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Ghrelin is involved in the regulation of growth in vertebrates through controlling different

functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh)

secretion. The aim of this work was to identify the sequences of preproghrelin and

Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions

in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata

preproghrelin was analyzed, and a tissue screening was performed. The effects of 21

days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin,

Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the

Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors

are well conserved, being expressed mainly in stomach, and in the pituitary and

brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while

Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary

ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt

upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression

augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1

expression and that of its splice variants decreased to lowest levels. Liver Gh receptors

expression was down-regulated during fasting and recovered after refeeding. This study

demonstrates the important role of Ghrelin during fasting, its acute down-regulation in

the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.

Keywords: ghrelin, GHSR1a, growth hormone, IGF-1, fasting and refeeding

INTRODUCTION

Ghrelin is a peptide hormone secreted mainly by the stomach in vertebrates, but also detected
in many other tissues (e.g., intestine, heart, pancreas, and especially pituitary and brain). Ghrelin
is synthesized as Preproghrelin, and the mature peptide varies between 12 and 28 amino acids,
depending on species and form of Ghrelin, but it shows high sequence homology across vertebrates,
including fish (1). Since its discovery, Ghrelin has been involved in many physiological processes
like the regulation of feed intake, adiposity, growth, energy and glucose metabolism, intestinal
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motility and digestive enzymes activity, among others (2). The
first characterization of Ghrelin in a fish species, the goldfish
(Carassius auratus), was done by Unniappan et al. (3). Later,
Kaiya et al. (4) reviewed its function in non-mammalian
vertebrates and recently, different publications have investigated
its role in other fish species (5–12), but very little is known about
this hormone in gilthead sea bream (Sparus aurata) (13).

Ghrelin functions through binding to its receptors, which
are also known as the growth hormone secretagogue receptors
(Ghsrs). The Ghsrs are a family of transmembrane G-protein
coupled receptors, and the Ghsr1a isoform, discovered a few
years before Ghrelin (14), is known as the active form. An
alternative splice variant named Ghsr1b, was also described by
the same authors, but its structure lacks two transmembrane
domains leading to the impossibility of this isoform to initiate
intracellular signaling. Since the discovery of these two receptors,
the Ghsrs family has been widely studied and other numerous
isoforms (splice variants and paralogues) have been described in
vertebrates (15, 16).

ghsrs mRNA is found in many tissues, including brain,
stomach, intestine, and especially pituitary gland. The high
expression levels detected in the pituitary in vertebrates confirms
the role of Ghsrs in the regulation of growth hormone (Gh)
production (17). Gh is one of the key elements of the Gh/insulin-
like growth factor-1 (Igf-1) axis, which is the main regulator of
growth in vertebrates. Depending on factors such as nutritional
state, Gh can directly stimulate anabolic or catabolic processes
by binding to the Gh receptors (Ghrs). Moreover, systemic Gh
mainly acts in the liver, where it stimulates the production
of Igf-1. This growth factor in turn acts in many peripheral
tissues stimulating growth-related processes (18). Thus, most
of the physiological peripheral roles of Ghrelin appear to be
mediated indirectly by the modulation of Gh release (19). In
addition, Ghrelin has been described to have an important role
in the hypothalamus in mammals, where it acts on different
ghsrs-expressing cell populations, leading to enhanced expression
and release of orexigenic neuropeptides like neuropeptide Y
and Agouti-related peptide, hence stimulating appetite in most
vertebrates, including diverse fish species (20). Moreover, it has
been recently reported, at least in mammals, that Ghrelin acts
over the hypothalamic Gh releasing hormone neurons (21).
Although there is a controversy on how the different forms
of Ghrelin (acylated and unacylated) cross the blood brain
barrier to exert this role (22), adding another complex level of
regulation.

