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We argue that the main feature behind novel properties of higher-dimensional black holes, compared to

four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We

develop a long-distance world-volume effective theory that captures the black hole dynamics at scales

much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane

(possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This

approach reveals black objects with novel horizon geometries and topologies more complex than the black

ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional

black holes.
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It has been realized in recent years that the dynamics of
black holes in spacetimes of dimension D � 5 is much
richer than in four dimensions. While the techniques de-
veloped to construct and characterize four-dimensional
black holes have been quite successful in five dimensions,
the dynamics in D � 6 seems to be too complex to be
captured by conventional approaches.

The main novel feature of higher-dimensional neutral
black holes is that in some regimes their horizons are
characterized by at least two separate scales, r0 � R.
This does not occur in four dimensions, where the shape
of a Kerr black hole is always approximately round with
radius r0 �GM. In particular the angular momentum
bound J � GM2 implies that rotation cannot produce large
distortions on the horizon. However, inD � 5 such bounds
do not generally hold and the two classical length scales

J=M and ðGMÞ1=ðD�3Þ can bewidely separated, as we know
from explicit solutions. Five-dimensional black rings can
have arbitrarily large angular momentum for a given mass,
and at large J the ring’s radius R is much bigger than its
thickness r0 [1]. Such black rings are also well approxi-
mated by (boosted) black strings. Likewise, in D � 6
Myers-Perry black holes have ultraspinning regimes with
pancaked horizons approaching black membranes of small
thickness r0 and large extent R along the plane of rotation
[2,3]. There are other phenomena peculiar to higher-
dimensional horizons that depend on the ability to separate
two length scales along the horizon: the Gregory-
Laflamme instability and its associated inhomogeneous
black branes [4] arise when the two scales characterizing
the thickness and the length of a black brane begin to differ.
In hindsight, it is surprising that four-dimensional black
hole horizons only possess short-scale (�r0) dynamics.
Thus it is clear that new tools are needed in order to capture
the long-distance (�R � r0) dynamics of higher-
dimensional horizons.

The natural approach when faced with a problem with
two widely separate length scales is to integrate out the
short-distance physics to obtain a long-distance effective
theory. In general relativity there are two different (but
essentially equivalent) techniques to do this: matched
asymptotic expansions [5] and the classical effective field
theory of [6]. To the order that we work in this Letter there
is no difference between them. We shall refer to this
leading-order theory for the long-distance dynamics of
higher-dimensional black holes as the blackfold approach.
This program was initiated in [7] with the construction of
thin black rings in D � 5. Here we present a general
framework.
For spacetime dimension D and spatial dimension p of

the blackfold world volume, we denote n ¼ D� p� 3.
Choosing units where 16�G ¼ �nþ1 simplifies some
equations.
A blackfold is a black p-brane whose world volume

extends along a curved submanifold of the embedding
spacetime. Beginning from a flat black p-brane with hori-
zon Rp � snþ1 (we denote the sphere of short-size r0 with
lowercase s), we imagine bending its world volume Rp;1

into some submanifold W pþ1, with spatial section Bp

compact or not, characterized by a length scale (e.g.,
intrinsic curvature radius) R � r0. Describing the long-
distance dynamics of the blackfold amounts to finding the
spacetime embedding X�ð��Þ of its world volume. This
embedding determines the induced (pulled-back) metric,
���, and the first fundamental tensor h��, which acts as a

projector onto the world volume,

��� ¼ g��@�X
�@�X

�; h�� ¼ ���@�X
�@�X

�: (1)

A general theory of the classical dynamics of a brane-
like object, regarded as a source of energy-momentum T��

in the probe approximation, was developed in [8]. The
consistent coupling of the source to gravity requires
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r�T
�� ¼ 0. This implies that

T��K�
�� ¼ 0; (2)

whereK�
�� is the extrinsic curvature tensor of the blackfold

embedding,

K
�
�� ¼ h	�h

�
�r	h

�
�; (3)

with indices �, � along directions tangent to the brane
world volume and � orthogonal to it.

The effective stress-energy tensor of a blackfold is de-
termined by matching to short-distance physics. We de-
mand that locally, i.e., on scales r � R, the blackfold be
equivalent to a black p-brane up to a position-dependent
Lorentz transformation. The gravitational field of such a
black p-brane is known, and at distances much larger than
its thickness, r � r0, the field is weak. Thus, we can
determine an equivalent distributional stress tensor

T��ð��Þ ¼ 
��ð��Þ�ðD�p�1Þðx� Xð��ÞÞ (4)

that sources the same linearized field in the matching range
r0 � r � R.

