispectral images using a custom FIJI macro code.

Leaf Phosphorous Content
Similar leaves to those used for leaf chlorophyll measurements
were sampled and subsequently oven dried at 70◦C for 24 h
and ground to a fine powder. For the analysis of P content, a
total of 100mg of sample were digested in acid for 24 h at 90◦C
within Teflon vessels, using 2ml of NHO3 and 0.5ml of hydrogen
peroxide, with samples subsequently re-suspended in 30ml
of deionized water. Analyses were performed by Inductively
Coupled PlasmaOptical Emission Spectroscopy (ICP-OES) using
a Perkin-Elmer Optima 3200RL Spectrometer (Perkin-Elmer,
Massachusetts, EEUU) at the Scientific Facilities of the University
of Barcelona. Leaf phosphorous content was expressed in mg of
P per g of dry mass.

Total Nitrogen Content and Carbon and
Nitrogen Stable Isotope Compositions
The same ground material was also used to analyze the total
nitrogen content together with the stable isotopic abundances
of carbon and nitrogen in the leaves. Samples of about
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TABLE 1 | Indices derived from the multispectral visible and near infrared bands.

Target group Index Equation Wavelengths References

Broadband

greenness

Normalized difference vegetation index (NDVI) (B840 – B670)/(B840 + B670) Red, NIR Rouse et al., 1973

Soil adjusted vegetation index (SAVI) (B840 – B670)/(B840 + B670 + L)*(1 + L) Red, NIR Huete, 1988

Low vegetation, L = 1, intermediate, 0.5, and high 0.25

Optimized soil-adjusted vegetation index

(OSAVI)

((1 + 0.16)*(B780 – B670))/((B780 + B670 + 0.16)) Red, NIR Rondeaux et al.,

1996

Renormalized difference vegetation index

(RDVI)

(B840 – B670)/((B840 + B670)∧1/2) Red, NIR Roujean and Breon,

1995

Enhanced vegetation index (EVI) 2.5*(B840 – B670)/(B840 + (6*B670) − (7.5*B450) + 1) Blue, Red, NIR Huete et al., 2002

Light Use

efficiency

Photochemical reflectance index (PRI) (B550 – B570)/(B550 + B570) Green Gamon et al., 1997

Leaf pigments Modified chlorophyll absorption ratio index

(MCARI)

[(B700 – B670) – 0.2*(B700 – B550)]*B700/B670 Green, Red Daughtry, 2000

Transformed chlorophyll absorption in

reflectance index (TCARI)

3*(B700 – B670)-0.2*(B700 – B550)*(B700/B670) Green, Red, NIR Haboudane et al.,

2002

Anthocyanin reflectance index 2 (ARI2) B840*(1/B550 – 1/B700) Blue, Red, NIR Gitelson et al., 2001

Carotenoid reflectance index 2 (CRI2) 1/B550 – 1/B700 Blue, Red Gitelson et al., 2002

Canopy water

content

Water band index (WBI) (R840 – B670)/(B840 + B670)∧(1/2) Red, NIR Peñuelas et al., 1993

0.7mg of dry matter and reference materials were weighed
into tin capsules, sealed, and then loaded into an elemental
analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany)
coupled with an isotope ratio mass spectrometer (Delta C
IRMS, ThermoFinnigan), operating in continuous flow mode.
Measurements were carried out at the Scientific Facilities of the
University of Barcelona. The 13C/12C ratios (R) of plant material
were expressed in composition (δ13C) notation (Coplen, 2008) as
follows:

δ
13C (‰) = [(R sample/Rstandard) − 1] x1000 (1)

Where: sample refers to plant material and standard to Pee
Dee Belemmite (PDB) calcium carbonate. International isotope
secondary standards of a known 13C/12C ratio (IAEA CH7,
polyethylene foil, IAEA CH6 sucrose and USGS 40 l-glutamic
acid) were calibrated against Vienna Pee Dee Belemnite calcium
carbonate (VPDB) with an analytical precision of 0.1‰. The
15N/14N ratios of plant material were also expressed in δ

notation (δ15N) using international secondary standards of
known 15N/14N ratios (IAEA N1 and IAEA N2 ammonium
sulfate and IAEA NO3 potassium nitrate), with analytical
precision of about 0.2‰. Further, the C/N ratio was obtained
from these analyses.

Statistical Analysis
Statistical analyses were conducted using the open source
software, RStudio 1.0.44 (R Foundation for Statistical
Computing, Vienna, Austria). Data for the set of physiological
traits were subjected to factorial analyses of variance (ANOVAs)
to test the effects of growing conditions on the different traits
studied. A bivariate correlation procedure was used to calculate
the Pearson correlation coefficients of the different remote
sensing indices against the grain yield and the leaf phosphorus

content. Multiple regressions were calculated via a forward
stepwise method with GY and P content as dependent variables
and the different indices as independent parameters. The figures
were also drawn using the Rstudio software.