Fish are capable to resist long fasting periods (23) and
the Gh/Igf-1 system, displays interesting changes to adjust
metabolism and growth to nutrient supply. Ghrelin in its double
role as a hunger hormone and Gh secretion regulator should play
an important role in fasting and refeeding physiology, although
these aspects are poorly known in fish, especially in gilthead sea
bream (13, 24).

The objective of the present work was to identify and
characterize Ghrelin and its receptors by analyzing sequences,
phylogeny and gene expression through a tissue screening, and to
study their responsiveness upon fasting and refeeding in relation
with the Gh/Igf-1 axis in gilthead sea bream juveniles.

MATERIALS AND METHODS

Fish Maintenance and Distribution
Gilthead sea bream juveniles (initial body weight 50± 3 g; length
15.3 ± 0.68 cm) were obtained from a commercial hatchery
(Piscimar, Borriana, Spain) and reared in the facilities of the
Faculty of Biology. Forty-two fish were randomly distributed in
six 200 L seawater tanks (7 fish/tank) and some extra fish for
tissue screening were kept in another 200 L tank. Fish were kept
in a seawater recirculation system at a constant temperature of
23 ± 1◦C and at 12 h light/12 h dark photoperiod through the
whole experiment. During the acclimation period (2 weeks), fish
were fed to apparent satiety twice a day with a commercial diet
(Optibream, Skretting, Burgos, Spain). This study was carried
out in accordance with the recommendations of the EU, Spanish
and Catalan Government-established norms and procedures.
The protocol was approved by the Ethics and Animal Care
Committee of the University of Barcelona (permit numbers
CEEA 110/17 and DAAM 9488).

Experimental Design
After acclimation, a period of 21 days of fasting and 7 days
of refeeding was designed, according to previous experience
(25). During the refeeding period, fish were fed once a day to
apparent satiety. Samplings were made at the beginning and end
of the fasting period (−21 and 0 days, respectively), and at 2,
5, 24 h and 7 days upon refeeding. The −21 days, 24 h and 7
days samplings were made just before feeding, representing one
day fasting. The day 0 sampling was done at the same time
of the day, and fish were fed right after to start the refeeding.
In each sampling, 6 fish were first anesthetized with MS-222
(0.08 g/L), and once blood was extracted, were sacrificed by an
overdose of MS-222 (>0.1 g/L). Then, brain, pituitary, liver and
stomach were dissected and stored in liquid nitrogen. Before
sacrifice, body weight, body length (standard), and liver and
viscera weight were measured to calculate distinct biometric
indexes: condition factor (CF), hepatosomatic index (HSI), and
viscerosomatic index (VSI).

Additionally, 3 fish were sacrificed and sampled for 17
distinct tissues and/or organs. RNA was obtained from tissue
samples (30–100mg) or from the whole pituitary gland and
brain with 1mL of TRI Reagent Solution (Applied Biosystems,
Alcobendas, Spain) and reverse transcribed following the
procedures previously described (26). Briefly, 1 µg of RNA was
treated with DNase I (Life Technologies, Alcobendas, Spain)
following the manufacturer’s instructions to remove genomic
DNA. After DNase treatment, retrotranscription was performed
using the Transcriptor First Strand cDNA Synthesis Kit (Roche,
Sant Cugat del Vallès, Spain) for 10min at 25◦C, 60min at 50◦C
and 5min at 85◦C. Samples were immediately stored at −20◦C
for further analysis.

Preproghrelin and ghsrs Characterization
Primers for the amplification of the complete codifying
sequences of preproghrelin, ghsr1a and ghsr1b were designed
using Primer3Plus software (27) with the nucleotide sequences
obtained from the Nutrigroup-IATS nucleotide database
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of gilthead sea bream at http://www.nutrigroup-iats.org/
seabreamdb (28, 29)]. The three sequences are deposited in
GenBank (NCBI) under accession numbers: MG570187 for
preproghrelin; MG570188 for ghsr1a, and MG570189 for ghsr1b.
Sequences specificity was confirmed by PCR amplification of
transcribed RNA samples from the tissue screening that were
run on an agarose gel for size verification.