In [9] we show that the blackfold Eqs. (2) are equivalent
to a generalized geodesic equation


��ðrð�Þ
� @�X

� þ �
�
��@�X

�@�X
�Þ ¼ 0 (5)

and also that they can be derived by coupling the world-
volume action

I½X�ð��Þ� ¼
Z
W pþ1

dVpþ1

����� (6)

to bulk gravity.
The effective stress tensor 
ab of a static flat black

p-brane with orthonormal world-volume coordinates za ¼
ðz0; ziÞ is


00 ¼ rn0ðnþ 1Þ; 
ii ¼ �rn0 ; (7)

where r0 is the horizon radius in directions transverse to the
world volume, i.e., the thickness of the black p-brane.

Consider now a Lorentz transformation � 2
SOð1; mÞ 	 SOð1; pÞ of the p-brane, where m � p is the
number of directions along which the blackfold is boosted,
and which cannot be larger than the number of independent
rotation planes of the spacetime. We parametrize the m
boosts as

�0
0 ¼ cosh�; �0

i ¼ �i sinh�;
Xm
i¼1

�2
i ¼ 1; (8)

where �i are the director cosines of a Sm�1 in parameter
space. The remaining components of � are constrained by
ð���TÞab ¼ �ab, but are otherwise irrelevant.

We parametrize the background spacetime using coor-
dinates ðt; r1; 1; . . . ; rm;m; x1; . . . ; xD�1�2mÞ, where (rl,
l) are polar coordinates for the lth rotation plane, with rl
measuring proper distance along the orbits of @l

. The

embedding is specified by

X�ð��Þ ¼ ðtð��Þ; rlð��Þ; lð��Þ; xkð��ÞÞ: (9)

We specialize from now on to static backgrounds and
stationary blackfolds, i.e., we align t / z0 ¼ �0 and take
Xi independent of �0. We assume that @l

generate isome-

tries of the background and align the m boosted spatial
coordinates on the p-brane with the angular directions l.
The m boosted spatial coordinates are thus identified peri-
odically as zl � zl þ 2�rlð��Þ.
In a blackfold the thickness and boost parameters in

general depend on the position, r0ð��Þ, �ð��Þ, �ið��Þ.
However, to ensure regularity of the horizon we impose a
blackness condition: the surface gravity � and the angular
velocities�Hi must be uniform overBp. Locally, these are

determined by the horizon properties of a boosted black
p-brane,

� ¼ n

2r0ð��Þ cosh�ð��Þ ; �Hi ¼ �ið��Þ
rið��Þ tanh�ð�

�Þ:
(10)

Requiring blackness determines the thickness and boosts in
terms of the local velocity components rið��Þ�Hi,

tanh�ð��Þ ¼ �ð��Þ; r0ð��Þ ¼ n

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��ð��Þ2

q
;

�ið��Þ ¼ rið��Þ�Hi

�ð��Þ ; (11)

where the local velocity field is

�ð��Þ ¼
�Xm
i¼1

ðrið��Þ�HiÞ2
�
1=2

: (12)

Boosting za ! ð�zÞa, 
ab ! ð�
�TÞab we obtain


00 ¼
�
n

2�

�
nð1��2Þðn�2Þ=2ðnþ 1��2Þ; (13)


0i ¼
�
n

2�

�
nð1��2Þðn�2Þ=2nri�Hi; i ¼ 1; . . . ; m;

(14)


ii ¼
�
n

2�

�
nð1��2Þn=2

�
nðri�HiÞ2
1��2

� 1

�
; i¼ 1; . . . ;m;

(15)


ii ¼ �
�
n

2�

�
nð1��2Þn=2; i ¼ mþ 1; . . . ; p; (16)


i�j¼
�
n

2�

�
nð1��2Þðn�2Þ=2rirj�Hi�Hj; i;j¼1; . . . ;m:

(17)

As a consequence of the blackness condition, once the
�Hi are given the blackfold Eq. (2) becomes a purely
geometric one involving only X�ð��Þ and its first and
second derivatives. � factorizes out of the equations and
enters only to fix the horizon thickness r0ð��Þ.
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The mass and angular momenta of the blackfold are
obtained by integrating the energy and momentum den-
sities over Bp, on which @t ¼ N@z0 (N accounts for a

possible redshift between the blackfold and infinity) and
@i

¼ ri@zi . Then

M ¼
Z
Bp

dVpN
00; Ji ¼
Z
Bp

dVpri
0i: (18)