RESULTS

The Effect of Phosphorous Availability on
Grain Yield and Leaf Parameters
Omission of phosphorous fertilizer significantly decreased yield
from amean value (across genotypes) of 7.50 to 5.64 t ha−1 under
optimum and no-phosphorous fertilizer conditions, respectively
(Table 2). Moreover, the varieties presented a wide range of yield
and leaf phosphorus content within the fertilization conditions.
Despite this, the phosphorus content of the leaves only correlated
significantly against grain yield under non-phosphorus-fertilized
conditions (Supplementary Figure 1).

The effect of phosphorous fertilization was also significant
for the different leaf parameters studied. Thus, leaf total
phosphorous content (P content) and chlorophyll content (LCC)
strongly decreased in response to a lack of phosphorous fertilizer.
The total nitrogen content (N) also decreased significantly (P <

0.000), although in a weaker manner, whereas the total carbon
content (C) together with the C/N ratio increased slightly without
phosphorous fertilizer, and the stable carbon and nitrogen
isotopic composition did not change.

The Effect of Phosphorous Fertilization and
the Sensor Altitude on Vegetation Indices
Phosphorous-input also affected the RGB and multispectral
indices (Table 3). All RGB indices derived from aerial images
were significantly affected by phosphorous fertilization except
v∗. For the RGB indices measured from the ground, only Hue,
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TABLE 2 | Effect of supplemental phosphorus fertilization on the grain yield (GY),

leaf chlorophyll content (LCC), phosphorous content (P), leaf carbon and nitrogen

concentration (C and N), leaf C/N ratio, and the stable carbon (δ13C) and nitrogen

(δ15N) composition within the non-phosphorous fertilized (NPF) and the optimal

phosphorous (OP) conditions.

NPF OP p-value

GY (t ha−1) 5.64 ± 0.20 7.5 ± 0.20 0.000***

LCC 32.01 ± 0.99 46.19 ± 0.78 0.000***

P (mg/g DW) 2.06 ± 0.08 4.81 ± 0.11 0.000***

C (%) 43.62 ± 0.10 43.03 ± 0.23 0.021*

N (%) 3.95 ± 0.04 4.30 ± 0.06 0.000***

C/N 11.08 ± 0.11 10.06 ± 0.13 0.000***

δ13C (‰) −11.66 ± 0.03 −11.61 ± 0.04 0.428

δ15N (‰) −1.32 ± 0.23 −1.09 ± 0.30 0.541

Values are means ± standard error of the 26 hybrids. Levels of signification: *P < 0.05;
***P < 0.001.

Saturation, a∗, u∗, GA and GGA were significantly affected.
Regardless of how images were collected, GA and GGA exhibited
the strongest changes, decreasing more than the half with the
absence of phosphorous fertilization. In contrast, the CIE-XYZ
color space indices, particularly a∗ and u∗, increased significantly
in absence of phosphorous fertilization (P < 0.0001). Besides,
the values of the vegetation indices varied significantly (P <

0.0001) with imaging height (ground vs. UAV), except for GA
(ground/aerial; GA: NPF 0.08/0.07, OP 0.21/0.20; GGA: NPF
0.08/0.02, OP 0.20/0.12). Hue and GGA were lower when they
were assessed on the ground rather than from the aerial platform,
while the other indices showed the opposite behavior.

The multispectral index NDVI also decreased significantly
(P < 0.0001) as response to lack of phosphorus fertilizer
(Table 3). The values of NDVI were slightly lower when this
index was measured with the hand-held sensor at ground level
compared with the same index assessed from the multispectral
camera placed in the aerial platform. Apart from EVI, which
was not affected by phosphorus fertilization, the values of the
other multispectral indices measured via the UAV’s multispectral
images (Table 1) were also significantly smaller (P < 0.000) in
the absence of phosphorous fertilizer compared with optimum
phosphorous.

Correlations between the remote sensing indices Hue, a∗, u∗,
GA, GGA, and NDVI assessed at ground level against the same
indices measured from the UAV were very strong (Table 4).
Moreover, most of these indices exhibited a slope close to 1
(Supplementary Figure 2). In contrast, relationships reported for
the remaining RGB indices (Intensity, Saturation, Lightness, b∗,
and v∗) were much lower.

Performance of Remote Sensing Indices
Assessing Grain Yield and Leaf
Phosphorous
Correlation coefficients for the relationships of grain yield
with both the RGB (Table 5) and the multispectral indices
(Table 6) were calculated. Within both phosphorus conditions
and regardless of the imaging height (ground or from UAV) of

TABLE 3 | Effect of phosphorous fertilization on remote sensing indices derived

from RGB and spectral measurements within the non-phosphorous fertilized

(NPF) and the optimal phosphorus (OP) conditions.

