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Dear Richard, 

Please find enclosed the revised version of the paper entitled “Copper underpotential 

deposition at gold surfaces in contact with a deep eutectic solvent. New insights”,  by Paula 

Sebastián, Elvira Gómez, Víctor Climent and Juan M. Feliu. We apologize for the delay in 

sending the revised version since new experiments were performed in order to confirm some 

of the reviewers’ comments, in particular the change of the reference electrode scale. All 

changes in the revised version are highlighted with a yellow background. 

Yours sincerely, 

 

Juan. M. Feliu 

Instituto universitario de electroquímica, Universidad de Alicante 

juan.feliu@ua.es 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a.Cover Letter



Reviewer(s)' Comments to the Authors, responses, and overview of changes made 

Rewiever 1: 

In principle this is an interesting paper that may be accepted for publication. However, the 

authors missed major publications that discuss UPD of Cu in the presence of chloride ion 

quantitatively. In a series of papers  Shi et al (see: J.Phys.Chem 101(1997)10310; J.Electroanal. 

Chem. 384(1995)171; Electrochimica Acta 40(1995)9) demonstrated that in the presence of 

chloride ion Cu UPD forms a bilayer in which copper adatoms are sandwiched between the gold 

surface and the top monolayer of chlorides. The coverages of Cu and Cl were measured and 

reported in these references. XAS provided detailed structural information for this bilayer. This 

is important information for the discussion of the results in the present paper. 

We thank the reviewer for bringing these references to our attention. The new references 

were added to the discussion of the results. 

Moreover, chlorides induce the transformation of the (3X3) R30º to a (5x5) in the first UPD 

peak, while chlorides lay on top of the copper adlayer forming a bilayer structure lattice [38, 

40, 41]… So, from these data it is difficult to know whether the charge involved in the UPD 

region corresponds only to the Cu(I)-Cu reduction or there is also a contribution from the 

adsorption of the species of the DES on the copper adlayer, likely chloride [41, 48]. 

 

Reviewer 2: 

This is a nice, apparently careful work which deserves to be published. Unfortunately, the 

authors do not calculate certain numbers which would give a better foundation of the 

interpretation; in particular, I miss the Coulombs and the Farads. Instead, the readers get long 

text on the findings which are clearly seen on the figures. Two examples: 

Following reviewer suggestion, we revised the manuscript to add some quantitative 

measurements from the voltammetric results. With regards to the particular examples given 

by the reviewer:  

a.The diffusion-controlled cathodic peak and the big anodic stripping peak peak is evidently due 

to bulk Cu deposition and dissolution; to this, the authors present three lines on how the curves 

look like (it is clear if we look at the figure) - instead, it would be just sufficient to write that the 

anodic peak charge is 2 mC/cm2 (calculate the exact value) which is about 10 monolayer. 

We thank  the reviewer for the suggestion, but we have decided not to add  charge values  for 

the bulk copper deposition region, (the charge for the anodic region in the particular 

experiment of figure 2 is 2.1-2.9 mC cm-2), since these values are very dependent on the 

potential limits and therefore, the particular numbers do not add relevant information to the 

discussion. Instead of that, we have calculated the corresponding charge for the voltammetric 

region considered as the UPD region and also the charge involved under the feature labelled as 

(a) in figure 2B, values that we believe are more interesting for the reader. 

*b. Response to Reviewers



The total charge integrated in the potential region between -0.50 and -0.16 V is ca. 146 C cm-2 

(without subtracting the double layer contribution)… In the positive scan, a broad oxidation 

peak (peak a’) shifted with respect to the oxidation of bulk copper (b’) is observed. The charge 

integrated in the cathodic scan for peak (a) (between -0.50 and -060 V, without double layer 

correction) amounts to ca. 140 C cm-2. 

 

b. The last four rows of the same paragraph: "The current density in the UPD region increases 

linearly etc." Where is a plot of showing the linearity (say a j vs v plot)? I would suggest to 

calculate the j/v (or j/abs(v)) for two maybe three curves and plot them together. If they 

coincide, then one can claim that it is linear. If the authors would have calculated the Farads 

(j/v) and the integral of the Farads over potential (or the integral of current over time), they 

would have got an approximately one monolayer charge - and then could have concluded that 

this is one monolayer of Cu UPD or adsorption/desorption of one monolayer of chloride. The 

authors should do the calculations rather than the verbalization. 