At each point on Bp we assume the presence of a small

sphere snþ1 (n � 1) locally equal to that in a boosted black
p-brane and so with area

aHð��Þ ¼ �nþ1r
nþ1
0 ð��Þ cosh�ð��Þ

¼ �nþ1

�
n

2�

�
nþ1ð1��2Þn=2: (19)

The horizon of the blackfold is therefore a fibration of
snþ1 over Bp. If the fiber is regular everywhere then the

topology of the horizon is ðtopology ofBpÞ � Snþ1.

However, the size r0ð��Þ will decrease to zero at ‘‘walls’’
on Bp where the local velocity approaches light speed

�ð��Þ ! 1. If, as a result, Bp has the topology of a p

ball, with the snþ1 shrinking to zero size at @Bp, then the

horizon topology is Snþpþ1 ¼ SD�2.
The total area of the horizon is

AH ¼
Z
Bp

dVpaHð��Þ: (20)

The first law of black-hole mechanics,

�M ¼ �

8�G
�AH þX

i

�Hi�Ji; (21)

can be seen to be satisfied by solutions of the blackfold
equations [9].

Now we discuss some explicit solutions.
Products of odd-spheres.—Consider first a single odd

sphere, Bp ¼ S2kþ1, which we embed in a 2kþ
2-dimensional flat subspace of RD�1 with metric

d�2 þ �2
Xkþ1

i¼1

ðd�2
i þ�2

i d
2
i Þ;

Xkþ1

i¼1

�2
i ¼ 1: (22)

The sphere is embedded as � ¼ R and the world-volume
spatial coordinates can be taken to be k independent �i

plus the kþ 1 Cartan angles i. Then we have ri ¼ R�i.
Assume now that all the angular velocities along thei are
equal in magnitude, j�Hij ¼ �H. From (12) the boost
velocity � ¼ R�H is uniform over the blackfold, and so
is the thickness r0. The blackfold equilibrium equations
easily reduce to

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

nþ p

s
1

�H

(23)

(for p ¼ 1we recover the result for black rings in [7]). The
horizon geometry is H ¼ S2kþ1 � snþ1. One may also

consider nonequal angular velocities. Then the radius � ¼
Rð�iÞ depends nontrivially on �i and one must solve a
second-order differential equation, which requires numeri-
cal analysis.
Consider now a product of odd spheres, Bp ¼Q
pa2oddS

pa , p ¼ P
apa, embedded in a flat subspace of

RD�1 with metric X
a

ðd�2
a þ �2

ad�
2
pa
Þ: (24)

Clearly, the total number of spheres cannot be larger than
D� 1� p ¼ nþ 2. We look for blackfold geometries at
constant radii �a ¼ Ra, with each odd-sphere rotating
along all of its Cartan angles with angular velocities equal

in magnitude to �ðaÞ
H . The equations of equilibrium factor-

ize for each sphere and are solved for

Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pa

nþ p

s
1

�ðaÞ
H

: (25)

The horizon geometry is H ¼ Q
pa2oddS

pa � snþ1, and

the mass, angular momenta, and area of the blackfold are
easily obtained plugging these results in the general for-
mulas above.
Ultraspinning Myers-Perry black holes as even-ball

blackfolds.—The blackfold equations in a Minkowski
background do not admit solutions for Bp a topological

even sphere—the tension at fixed points of the rotation
group cannot be counterbalanced by centrifugal forces.
Instead they admit solutions where Bp is an ellipsoidal

even ball, with thickness r0 vanishing at the boundary of
the ball so the horizon topology is SD�2. These reproduce
precisely all the physical properties of a Myers-Perry black
hole with p=2 ultraspins, which provides a highly non-
trivial check on the approach. It also shows that the method
remains sensible when the rotation has fixed points, in this
case at the center of the ball. They also exemplify black-
folds with varying thickness r0ð��Þ.
We illustrate these solutions in the simplest nontrivial

case of p ¼ 2, and postpone the general analysis to [9].
Consider a black twofold extending along a plane dr2 þ
r2d2 in Minkowski space. Being a plane, this B2 solves
trivially the blackfold Eqs. (2). To set the blackfold in
rotation along the  axis we embed B2 as �

1 ¼ , �2 ¼
r, with local boost along �1, and obtain � ¼ r�H.
Uniform �H, i.e., rigid brane rotation, makes the local
boost become lightlike at r ¼ ��1

H . Constancy of � im-
plies that r0ðr ! ��1

H Þ ! 0 so B2 becomes the disk 0 �
r � ��1

H . The physical magnitudes of the blackfold are

M ¼
�
n

2�

�
n 1

�2
H

nþ 3

nþ 2
; J ¼

�
n

2�

�
n 1

�3
H

2

nþ 2
;

AH ¼ 2��nþ1

�
n

2�

�
nþ1 1

�2
H

1

nþ 2
:

(26)

If we now write �H ¼ a�1 and n
2� ¼ rþ, these equations
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reproduce exactly the values for an ultraspinning Myers-
Perry black hole in D ¼ nþ 5 dimensions, with a single
spin parameter a and with horizon radial coordinate rþ, to
leading order in rþ=a [3]. The shape of the horizon is also
accurately reproduced: for the ultraspinning black hole the
thickness transverse to the rotation plane is rþ cos� [3],
while for the blackfold, introducing � ¼ arcsinð�HrÞ, we
find thickness r0ð�Þ ¼ n

2� cos�, thus in perfect agreement.

Also in both cases a is the horizon radius in the plane
parallel to the rotation. Observe that once the angular
velocity and surface gravity are identified in the two con-
structions, there is no ambiguity when comparing physical
magnitudes.

Minimal blackfolds.—For static blackfolds with space
components of the stress tensor 
ij ¼ �P�i

j, the blackfold

equations reduce to K� ¼ 0, where K� ¼ h��K�
�� is the

mean curvature vector. Thus, Bp must span a (sufficiently

regular and non-self-intersecting) minimal spatial sub-
manifold. As far as we know, in Euclidean space no
compact examples of these have been found.

Let us address some caveats about the blackfold ap-
proach. (i) One may worry whether the horizon of the
black brane remains regular after bending its world vol-
ume. For black onefolds, i.e., thin black rings, Ref. [7]
showed that this is the case iff the blackfold equations (2)
are satisfied. An extension to black p folds will be given
elsewhere [9]. (ii) To leading order in r0=R the back-
reaction of the blackfold on the background geometry is
neglected. It may happen that backreaction makes it im-
possible for a leading-order solution to remain stationary—
by developing naked singularities revealing unbalanced
forces, or more physically, by inducing evolution in time.
This must be analyzed in a case-by-case basis, typically
using physical input about the expected effects of self-
gravitational attraction. Many minimal blackfolds likely
exhibit this phenomenon. Such solutions would not corre-
spond to actual stationary black holes, but they would still
be of interest as blackfolds that evolve slowly (at least
initially) with time scale small in r0=R. (iii) Blackfolds
may be (classically) unstable. Stability to long-wavelength
(	 � r0) perturbations can be analyzed using the black-
fold equations. There are, however, short-wavelength (	�
r0) instabilities, e.g., of Gregory-Laflamme type, outside
the approach which would proceed on quick time scales,
�� 1=r0.

We have presented the theory of neutral blackfolds, and
examples have referred to stationary blackfolds in a
Minkowski background. However, the method can be read-
ily generalized [9] to charged blackfolds as well as other
backgrounds (e.g., [10]) and some blackfold motions.

Our approach naturally organizes the dynamics of
higher-dimensional neutral black holes according to the

relative value of the lengths ðGMÞ1=D�3 and J=M, where

J ¼ ðPiJ
2
i Þ1=2: (i) 0 � J & MðGMÞ1=D�3: there is a single

length scale on the horizon and the physics is qualitatively

similar to the Kerr black hole. (ii) J �MðGMÞ1=D�3: re-
gime of mergers and connections between phases that
occur when the two horizon scales meet, r0 � R. Such
threshold phenomena occur outside the limit of validity
of effective field theories and are very difficult to analyze,
requiring extrapolations, new approaches or numerical
analysis (also, some mergers may occur at large values of

J [7]). (iii) J � MðGMÞ1=D�3: blackfolds. We have devel-
oped the tools to study the extremely rich physics in this
regime. Rather than search for exact solutions for all
possible higher-dimensional black holes, it seems to us
more fruitful to study the dynamical features of blackfolds.
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