NPF OP p-value

RGB INDICES/GROUND

Intensity 0.36 ± 0.00 0.36 ± 0.00 0.861

Hue 30.63 ± 0.45 39.34 ± 1.23 0.000***

Saturation 0.19 ± 0.00 0.18 ± 0.00 0.000***

Lightness 42.35 ± 0.11 42.67 ± 0.25 0.243

a* 1.18 ± 0.15 −1.93 ± 0.37 0.000***

b* 18.88 ± 0.23 18.48 ± 0.20 0.200

u* 10.82 ± 0.22 6.34 ± 0.49 0.000***

ν* 20.38 ± 0.24 20.65 ± 0.26 0.440

GA 0.08 ± 0.01 0.21 ± 0.01 0.000***

GGA 0.08 ± 0.00 0.20 ± 0.01 0.000***

RGB INDICES/UAV

Intensity 0.50 ± 0.00 0.49 ± 0.00 0.003**

Hue 23.53 ± 0.37 29.64 ± 0.72 0.000***

Saturation 0.24 ± 0.00 0.22 ± 0.00 0.000***

Lightness 55.13 ± 0.25 53.94 ± 0.40 0.014**

a* 9.39 ± 0.22 4.42 ± 0.42 0.000***

b* 26.53 ± 0.22 25.18 ± 0.23 0.000***

u* 28.05 ± 0.34 19.54 ± 0.69 0.000***

ν* 28.28 ± 0.24 27.82 ± 0.25 0.192

GA 0.07 ± 0.01 0.20 ± 0.01 0.000***

GGA 0.02 ± 0.00 0.12 ± 0.01 0.000***

SPECTRAL INDICES

NDVI g 0.30 ± 0.03 0.49 ± 0.03 0.000***

NDVI 0.35 ± 0.01 0.50 ± 0.01 0.000***

SAVI 0.16 ± 0.01 0.24 ± 0.01 0.000***

OSAVI 0.23 ± 0.01 0.34 ± 0.01 0.000***

RDVI 0.16 ± 0.00 0.25 ± 0.01 0.000***

EVI 0.22 ± 0.01 0.35 ± 0.01 0.000***

PRI 0.16 ± 0.01 0.18 ± 0.00 0.001**

MCARI 0.05 ± 0.04 0.06 ± 0.00 0.000***

TCARI 0.08 ± 0.00 0.09 ± 0.00 0.012*

TCARI/OSAVI 0.36 ± 0.01 0.26 ± 0.01 0.000***

ARI2 0.75 ± 0.02 0.67 ± 0.02 0.010*

CRI2 6.65 ± 0.12 6.03 ± 0.20 0.009**

WBI 0.92 ± 0.00 0.94 ± 0.01 0.000***

These indices are defined at section Material and Methods. Values are means ± SE of

the individual values of the 26 genotypes. Levels of signification: *P < 0.05; **P < 0.01;

***P < 0.001.

data acquisition, GA and GGA were best correlated with grain
yield, followed by Hue and a∗. The u∗ index also correlated
well with grain yield but only when measured from the aerial
platform. The rest of the RGB indices correlated far more
weakly or did not correlate with grain yield, irrespective of the
phosphorus fertilization status or the imaging height of index
assessment. Combining both fertilization levels also gave similar
results. The correlations of these indices against leaf phosphorus
content within both phosphorus treatments were in general weak
or absent. It was only under the combination of both fertilization
levels that the remote sensing indices had a clearly improved
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TABLE 4 | Regression coefficients (r) of the relationships between the remote

sensing indices measured at ground against the same VIs measured at aerial level.

r p-value

Intensity 0.275 0.000***

Hue 0.902*** 0.000***

Saturation 0.466 0.000***

Lightness 0.126 0.000***

a 0.919*** 0.000***

b 0.316 0.000***

u 0.903*** 0.000***

ν 0.310 0.000***

GA 0.970*** 0.509

GGA 0.942*** 0.000***

NDVI 0.889*** 0.000***

Correlations were studied across plots within both trials conditions in combination. Levels

of signification: ***P < 0.001.

TABLE 5 | Regression coefficients of the relationships between the RGB-indices,

measured at ground and aerial levels, with grain yield and P content.

Grain yield P content

NPF OP Comb. NPF OP Comb.