A multiple Preproghrelin sequence alignment was performed
using the default settings of the MAFFT tool online (server)
version (http://mafft.cbrc.jp/alignment/server/). The phylogeny
was inferred using the JTT + G + I model substitution
method and an unrooted tree was constructed using the MEGA
X software with a bootstrapping value of 1,000. Previously,
using the same software, a test was performed to determine
which substitution model was the best for our data (data not
shown). Unequivocal identity of ghsr1a and ghsr1b was verified
by Blast and BlastX searches, as well as by transmembrane
domain analysis by means of TMHMM transmembrane helixes
prediction program (http://www.cbs.dtu.dk/services/TMHMM-
2.0).

Ghrelin, Gh and Igf-1 Plasma Levels
Plasma levels of acylated Ghrelin were measured using
the Ghrelin N- radioimmunoassay (RIA) protocol originally
described by Hosoda et al. (30) and modified by Jönsson et al.
(7) with the exception that plasma was not extracted, just quickly
centrifuged (1,000 rpm, 1min) before pipetting to the RIA tubes,
and iodinated human Ghrelin (NEX388010UC, PerkinElmer,
USA) was applied as tracer. Anti-rat Ghrelin [1-11] antisera,
which specifically recognizes the conserved n-octanoylated Ser3
epitope on Ghrelin, was used at a final dilution of 1:500000
(gift from Dr. Hiroshi Hosoda, Japan). Standard was made
using synthetic rainbow trout acylated Ghrelin (Peptide institute,
Japan).

All samples were assayed in duplicate and included in one
assay. The Ghrelin RIA was validated for gilthead sea bream,
and the slopes of the standard curve and of a serial dilution of
plasma samples were parallel (Supplementary Figure 1). Plasma
levels of Gh and Igf-1 were measured by corresponding RIAs, as
previously described (31, 32).

Gene Expression
The mRNA transcript levels were examined by quantitative real-
time PCR (qPCR) according to the requirements of MIQUE
guidelines (33) in a CFX384TM Real-Time System (Bio-Rad, El
Prat de Llobregat, Spain). All reactions were performed in the
conditions previously described (26). The primers used are listed
in Table 1. To amplify the two ghsrs the forward primer was
designed in a common region, and the reverse primer for ghsr1a
in a region overlapping exon 1 and 2, and for ghsrb1 in a region
including the differential nucleotides at the end of translation
and the 3′-UTR. In addition, elongation factor 1 alpha (ef1a),
ribosomal protein S18 (rps18) and b-actin (only in brain) were
analyzed and served as reference genes in order to calculate the
relative expression of the target genes (34). Both, reference genes
stability and relative expression calculation were determined with
the Bio-Rad CFX Manager Software (v2.1).

Statistical Analyses
Data was analyzed using IBM SPSS Statistics 22 and are showed
as mean ± standard error of the mean (SEM). Normality
and homogeneity of variances were tested with Shapiro-Wilk
Test and Levene’s, respectively. When data did not follow
a normal distribution or did not have homoscedasticity, it
was converted by logarithm transformation. Differences among
groups were tested by one-way analysis of variance (ANOVA)
followed by Tukey HSD or LSD, as post-hoc tests. In case of
no homoscedasticity, the non-parametric Kruskal-Wallis test was
used with the Dunnett’s T3 as post-hoc. The confidence interval
for all analyses was set at 5%.

RESULTS

Preproghrelin and Ghsrs Characterization
Translation of preproghrelin nucleotide sequence (907 nucleotide
in length) resulted in a 107 amino acid sequence that presented
97% identity with that of another sparid, the blackhead sea bream
(Acanthopagrus schlegelii), as the most significant result in a
BlastX search. The predicted sequence of gilthead sea bream
Preproghrelin contained the conservedN-terminal signal peptide
(26 amino acids), that yields Proghrelin after cleavage. In the
Proghrelin region, the sequence contained the characteristic Ser3
residue, which is the octanonylation target, as well as the GlyArg
amidation and cleavage site to obtain the N-terminal mature
Ghrelin (20 amino acids) and the C-terminal Proghrelin peptide
(Figure 1A).