Values of the charges for the corresponding UPD region were added. Figure 2 was modified 

and a new plot of the (j vs v) and (C vs v) was added demonstrating that the processes involved 

in the potential region between -0.50 and 0.10 V vs Ag|AgCl (both UPD and capacitive) are 

adsorption controlled (Figure 2D). 

 

Miscellaneous minor items: 

 

a. In the context of Fig.2a: "the typical nucleation loop" - explain or omit. Or at least, write that 

"counter-clockwise loop which is typical…" 

This a widely used expression in metal deposition kinetics. Still, a new reference was added to 

the revised version that we hope it helps to clarify the question. 

 

b. Figure scaling: please use "integer numbers" - the draw ticks at every 0.1, 0.2 or 0.5 V, rather 

than at every 0.3 or 0.7V. The insets of Fig.2a and 2b will be invisibly small in the printed 

version. Draw a thin line at j=0. 

Figure scaling was corrected and insets were removed in the new version. A thin line was 

drawn at j=0 in figure 2A and figure 2B. 

 

c. In the context of Fig.3A: "The second pair of peaks was assigned to a full monolayer". Of 

what, and why? 

 

This paragraph was modified in the new version as follows: 

The charge involved within these characteristic UPD  peaks (i.e. subtracting a constant pseudo-

capacitance value as measured at -0.5 V,  180F cm-2)  is around  240 µC cm-2, a value that 

would approach quite well to the corresponding value for a whole copper monolayer ( 220 µC 

cm-2), assuming that here the copper deposition only involves the transference of one electron 



(Cu(I)-Cu), and neglecting any coulometric contribution from anion adsorption [45]. 

 

d. Fig.3B: "the corresponding counter peak is broader and splits in two peaks" - I see one peak 

and a very tiny broadening of the line. 

This paragraph was modified in the new version as follows: 

However, whereas in the positive scan a sharp peak is observed, in the negative scan the 

corresponding counter peak splits in a very thin peak overlapped with a broader one. 

The following lines, referred to copper UPD on Au(100), were also added to the same 

paragraph. 

The corresponding charge for the UPD feature, integrated after subtracting the pseudo-

capacitance measured at -0.50 V (70 F cm-2), is around 130 C cm-2 (while the total charge for 

a whole copper monolayer deposited on Au(100) is ca. 190 C cm-2 [45]). 

 

Reviewer 3:  

This is a manuscript from one of the pioneering groups in the field of single crystal 

electrochemistry. The manuscript reported a study on the electrochemical behaviors of gold 

single crystal electrodes and Cu UPD on gold single crystal electrodes in a deep eutectic solvent. 

The topic is very important from the point of view of the fundamental electrochemistry.  

Therefore, I recommend urgent publication of the manuscript subject to following minor 

revisions: 

1. The current peaks in Figure 2B are described as Peaks a, b, a' and b' in the text, in the 

Figure the peaks should be marked correspondingly for better understanding. 

 

Figure 2B was corrected by adding the corresponding labels. 

 

2. A Cu wire was used as reference electrode, but the potential of the Cu wire in deep 

eutectic solvent without Cu(I) should be different from that with Cu(I). It is better to 

measure the potential of the Cu wire versus SCE and include the values in the 

experimental section, which benefits the comparison with cyclic voltammetric data in 

literature. 

 

We agree with the referee. In the revised version, all potentials are referred to Ag|AgCl 

reference electrode. 

 

In addition of the modification listed above in response to the reviewers, the language of the 

whole manuscript was carefully checked and a few expressions were corrected.  



In this paper we have investigated the interface Au(poly) and Au(hkl) in contact with deep 

eutectic solvent (DES). We also have investigated copper electrodeposition and copper UPD 

formation on these surfaces. We have found very characteristic blank cyclic volatmmograms 

with sharp spikes not reported before for a DES. These sharp peaks are strongly structure 

sensitive. Moreover we have also observed copper UPD formation on gold surfaces in this DES. 