RGB INDICES/GROUND

Intensity 0.194 −0.217 −0.084 −0.014 −0.067 −0.041

Hue 0.777*** 0.732*** 0.827*** 0.336 −0.370 0.594*

Saturation 0.468* −0.027 −0.179 0.065 0.247 −0.429*

Lightness 0.459* −0.014 0.205 0.086 −0.152 0.126

a* −0.601** −0.725*** −0.818*** −0.334 0.405* −0.643**

b* 0.572** 0.226 0.171 0.110 −0.020 −0.157

u* −0.300 −0.729*** −0.786*** −0.267 0.425* −0.667**

ν* 0.642*** 0.362 0.434** 0.151 −0.152 0.094

GA 0.816*** 0.817*** 0.878*** 0.111 −0.369 0.707**

GGA 0.822*** 0.816*** 0.877*** 0.122 −0.367 0.711**

RGB INDICES/AERIAL

Intensity −0.223 −0.715*** −0.620*** 0.166 0.021 −0.359

Hue 0.731*** 0.798*** 0.868*** −0.062 −0.361 0.624**

Saturation 0.149 0.266 −0.235 −0.539* −0.112 −0.581*

Lightness −0.102 −0.653*** −0.526*** 0.109 −0.047 −0.316

a* −0.856*** −0.784*** −0.883*** −0.284 0.339 −0.750**

b* 0.192 0.002 −0.292* −0.466* −0.221 −0.575*

u* −0.830*** −0.777*** −0.873*** −0.424* 0.284 −0.777**

ν* 0.318 0.084 0.016 −0.333 −0.337 −0.283

GA 0.837*** 0.814*** 0.891*** 0.139 −0.343 0.693**

GGA 0.790*** 0.752*** 0.837*** 0.206 −0.309 0.697**

Correlations were studied across plots within the non-phosphorus fertilization (NPF) and

the optimal phosphorus (OP) trials, as well as both in combination (Comb.). Levels of

signification: *P < 0.05; **P < 0.01; ***P < 0.001.

correlation with leaf P concentration, particularly for the indices
that exhibited the best correlations with grain yield. However, the
correlations against P content were in all cases weaker than with
grain yield.

Concerning NDVI, and regardless the fertilization level,
the highest correlation with GY was found with ground

TABLE 6 | Regression coefficients of the relationships between the

multispectral-indices and the multispectral with grain yield, P and N content.

Grain Yield P Content

NPF OP Comb. NPF OP Comb.

MULTISPECTRAL INDICES

NDVI.ground 0.734*** 0.711*** 0.863*** 0.058 −0.423* 0.669***

NDVI 0.628*** 0.643*** 0.823*** 0.324 −0.347 0.800***

SAVI 0.652*** 0.644*** 0.823*** 0.159 −0.269 0.790***

OSAVI 0.657** 0.655** 0.829*** 0.216 −0.303 0.797***

RDVI 0.658*** 0.650*** 0.829*** 0.198 −0.286 0.795***

EVI 0.613*** 0.529** 0.798*** 0.119 −0.220 0.782***

PRI 0.039 0.312 0.406** 0.428* 0.032 0.466*

MCARI 0.358 −0.019 0.452** −0.035 −0.033 0.463*

TCARI 0.172 −0.200 0.238 −0.147 0.055 0.314

TCARI/OSAVI −0.401* −0.618** −0.748*** −0.368 0.283 −0.700***

ARI2 −0.012 0.286 −0.133 −0.286 −0.002 −0.363

CRI2 0.016 0.359 −0.091 −0.162 −0.064 −0.364

WBI 0.241 0.595** 0.598*** −0.014 −0.064 0.414*

MULTISPECTRAL BANDS

B450 −0.348 −0.688*** −0.638*** −0.459 0.318 −0.383

B550 0.261 −0.505** −0.102 −0.205 0.371 0.036

B570 0.032 −0.529** −0.419** −0.498* 0.212 −0.354

B670 −0.302 −0.566** −0.739*** −0.540* 0.398 −0.731***

B700 −0.116 −0.525** −0.602*** −0.463* 0.324 −0.567**

B720 0.269 −0.045 0.153 −0.319 0.125 0.047

B780 0.465* 0.477* 0.741*** −0.020 −0.122 0.688***

B840 0.496* 0.550** 0.779*** 0.010 −0.137 0.744***

B860 0.442* 0.492* 0.753*** −0.051 −0.129 0.736***

B900 0.425* 0.537** 0.761*** −0.063 −0.083 0.739***

B950 0.390* 0.411* 0.724*** −0.024 −0.091 0.741***

Correlations were studied across plots within the non-phosphorus fertilization (NPF) and

the optimal phosphorus (OP) trials, as well as both in combination (Comb.). Levels of

signification: *P < 0.05; **P < 0.01; ***P < 0.001.

spectroradiometer measurements, although the NDVI derived
from the UAV was still highly correlated with GY (Table 6).
Multispectral indices SAVI, RDVI, OSAVI, EVI, and WBI were
also significantly correlated with GY within the two phosphorus
conditions alone, or when both levels were combined. Individual
multispectral bands presented significant correlations with yield,
particularly under optimal phosphorus. Correlations of these
indices with leaf P content were weak or absent, regardless of the
phosphorus level, whereas spectral bands around 570, 670, and
700 nm significantly, but weakly, correlated with P content at the
low fertilization level. In the case of the RGB indices, combining
both treatments strongly increased the correlations between the
multispectral indices and P content, particularly for the indices
that best correlated with grain yield (NDVI, SAVI, RDVI, EVI, or
OSAVI). However, the strengths of the correlations were always
lower than for grain yield.