The nucleotide sequences of ghsr1a and ghsr1b (1708 and 1793
nucleotide in length, respectively) encoded for 384 (Ghsr1a) and
292 (Ghsr1b) amino acids sequences that shared a 98% of identity
with their respective orthologs in the blackhead sea bream (35).
In the same way, the TMHMM transmembrane helixes program
predicted the presence of the characteristic seven transmembrane
domains in Ghsr1a, whereas Ghsr1b did not retain the last two
due to alternative gene splicing (Figure 1B).

The phylogenetic analysis of the Preproghrelin amino acid
sequence is shown in Figure 2. The unrooted tree highlights the
conservation of this protein in vertebrates, although it presents
clusters that separate the different vertebrate classes and fish
orders. Results of the preproghrelin and ghsrs gene expression
screening are shown in Figures 3A,B, respectively. preproghrelin
was mainly expressed in stomach, but weak expression was also
detected in many other tissues (i.e., spleen and head kidney).
Regarding the receptors, brain, pituitary and liver were the tissues
with highest expression of both, ghsr1a and ghsr1b, although low
levels of expression were also found in many other. In pituitary
and brain, the expression levels of ghsr1a were very similar, but
the expression of ghsr1b was higher in liver. Thus, in pituitary
and brain the most abundant isoform was ghsr1a while in liver
was ghsr1b.

Fasting and Refeeding Experiment
Growth and Morphometric Parameters
Morphometric parameters results are shown in Figures 4A–D.
Mean body weight (which was not significantly affected) and
CF presented a similar pattern along the fasting/refeeding
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TABLE 1 | Sequences, melting temperatures (Tm) and GenBank accession numbers of the primers used for qPCR.

Primer list (Sparus aurata)