The copper UPD  voltammograms are also strongly sensitive to the crystallogrfic orientation 

and show  sharp spikes and similarities with those reported in aqueous solutions due to the 

high chloride concentration in the DES. These results have not been reported before and 

deserve urgent publication. 

*b1. Urgency Statement



Bingwei Mao 

Xiamen University 

bwmao@xmu.edu.cn 

 

Jacek Lipkowski 

Guelph University 

jlipkows@uoguelph.ca 

 

Tamás Pajkossy 

Hungarian Academy of Sciences 

pajkossy@chemres.hu 

 

M.C. Costa Figueiredo 

Leiden University 

m.c.costa.figueiredo@lic.leidenuniv.nl 

*b2. Suggested Referees (to review paper)



 The interfaces Au(poly) and Au(hkl) in contact with a DES are investigated. 

 Cyclic voltammograms showed singular features and sharp peaks. 

 Copper electrodeposition on gold surface is preceded by the formation of a UPD 

monolayer. 

 Copper UPD on Au(hkl) is structure sensitive. 

 Copper UPD on Au(poly) and Au(hkl) is influenced by the presence of chloride from the 

DES. 

*Highlights (for review)
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HIGHLIGHTS 
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Cyclic voltammograms showed singular features and sharp peaks. 

Copper electrodeposition on gold surface is preceded by the formation of a UPD monolayer. 
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ABSTRACT 
 
Copper electrodeposition on polycrystalline gold electrode and on Au(hkl) single crystals was 

investigated in a deep eutectic solvent (DES). The employed DES consisted on a mix of choline 

chloride and urea (1:2). The interface Au(hkl) /DES was studied by using cycling voltammetry in 

the capacitive region. The blank voltammograms showed characteristic features, not 

previously reported, that demonstrates the surface sensitivity of this solvent. Afterwards, 

copper electrodeposition was analyzed, finding that it takes place through the formation of a 

UPD adlayer, evidencing the surface sensitivity of the phenomena. Voltammetric profiles 

showed similarities with those obtained in aqueous solutions containing chloride, suggesting 

that the copper UPD in this DES is strongly influenced by the presence of chloride. 
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INTRODUCTION 

From the incorporation of ionic liquids as effective solvents, their use in electrochemical 

processes has been widespread [1, 2]. The initial instability of the prepared liquids gave way to 

the search of air and water stable liquids. Among them, deep eutectic solvents were 

introduced as a green and cheap alternative. These room temperature liquids are prepared by 

mixing a hydrogen-bond donor with a quaternary ammonium salt [1, 3-9]. 

DESs have been widely employed in electrodeposition processes given their high solubilizing 

capacity of metal ions. Different aspects of the prepared coatings have been studied: 

morphology, stress, corrosion, even first stages of deposition process [10-18]. However, the 

number of studies devoted to the interaction of solvent molecules with the electrode surface 

and its possible effect on the electrodeposition process is very scarce [19, 20]. In this work, 

copper deposition on gold from a DES composed of a urea:choline chloride (2:1 molar ratio)  

has been studied, focusing the attention on the interaction between the solution components 

and the substrate. For that, gold single crystal electrodes were employed and the interface 

Au(hkl)| DES was initially investigated.  

 

EXPERIMENTAL 

Working electrodes were prepared from single crystal beads, as reported elsewhere [21]. The 

polycrystalline sample was a polyoriented single crystal bead, Au(poly). As a reference 

electrode, a Cu wire was used while a gold wire was used as counter electrode. The potentials 

were further referred to the Ag|AgCl|3M KCl reference electrode. All working electrodes were 

flame annealed and cooled down in Ar atmosphere to ambient temperature before immersion 

in the cell. Electrochemical experiments were performed in a small volume cell and controlled 

by a -Autolab (Eco-Chemie, Ultrecht, The Netherlands). The temperature of all the 

experiments was kept at 40ºC using a thermostated bath. 