For the purpose of testing how the combination of different
indices measured from the aerial platform may improve
the strength and accuracy of the assessment of grain yield
and phosphorous concentration, stepwise regressions were
performed (Table 7). The best predictive equations of grain yield
were achieved using RGB indices, which were themost significant
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TABLE 7 | Multilinear regression (stepwise) of grain yield (GY) as dependent variable and the different categories of remote sensing traits (RGB VIs, multispectral VIs, and

specific multispectral bands) measured from the unmanned aerial vehicle within the non-phosphorus fertilization (NPF) and the optimal phosphorus (OP) trials.

Equation R2 RSE p-value Portion of variance

GY NPF Aerial RGB VIs GY = −0.25·u* + 13.99·GA + 11.65 0.821 0.590 0.000 u* = 0.49

GA = 0.50

Multispectral VIs GY = 59.08·MCARI – 12.46·TCARI/OSAVI + 7.38 0.463 0.769 0.000 MCARI = 0.46

TCARI/OSAVI = 0.53

OP Aerial RGB VIs GY = 12.31·GA + 5.00 0.662 0.596 0.000 GA = 1.00

Multispectral VIs GY = −43.94·NDVI + 189.93·RDVI – 59.62·EVI + 3.36 0.652 0.632 0.000 NDVI = 0.31

RDVI = 0.40

EVI = 0.28

P content NPF Aerial RGB VIs P content = −0.26·Hue – 0.49·a* + 13.00 0.436 0.337 0.001 Hue = 0.41

a* = 0.58

Multispectral VIs P content = −146.66·NDVI – 995.36·SAVI + 1289·RDVI + 0.53 0.311 0.381 0.038 NDVI = 0.39

SAVI = 0.29

RDVI = 0.31

OP Aerial RGB VIs P content = 0.47· b* – 0.56·ν* + 8.82 0.210 0.520 0.065 b* = 0.34

v* = 0.65

Multispectral VIs P content = 77.16· SAVI – 86.16·RDVI + 7.20 0.151 0.539 0.150 SAVI = 0.46

RDVI = 0.53

R2, determination coefficient; RSE, Residual Standart Error.

measurements in the absence of phosphorous fertilizer. The
multispectral bands and indices performed better at predicting
grain yield under optimum phosphorus conditions than the non-
fertilized conditions. In contrast, the prediction of P was not as
good as GY and the only significant equations were found at the
non-phosphorous fertilization conditions (P < 0.050).

In order to check the ability of the remote sensing indices
to predict genotypic differences in yield, we correlated the
genotypic values of the different categories of remote sensing
traits evaluated in the seedlings with the yield of each hybrid
determined from multi-location trials developed in parallel
(Table 8). Every index that correlated with yield in our
experiment, in either the absence of phosphorous fertilizer or
in optimum conditions, also showed significant correlations
with the genotypic yield data of the multilocation study.
The correlation coefficients calculated with the RBG and the
multispectral indices against the yield of the multilocation study
were very similar to those found between these indices and the
grain yield in the present study. The best correlated RGB VI’s
were GA and GGA again, both ground and aerial measurements.
Also, the spectral indices associated with the greenness and
densitymeasurements correlated greatly with the genotypic yield,
and to a similar extent as the correlation with grain yield in the
same trials. On the other hand, the RDVI and theWBI correlated
even better with grain yield from the multilocation trials than
with the grain yield of the present remote sensing trial.

DISCUSSION

Phosphorus Fertilization Effect on Grain
Yield
Phosphorous is an essential nutrient for plant growth and
development (Manschadi et al., 2014). For that reason, the yield
of the hybrids was strongly affected by the lack of phosphorus

fertilizer, and leaf phosphorous content correlated with grain
yield across hybrids in the non-phosphorus-fertilized trial. The
large variability in plant performance across the hybrids that was
revealed in our results presumably reflects differences in P use
efficiency as well as genotypic differences in yield potential (i.e.,
productivity under optimal agronomical conditions). In general,
most reports state that P deficiency reduces photosynthetic
capacity and efficiency through different mechanisms (Brooks
et al., 1988).

Yield variations caused by differences in the water status

of the plants can be ruled out through the lack of differences

in δ13C. Even for a C4 plant like maize, differences in plant

water status, and intrinsic photosynthetic metabolism may be

reflected in the δ13C of the plant matter, with δ13C decreasing
in response to water stress (Farquhar et al., 1989; Monneveux

et al., 2007). We did not found differences in δ13C associated to
fertilization. In contrast, significant differences between the two
fertilization conditions were detected in the WBI values. This
index uses the reflectance spectra at the near and far-infrared
region as an indication of water absorption. Hence, higher WBI
values indicate a better water status. Optimal growing conditions
had enabled faster seedling growth and therefore turgid leaves
(i.e., more watered), although past studies have also indicated
that WBI can predict the leaf area index (Roberts et al., 1998;
Qiu et al., 2007). Thus, higher WBI values at optimum P
conditions must be due to a larger canopy area rather than water
status differences. Nevertheless, some reports have indicated
that phosphorus fertilization can help crops to use water more
efficiently under limited moisture conditions (Waraich et al.,
2011).

