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A commentary on

FOXP2 drives neuronal differentiation by
interacting with retinoic acid signaling
pathways
by Devanna, P., Middelbeek, J., and Vernes,
S. C. (2014). Front. Cell. Neurosci. 8:305.
doi: 10.3389/fncel.2014.00305

Devanna et al. (2014) have demonstrated
that FOXP2 mimics, and actually potenti-
ates, retinoic acid (RA) induction of genes
involved in neural differentiation. At the
physiological level this effect results in an
increase of neurite outgrowth and branch-
ing, and in a reduction of neuronal migra-
tion. The authors highlight the importance
of RA signaling for brain growth and dif-
ferentiation, and the relevance of FOXP2
for language. Specifically, the authors’
interest focuses on the upregulation of
RARβ by FOXP2 in the striatum, where
the primary pathology is located in peo-
ple bearing a defective copy of FOXP2,
known to give rise to language disorders
(see Graham and Fisher, 2013 for review).
Devanna et al.’s study adds to the litera-
ture showing that RA plays an important
role in brain plasticity (Luo et al., 2009),
learning and memory (Etchamendy et al.,
2003; Jiang et al., 2012), and we find this
research direction promising. In our opin-
ion the link between RA, FOXP2, and
language could be made more robust by
taking advantage of information already
available in the literature, which we wish
to highlight here. In doing so, we hope to
encourage further experimental testing in
this area.

Recently we have assembled a set of
genes that we predict to be implicated in

the refinement of the connectivity between
sub-cortical and cortical structures, as well
as the interface between brain growth and
skull formation, and which may under-
lie our species-specific “language readi-
ness” (Boeckx and Benitez-Burraco, 2014).
Interestingly, in the context of Devanna
et al.’s study, several of the genes belonging
to our list are related to the RA signaling
pathway, to FOXP2, or to both them. These
links, if further explored and eventually
mapped onto particular aspects of neu-
ral function and brain development could
reinforce Devanna et al.’s findings and
help us better understand the molecular
underpinnings of human language.

Our set of genes is centered on RUNX2,
which controls different aspects of skull
and brain development (Stein et al.,
2004; Reale et al., 2013) and whose pro-
moter region shows two derived alle-
les in modern humans (Perdomo-Sabogal
et al., 2014). One of the RUNX2 tar-
gets is CRABPII (Wu et al., 2014), a
RA signaling component highlighted by
Devanna et al. Another target of RUNX2,
and also a gene regulated by RA, is
HES1 (Suh et al., 2008). The HES1 path-
way is related to craniofacial develop-
ment (Wen et al., 2013), the differenti-
ation of GABAergic neurons, standardly
regarded as critical for the maintenance
of our species-specific cognitive profile
(Long et al., 2013), and the development
of dopaminergic neurons, routinely men-
tioned in the literature on motor behavior
and vocal learning (Kameda et al., 2011).
Moreover, HES1 is transcriptionally regu-
lated by the SLIT/ROBO pathway (Borrell
et al., 2012), which is impaired in lan-
guage disorders and autism (Suda et al.,

2011; St Pourcain et al., 2014; Tran et al.,
2014) and which is implicated in the estab-
lishment of the vocal learning neural cir-
cuits in birds (Wang, 2011). Importantly,
the SLIT/ROBO pathway interacts with
FOXP2: both Vernes et al. (2007) and
Konopka et al. (2009) have identified
SLIT1 as a direct downstream target of
FOXP2. Finally, among the RUNX2 tar-
gets identified by Kuhlwilm et al. (2013),
two genes (NLGN1 and ITPR1) are both
candidates for autism spectrum disorder
and targets of RORA1, a major isoform
of the RA-related orphan receptor-alpha
(RORA) protein in the human brain, and
also a candidate for autism (Sarachana
and Hu, 2013). Interestingly, among the
genes highlighted by Sarachana and Hu
(2013) one also finds candidates for lan-
guage disorders, like CYP19A1 (Anthoni
et al., 2012), and several targets of FOXP2,
like NTRK and A2BP1 (Konopka et al.,
2009). The latter gene is also a target of
the neural splicing factor FOX-1, related
to many neurodevelopmental diseases and
one of the FOXP2 targets that show strong
signals of selection in modern humans
(Ayub et al., 2013).

Finally, another gene also highlighted
by Devanna et al. is ASCL1, known to
be involved in RA signaling. According
to the authors, both FOXP2 and RA
strongly downregulate ASCL1. We have
found that ASCL1 regulates the DLX suite
and the development of most neocortical
GABAergic neurons (Letinic et al., 2002).
We argued in Boeckx and Benitez-Burraco
(2014) that DLX1 and DLX2 are likely to
play an important role in the formation
of a language-ready brain. Interestingly,
Ascl1, Dlx1, Dlx2, and Foxp2’s target
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Nkx2-1 regulate the development of the
basal ganglia in mice (Anderson et al.,
1997; Casarosa et al., 1999). Moreover, one
partner of ASCL1 is DLL1 (Nelson and
Reh, 2008), linked to many of the genes
involved in vocal learning (Wang, 2011).
It is worth noting in this context that
Devanna et al. have found that both RA
and FOXP2 dowregulate DLL3. Although
data for DLL1 are not available, we observe
here that in mice mutant for Ascl1 (lacking
discrete neuronal populations of the cere-
bral cortex and the basal ganglia) neither
Dll1 nor Dll3 are expressed in the ven-
tral telencephalon (Casarosa et al., 1999).
Lastly, we wish also highlight that ASCL1
interacts with POU3F2, a protein that
regulates the upper-layer neuronal migra-
tion and identity during the development
of the neocortex (McEvilly et al., 2002).
POU3F2 has been linked to developmental
and language delays, intellectual disability,
schizophrenia and autism spectrum disor-
ders (Lin et al., 2011). It has been shown
that modern humans exhibit a (nearly
fixed) substitution in intron 8 of FOXP2
that affects a binding site for POU3F2,
which results in a less efficient way of acti-
vating transcription of FOXP2 (Maricic
et al., 2013). POU3F2 also interacts with
PQBP1 (Waragai et al., 1999), a protein
involved in neurite growth and neuron
projection, and linked to intellectual dis-
ability (Wang et al., 2013). (As we noted
at the outset, Devanna et al. highlight that
FOXP2 promotes increased neurite out-
growth and impair neuronal cell migration
in response to RA.)

In sum, we regard the findings by
Devanna et al. of outstanding interest con-
cerning the genetic, molecular, and phys-
iological underpinnings of language. We
believe that these findings could be rein-
forced if the links with the genes men-
tioned in this commentary are explored
and confirmed regarding specifically the
development and function of brain areas
involved in language processing, and we
hope that this commentary will encourage
geneticists to do so.
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