Urea (Merck p.a.) and choline chloride (Across, 99%) were mixed (molar rate 2:1) at low 

temperature (T<40ºC). Before the experiment, the DES was kept under vacuum (P<0.002mbar) 

and 30ºC overnight under stirring [22].  CuCl and CuCl2 (p.a. quality) were also purchased from 

Merck.  
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RESULTS AND DISCUSION 

A detailed voltammetric study of the capacitive potential region between -0.95 and 0.40 V vs 

Ag|AgCl was performed on Au(poly), revealing singularities of the Au(poly) | DES interface 

(Figure 1A). The voltammogram shows a capacitive current (capacity around 50 µF cm-2) that 

increases linearly with the scan rate. Overlapped with this capacitive current, a few broad 

peaks (w, a and b) and one small quite sharp peak (c) appear in the positive scan. The counter 

peaks also appear in the reverse scan evidencing quasi-reversible behavior. The lack of perfect 

reversibility can be ascribed to the high viscosity, and low mobility of ions in solution. The 

appearance of these peaks is most likely related to 2D phase transitions involving the species 

of the electrolyte. In particular, the sharp peaks have been ascribed to several phase 

transitions in the anion adlayer, and were previously reported in aqueous solution [23-25] and 

recently in the [Emmim][Tf2N] RTIL [26]. It is worth mentioning that chloride concentration in 

the solvent is around 4.8M [27, 28], so a strong effect of the chloride adsorption is expected. 

The low current intensity of these peaks is due to the small size of the corresponding facets of 

the Au bead. Thus, single crystal electrodes were also employed to explore this capacitive 

region in more detail. Figures 1B and 1C show the cyclic voltammograms in the capacitive zone 

of Au(111) and Au(100) in contact with the DES. As expected, the response is sensitive to the 

surface structure. For the Au(111) orientation, the group of peaks labelled as a, b and c (Figure 

1B) in the positive scan, appears approximately at the same potential position as the 

corresponding peaks for the polycrystalline bead (Figure 1A). A new small peak at higher 

potentials (d, Figure 1B) not observed on the Au(poly), is also observed on Au(111). These 

results evidence that the voltammetric profile of Au(poly) has major contribution from (111) 

orientation, because these facets are the largest (disordered regions do not contribute sharp 

peaks). After reversing the scan, a similar group of peaks were found in the negative scan, but 

the lack of symmetry between positive and negative scans is now more evident, supporting 

that the structuration of the solvent takes place slowly. Other possible contributions to the 

voltammogram are related with the existence of surface reconstruction, which are strongly 

linked to the anion adsorption, as was previously observed on Au surfaces in aqueous 

electrolytes [23]. Cyclic voltammetry for Au(100) was also recorded (Figure 1C), whose profile 

differs clearly from the previous one. In the high potential region, a group of quasi reversible 

peaks is observed (x, y, z and the counter peaks x’, y’ and z’) while around -0.25 V vs Ag|AgCl 

the more prominent peak (w) appears in the positive scan. The latter is also observed for the 

Au(poly), but in much lower extent, most likely reflecting that contribution from (100) facets is 

very small in the polyoriented bead. This peak is also similar to that ascribed to the lifting of 
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the hexagonal reconstruction characteristic of (100) surfaces [23, 29].  The counter peak was 

not clearly identified and two broad peaks were found instead (v’ and w’), suggesting that the 

surface reconstruction is slow and irreversible.  

 It is important to highlight that all the cyclic voltammetries recorded between -0.95 and 0.40 V 

vs Ag|AgCl were stable in consecutive scans, also in Au(111), contrary to that described in 

[Emmim][Tf2N] [26]. It is evident that the complexity of the voltammetric response reflects the 

particular nature of the solvent. How the solvent network structures in the interface Au(hkl)| 

DES should likely involve the chloride, but also both the urea and the choline contribute [30, 

31]. 

Finally, the potential window voltammograms from the blank solution on Au(hkl) and Au(poly) 

were recorded (Figure 1D), showing in the negative scan a pair of surface insensitive broad 

peaks. Similar peaks were observed in other metal surfaces and assigned to a previous step of 

the massive reduction of the solvent. In the positive scan, no relevant oxidation features were 

recorded before the massive oxidation of the solvent. After attaining the oxidation limit, a 

reduction peak appears in the reverse scan, which increases by increasing the upper potential 

limit. In any case, the electrochemical window is not higher than 2.3V, being shorter than that 

of convectional RTILs (3 – 5 V) [2]. 