Phosphorous and nitrogen content in the leaves correlated
within each fertilization levels (Supplementary Figure 3)
and both contents were higher under optimal compared
with non-phosphorous fertilization conditions. Differences in
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TABLE 8 | Regression coefficients (r) of the relationships across the genotypes of

the VI’s measured in seedlings at non-phosphorus fertilization (NPF) and optimal

phosphorous (OP) conditions in this study against grain yield data from other trials.

NPF OP

RGB INDICES/GROUND

Intensity 0.079 −0.237

Hue 0.494* 0.695***

Saturation 0.562** −0.039

Lightness 0.311 −0.047

a* −0.232 −0.677***

b* 0.592** 0.187

u* 0.057 −0.685***

ν* 0.602** 0.314

GA 0.738*** 0.830***

GGA 0.741*** 0.828***

RGB INDICES/UAV

Intensity −0.465* −0.643***

Hue 0.767*** 0.766***

Saturation 0.491** 0.360

Lightness −0.317 −0.570**

a* −0.705*** −0.721***

b* 0.423* 0.137

u* −0.625*** −0.692***

ν* 0.450* 0.209

GA 0.848*** 0.779***

GGA 0.785*** 0.730***

SPECTRAL INDICES

NDVI g 0.752*** 0.594**

NDVI 0.656*** 0.629***

PRI −0.207 0.223

SAVI 0.658*** 0.630***

MCARI 0.399* −0.017

WBI 0.486* 0.573**

RDVI 0.721*** 0.630***

EVI 0.403* 0.334

ARI2 0.133 0.162

CRI2 0.112 0.243

TCARI 0.304 −0.157

OSAVI 0.552** 0.611***

Levels of signification: *P < 0.05; **P < 0.01; ***P < 0.001.

nitrogen content may account for the variation across genotypes
and fertilization levels in LCC and the fact that at least under
NPF chlorophyll content and phosphorous content correlated
positively.

Comparative Performance of Ground vs.
Aerially Assessed Indices at Determining
Genotypic Differences in Grain Yield
The vegetation indices derived from conventional digital RGB
images have been proposed as a means of estimating green
biomass and grain yield in maize and other cereals under stress
conditions (Ahmad and Reid, 1996). As the ground and aerial

measurements were taken at the same time on the same day,
variation in environmental variables such as light intensity and
brightness can be almost negligible. Thus, the main differences
are due to the resolution of the pictures (Figure 2). Besides
using cameras with the same sensor size (17.3 × 13mm) that
capture images at the same resolution (16-megapixels), the final
resolution of the images was also affected (by the square of) the
distance between the camera and the object (in this case the
plots). While the images collected in our study from the UAV
only reached a resolution of 488× 193 pixels per plot, the spatial
resolution of the images taken from the ground was 4,608 ×

3,072 pixels per plot. When the spatial resolution is very high,
plants in the image are well-defined; however, when the spatial
resolution is poorer, the boundaries between plants and soil are
fuzzy, and consequently, there is usually a higher portion of pixels
including information of both vegetation and bare soil (Torres-
Sánchez et al., 2014). Despite such differences in resolution,
some indices like a∗ and u∗ assessed aerially correlated better
against grain yield, whereas others exhibited similar performance
to ground determined indices, except for GGA which correlated
slightly weaker when assessed from the aerial platform. The a∗

and u∗ indices aremore likely to reflect color components that are
more sensitive to the scene’s illumination and the camera’s self-
adjustments (Casadesús et al., 2005), thus being more limited by
soil lightness and therefore performing better at the aerial level
with reduced image resolution. Conversely, a reduction in the
number of pixels in the image makes it more difficult to identify
differences in vegetation color, so GGA performed better at
ground level. Nevertheless, advances in digital photography allow
sufficiently high resolution for low-altitude aerial imaging to be a
viable and economical monitoring tool for agriculture (Sankaran
et al., 2015). Moreover, aerial photographs enable coverage of
the whole plot (which usually is not the case for images taken
at ground level) and therefore, to some extent, may compensate
for the loss of spatial resolution. In this sense, correlations with
grain yield by indices derived from aerial imaging were generally
only slightly weaker than indices measured at ground level. Some
of the RGB indices like Hue, a∗, u∗, GA, or GGA and the NDVI,
produced correlation coefficients higher than R2 = 0.900 when
compared to the same indices measured at ground level and
from the aerial platform (Supplementary Figure 2). This is despite
the methodological differences between index determination at
ground level (on an individual plot basis) and the aerial platform
(across a whole trial and further segmented into individual plots).
Therefore, both approaches are able to offer essentially similar
kinds of information.

Comparative Performance of the RGB vs.
Multispectral Indices at Determining
Genotypic Differences in Grain Yield
The RGB-based indices, GA and GGA, were the best at GY
prediction, outperforming other RGB indices, NDVI and the rest
of the spectral indices. Considering that the data of our study
was collected at an early phenological stage, the plants were
not able to cover the soil completely. Therefore, the superior
performance of these indices should be attributable, at least in
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FIGURE 2 | Examples of the differences in resolution between images taken at

ground level and aerially.

part, to their insensitivity to soil color (Casadesús et al., 2007).
GA quantifies the portion of green pixels to the total pixels of
the image and is a reliable estimator of vegetation cover (Lukina
et al., 1999). By contrast, GGA does not incorporate the yellowish
green fraction of vegetation when the GA becomes saturated
during late phenological periods. Therefore, elevated GA and
GGA indices, probably driven by a higher biomass, seem to be
more relevant for predicting higher yield. Although these indices
performed in a very similar way at both measurement locations,
when the GGA was measured at ground level it tended to be
more highly correlated to GY. Besides other considerations the
far higher resolution of the RGB compared with the multispectral
images may be also relevant when working from an aerial
platform.

A recent study has concluded that RGB images performed
better than NDVI in determining genotypic differences in hybrid
maize yield under different nitrogen fertilization conditions
(Vergara-Díaz et al., 2016). The results of our research include
the NDVI and its reformulations as the SAVI, OSAVI, EVI,
and RDVI indices, which were best correlated with GY. These
indices, which are based on the strong contrast between the
near infrared (NIR) and (R) bands, are optical measurements
of canopy greenness and canopy cover (Tucker, 1979). NDVI
is a widely accepted approximation for assessing crops under
different growing conditions, but it can fail to distinguish changes
in soil cover and plant density from changes in vegetation color
(Steven et al., 1996). As our study was made at an early stage
of development, the plants did not have enough biomass to
cause this saturation problem. The SAVI was developed as a
modification of the NDVI, to correct the brightness incidence
of the soil (Huete, 1988). Notwithstanding the reduction in
soil noise problems, correlations of the SAVI with GY were
not improved in comparison to the NDVI. The optimization
of this index, which applied an adjusting coefficient (Rondeaux
et al., 1996) that resulted in the OSAVI, also did not improve
the correlation with GY, but rather caused the opposite. The
RDVI and the EVI are another indices based on the NDVI,

which have been developed with the intention of correcting
the rapid saturation due to dense vegetation (Liu and Huete,
1995). Even though this was not a problem in our study,
the fact that those indices emphasize the vigor of vegetation
has enabled achieving quite strong correlations, similar to
NDVI.

MCARI is an index that measures the depth of chlorophyll
absorption at 670 nm relative to the reflectance at 550 and
700 nm (Daughtry, 2000). TCARI is a transformation developed
to counteract the effect of soil background (Haboudane et al.,
2002). However, both indices are still sensitive to the background
reflectance properties. The plots studied were particularly
characterized by a low leaf area index, so neither the MCARI
nor the TCARI were adequate for our experiment. Anthocyanin
and carotenoid pigments were also detected by the ARI2
and the CRI2 indices, but no valuable information has been
obtained.

The complementary metal-oxide-semiconductor (CMOS)
image sensor of the micro-MCA12 camera is optimized to collect
wavelengths at ∼800 nm, dropping in a smooth curve to a low
relative efficiency at 400 nm in the visible wavelengths and a
smaller reduction in efficiency at 1050 nm in the NIR, at the
limits of its range. As a consequence, the efficiency of the
measurements in the blue band (450 nm) is considerably lower
(20%) in comparison to the measurements of the NIR or the
R bands (85% both). Due to this limitation in the blue region
sensitivity, more noise is included in the measurements of the
blue band. Moreover, inadequate phosphorus content can result
in a darkening of the leaves to a purple color. This would explain
why the single band measurement in the blue region correlated
with GY at optimum conditions but it failed to do so under
non-fertilized conditions. The correlation analysis between each
multispectral band and yield has identified sensitive wavelengths
under both phosphorus levels, and this ranges from 780 to
950 nm of the near-infrared (NIR, 750–1,350 nm) region of the
spectrum.

The results obtained proved that measurements at an early
growing date, while the plants are still seedlings, are optimal for
the assessment of the future yield.