After the characterization of the blank response from the solvent, copper electrodeposition 

was investigated, first on poly(Au) electrode. Figure 2 shows the copper electrodeposition on 

the gold bead, in 10 mM CuCl solution. The Cu(I) state is stabilized by chloride complexation. A 

quasi-reversible Cu(II)-Cu(I) redox process appears around 0.29 V, well separated from the 

Cu(I)-Cu electrodeposition [17, 28, 32]. The cyclic voltammogram for the Cu(I) 

electrodeposition shows a fast increase of the cathodic current with a diffusion controlled 

maximum.   By reversing the scan, a sharp oxidation peak appears, evidencing the easy 

dissolution of the copper deposit likely because the high chloride concentration in the DES 

favors it. Interestingly, reversing the scan at the beginning of main reduction current the 

typical nucleation loop does not show [33],  suggesting that the initial steps of the copper 

electrodeposition could involve the formation of  one copper submonolayer before reaching  

nucleation and growth regime [34, 35]. Figure 2B shows the cyclic voltammetry recorded just 

before the bulk deposition of copper. Around -0.37 and 0.06 V two pairs of peaks (dashed line) 

appear which could be related with copper UPD, mainly in the ordered domains. The total 

charge integrated in the potential region between -0.50 and 0.16 V is ca. 146 C cm-2 (without 

subtracting the double layer contribution). By increasing slightly the negative limit (-0.6 V vs 
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Ag|AgCl), a small peak (a) overlaps with the bulk deposition. In the positive scan, a broad 

oxidation peak (peak a’) shifted with respect to the oxidation of bulk copper (b’) is observed. 

The charge integrated in the cathodic scan for peak (a) (between -0.50 and -060 V, without 

double layer correction) amounts to ca. 140 C cm-2. A preliminary explanation of these results 

is that a second or even few monolayers could  grow layer by layer over the first UPD layer 

before reaching the growth regime, as previously reported [36]. Moreover, the current density 

within the potential region between -0.50 and 0.16 V, hereby considered as the UPD region, 

increases linearly with the scan rate (Figure 2C and 2D). This result evidences that the whole 

process takes place on the surface (both the UPD and the minor capacitive contribution). So, 

our results support that UPD is the previous step before the copper bulk deposition in the DES, 

since copper UPD was previously reported on gold electrodes in aqueous electrolytes [37] and 

also in this DES on platinum electrodes [32]. 

In order to get insight on the copper UPD step, single crystals were employed. Figure 3A and 

3B show the Cu UPD potential range on Au(111) and Au(100), respectively. The whole Cu UPD 

on Au(111) involves two groups of peaks. The first pair of peaks is located at the most positive 

potentials (0.10 V vs Ag|AgCl), while the other pair is located near the onset of the copper 

deposition (centered around -0.42 V vs Ag|AgCl).  Similar group of signals were reported in 

aqueous solutions containing chloride, medium in which it was made evident that the specific 

nature of the anions affects the UPD process [37, 38]. In sulphate containing solutions the 

more positive pair of peaks was assigned to the formation of a (3X3) R30º honeycomb [39]. 

The second pair of peaks was assigned to a full copper monolayer. The presence of chloride 

shifts the position of the peaks and also its reversibility. Moreover, chlorides induce the 

transformation of the (3X3) R30º to a (5x5) in the first UPD peak, while chlorides lay on top 

of the copper adlayer forming a bilayer structure lattice [38, 40, 41]. Because chloride interacts 

strongly with copper, it is expected that the high chloride concentration in the DES plays an 

important role in the final structure of the UPD adlayers. However, the voltammetric profile 

that we report here show a few differences from those previously reported in aqueous 

solutions, since the two groups of peaks appear more separated in the potential range and 

show less reversibility. These differences can be attributed to the presence of the other 

species of the DES (the choline and the urea), since the addition of organic compounds can 

modify the UPD region [42-44]. The charge involved within these characteristic UPD  peaks (i.e. 

subtracting a constant pseudo-capacitance value as measured at -0.5 V,  180 F cm-2)  is 

around  240 µC cm-2, a value that would approach quite well to the corresponding value for a 

whole copper monolayer ( 220 µC cm-2), assuming that here the copper deposition only 
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involves the transference of one electron (Cu(I)-Cu), and neglecting any coulometric 

contribution from anion adsorption [45].  