Performance of RGB and Multispectral
Indices at Determining Genotypic
Differences Derived from Leaf Phosphorus
Concentration
The strength of the correlations inside each treatment between
the indices and the P content were far lower than of these
indices with GY. Distribution of values is not uniform and
in fact the linear correlation has not any sense besides to
show these vegetation indices are able to clearly differentiate
between the two different groups of phosphorous fertilization
(but not across genotypes within each fertilization level). The
same happened with the LCC and the leaf nitrogen content
(Supplementary Figure 3). The two different fertilization levels
caused differences in leaf phosphorous content but indirectly
also differences in leaf chlorophyll and total nitrogen contents
(and at that with an abundance of N fertilizer applied to
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both treatments). Therefore, differences in leaf color between
treatments are evident (less chlorophyll and nitrogen content
in the leaves on non-phosphorous fertilized plants). However,
similar to a∗, GA, and GGA (Supplementary Figure 4), leaf
chlorophyll and nitrogen contents did not correlate or just did
marginally (SPAD values within NPF) against leaf phosphorous
content. Again, the differences between fertilization levels
accounted for the significant relationship of leaf chlorophyll
and N contents against leaf phosphorous content when data
of both fertilization levels were combined. Moreover, there
is a lack of consistency between the ground and aerial RGB
index correlations in regard to phosphorous content (Table 5).
In contrast, the correlations with grain yield follow the same
patterns for both fertilization levels. Therefore, the significance
of the correlations of the indices with phosphorus concentration
may be related to the relationship between leaf phosphorus
concentration and green biomass due to phosphorous is an
essential element in plant growth (Manschadi et al., 2014;
Gemenet et al., 2016). Indices better assessed differences in leaf
phosphorous concentration at the low phosphorous conditions
compared to optimum conditions due to the primary capacity of
these indices to strongly correlate with green biomass and thus
grain yield.

Similarly, the multispectral indices didn’t show significant
correlations with P content within each fertilization level, while
several of these indices correlated with GY. Only the PRI
correlated with leaf phosphorous content (and just under low
P conditions). The PRI is a spectral index increasingly used as
an indicator of photosynthetic efficiency because it is based on
the short-term reversible xanthophyll pigment cycle (Peñuelas
et al., 2011). Low phosphorus levels can lead to an increase in
the de-epoxidation process, which augments the relative amount
of zeaxanthin and decreases violaxanthin (Goodwin, 1980;
Tambussi et al., 2002). Zeaxanthin is essential for dissipation
of excess energy as heat in chloroplasts (Demmig-Adams et al.,
2013). The weak but still significant correlations between the PRI
and the P content suggest a similar photoprotection response. In
other studies, similar findings have been reported that associate
nutrient deprivation with increased zeaxanthin levels and thus
lower PRI values (Filella et al., 1996). In reference to the
multispectral bands, only the bands located at 570, 670, and
700 nm correlated with the leaf phosphorous content, and these
were a weakly correlation with the leaf phosphorous content.
These bands correspond to the green (570 nm) and red regions
(670 and 700 nm) and they have been used to assess non-stressed
vegetation (Thenkabail et al., 2002). Higher values of reflection
at these bands might correspond to vigorous plants with higher
P content. These results are in conflict with the results obtained
by Osborne et al. (2002), who reported a significant spectral
response in the NIR region to the P concentration in corn.

CONCLUSIONS

There is a need for phenotyping tools which increase the selection
efficiency and to understand mechanisms of phosphorous
tolerance. This study clearly shows a genotypic variability for

low phosphorous tolerance, with a reduction in yields of 25% in
average in comparison with the optimum conditions. Previous
studies in the literature suggests that only when reduction is
75% or more, selecting for specific adaptation to tolerance to low
nutrient availability is the strategy (Bänziger et al., 1997; Masuka
et al., 2012). However, selecting for yield potential instead than
for specific adaptation to low phosphorous, still makes sense
when the yield reduction associated was moderate, like in this
study, which is the usual situation in agronomical scenarios.
Hence, indices also correlated with the yield of the hybrids when
they were performed under the high yielding conditions.

This study emphasizes the capabilities of RGB vegetation
indices as phenotypic traits for predicting maize performance
during early stages of crop growth. GA was the vegetation
index best correlated with grain yield across maize hybrids and
regardless the phosphorous fertilization level and therefore this
index may serve to select the most productive hybrids for the
SSA. RGB indices assessed at ground level were comparable
to those measured from an aerial platform. Moreover, RGB
indices performed better than multispectral vegetation indices.
The use of vegetation indices derived from RGB images may
represent a very affordable approach for phenotyping and may
become even more economical due to the similarity between
results obtained from ground evaluation and those achieved from
aerial platforms. The phenotypic correlations found between
the remote sensing indices of seedlings and the genotypic
yield data collected in the multi-location trials confirm their
usefulness. Despite its comparatively low tech and low-cost
nature, digital photography is a promising approach, and its
derived indices have demonstrated potential for the assessment
of crop management in maize, making it ideal for developing
countries in particular.

Additionally, RGB-derived vegetation indices are also
amenable for monitoring the effects of phosphorous fertilizer
applications. However, only some of the indices best correlated
with grain yield exhibited significant, albeit weaker, correlations
with leaf phosphorus content. Moreover, these correlations were
only present under low phosphorus fertilization, which suggests
that they were linked to differences in biomass and grain yield
caused by phosphorous fertilization.
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