The cyclic voltammetry for the copper UPD on Au(100) shows only a pair of quasi reversible 

peaks around 0.142 V vs Ag|AgCl. The corresponding charge for the UPD feature, integrated 

after subtracting the pseudo-capacitance measured at -0.50 V (70 F cm-2), is around 130 C 

cm-2 (while the total charge for a whole copper monolayer deposited on Au(100) is ca. 190 C 

cm-2 [45]). 

The profile reported here is very similar to that recorded in chloride containing aqueous 

solutions. However, whereas in the positive scan a sharp peak is observed, in the negative scan 

the corresponding counter peak splits in a very thin peak overlapped with a broader one. This 

result evidences that the particular nature of the DES affects the UPD process although a 

strong interaction between the copper adlayer and the chloride is also expected [36, 46, 47]. 

It is worth pointing out that the onset of the UPD process takes place immediately after the 

first  Cu(II)/Cu(I) electron transfer, even when CuCl2 (Cu(II)) salt is the copper source (not 

showed), potentials values at which Cu(I) is stabilized (Figure 3C and 3D, dashed lines). This 

result strongly suggests that the copper UPD on gold electrode in the choline chloride-urea 

based DES takes place from the stable Cu(I)-chloride complex. So, from these data it is difficult 

to know whether the charge involved in the UPD region corresponds only to the Cu(I)-Cu 

reduction or there is also a contribution from the adsorption of the species of the DES on the 

copper adlayer, likely chloride [41, 48].  

Finally, by enlarging the negative scan (Figure 3C and 3D, solid lines), the beginning of the 

copper bulk deposition is observed. While on Au(111) only one oxidation peak appears , on 

Au(100), two oxidation peaks were detected as well as a broader and less prominent peak that 

extends to 0.0 V potential limit . These features could be related with the previous formation 

of some copper adlayers before reaching the growth regime [36]. More work is needed to 

understand the phenomena of metal UPD in the DES solvents. 

 

CONCLUSIONS 

Voltammetric experiments were recorded for different Au surfaces in contact with the eutectic 

mixture of urea and choline chloride DES, revealing that the interfacial behavior is structure 
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sensitive. Overlapped with the capacitive current recorded for each electrode, several sharp 

and characteristic peaks were observed not previously described.  

Copper deposition on gold electrodes was also investigated, taking advantage that Cu(I) 

solutions can be used. It was found that bulk copper deposition is preceded by the previous 

formation of a UPD copper adlayer. Copper UPD on Au(111) and Au(100) showed  

characteristic sharp peaks and similar profiles to those recorded in chloride containing 

aqueous solutions. Thus, chloride is likely involved in the UPD formation. These preliminary 

results indicate that the UPD in the DES takes place from the stabilized Cu(I)-Cl complex. 
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Figure 1. Cyclic voltammograms for A) Au(poly), B) Au(111) and C) Au(100) electrodes in 

contact with the DES, D) large potential window voltammograms for a) Au(poly), b) Au(100) 

and c) Au(111).  Scan rate: 50 mV/s 
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Figure 2. Cyclic voltammograms for copper electrodeposition on Au(poly) from a 10mM CuCl + 

DES solution:  A) and B) different potential limits. (dashed line in B is just an enlargement of 

the black curve). Scan rate at 5 mV/s.   C) Copper UPD recorded at different scan rates. D) plots 

of current densities (squares) and pseudocapacitance (j/v) (triangles) of the UPD region vs the 

scan rate. Open and filled symbols corresponds to the maximum values measured at peaks c 

and d respectively, from figure 2C. Vertical line in figure 2A marks the reversible potential for 

bulk copper deposition. 
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Figure 3. Cyclic voltammograms for Cu UPD deposition on Au(hkl) electrodes, from a 10mM 

CuCl +DES solution. A) Au(111) , B) Au(100). Potential limits showing the Cu(II)-Cu(I) reduction 

(dashed line) and the onset of bulk deposition (solid line) on : C) Au(111) ,D) Au (100). Scan 

rate: 5mV/s. 
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