Gene Sequence (5′-3′) Tm (◦C) Accession

Number

ef1a F: CTTCAACGCTCAGGTCATCAT 60 AF184170

R: GCACAGCGAAACGACCAAGGGGA

rps18 F: GGGTGTTGGCAGACGTTAC 60 AM490061.1

R: CTTCTGCCTGTTGAGGAACCA

b-actin F: TCCTGCGGAATCCATGAGA 60 X89920

R: GACGTCGCACTTCATGATGCT

preproghrelin F: CCCGTCACAAAAACCTCAGAAC 60 MG570187

R: TTCAAAGGGGGCGCTTATTG

ghsr1a F: GTCGGCGGCTGTGGCAAAGA

R: GGCCAACACCACCACCACCAAC

60 MG570188

ghsr1b F: CGCACACGCATAACTTTGTC 60 MG570189

R: GAGGAGGATGAGCAGGTGAA

gh F: GCCCCATCGACAAGCACG 60 FJ827496

R: GAGTCTACATTTTGCCACCGTCAG

ghr-1 F: ACCTGTCAGCCACCACATGA 60 AF438176

R: TCGTGCAGATCTGGGTCGTA

ghr-2 F: GAGTGAACCCGGCCTGACAG 60 AY573601

R: GCGGTGGTATCTGATTCATGGT

igf-1a F: AGGACAGCACAGCAGCCAGACAAGAC 60 AY996779

R: TTCGGACCATTGTTAGCCTCCTCTCTG

igf-1ab F: AGTCATTCATCCTTCAAGGAAGTGCATCC 60 EF688015

R: TTCGGACCATTGTTAGCCTCCTCTCTG

igf-1abc F: ACAGAATGTAGGGACGGAGCGAATGGAC 60 EF688016

R: TTCGGACCATTGTTAGCCTCCTCTCTG

igfbp1a F: AGTGCGAGTCCTCTCTGGAT 60 KM522771

R: TCTCTTTAAGGGCACTCGGC

igfbp2a F: CGGGCTGCTGCTGACATACG 60 AF377998

R: GTCCCGTCGCACCTCATTTG

igfbp4 F: TCCACAAACCAGAGAAGCAA 60 F5T95CD

R: GGGTATGGGGATTGTGAAGA 02JMZ9K

igfbp5b F: TTTCTCTCTCGGTGTGC 60 AM963285

R: TCAAGTATCGGCTCCAG

igf-rb F: GCTAATGCGAATGTGTTGG 55 KT156847

R: CGTCCTTTATGCTGCTGATG

experiment, decreasing after fasting and slightly increasing
afterwards, partially recovering at day 7. Regarding HSI,
a significant decrease was observed after fasting, but was
significantly increased at day 7 post-refeeding. At 2 h post-
prandial the stomach was clearly full, but no food was found in
the intestine, whereas at 5 h the stomach had emptied almost
all its food content. Thus, VSI was significantly lower after the
fasting period. With refeeding, it increased at 2 and 5 h, but at 1
and 7 days the VSI values returned to baseline levels.

Plasma Ghrelin, Gh and Igf-1
Ghrelin, Gh, and Igf-1 plasma concentrations are presented in
Figures 5A–C. Plasma Ghrelin showed maximum levels after
fasting and at 2 h post-prandial, and a significant dip at 5 h,
but then returned to high levels after 1 and 7 days. However, it
should be taken into account that those samples, as well as the

one before the whole fasting period, were taken after a 24 h fast,
which appears to be a potential stimulus for Ghrelin secretion.
Circulating Gh increased significantly with fasting. Then, there
was no acute post-prandial change but a gradual decrease upon
refeeding returning to basal after 7 days. Plasma Igf-1 levels had
an inverse pattern to that of Gh; showing significantly lower
values after the 21 days fasting period compared to day 0 and then
returning to basal levels at 7 days post-refeeding.

Gene Expression

Preproghrelin and ghsrs
Stomach preproghrelin gene expression (Figure 6A) did not
show any change after fasting, but a significant difference was
observed after 1 day of refeeding. In the brain, preproghrelin gene
expression was much lower than in the stomach (Figure 3A);
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FIGURE 1 | (A) Multiple alignment of the Preproghrelin amino acid sequences corresponding to members of sparidae perciformes (S. aurata and A. schlegelii),

cichlidae perciforme (O. niloticus) and salmoniformes (O. mykiss). From N- to C-terminal, the signal peptide (underlined), the mature Ghrelin (red boxed) and C-terminal

Proghrelin peptide (rest of the sequence) are highlighted. Moreover, the acylation target Ser3 residue (starred) and the GlyArg amidation and cleavage signal

(Continued)
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FIGURE 1 | (double underlined) are identified and conserved. (B) Amino acid alignment of the translated sequences of S. aurata Ghsr1a and Ghsr1b with their

respective orthologs of the sparidae perciforme (A. schlegelii). Predicted transmembrane domains are blue boxed. Percentage of identity is indicated in grey scale. “*”

indicates positions which have a single, fully conserved residue; “:” indicates conservation between groups of strongly similar properties - scoring > 0.5 in the Gonnet

PAM 250 matrix and “.” indicates conservation between groups of weakly similar properties - scoring ≤ 0.5 in the Gonnet PAM 250 matrix.

FIGURE 2 | Phylogenetic analysis (unrooted tree) of Preproghrelin among different vertebrates. Multiple alignment was performed using the default settings of the

MAFFT tool online (server) version (http://mafft.cbrc.jp/alignment/server/) and a phylogenetic tree by Maximum Likelihood phylogeny was built with the MEGA X tool

using the JTT + G + I substitution model. B. japonicus (Bufo japonicus), X. laevis (Xenopus laevis), G. Gallus (Gallus gallus), A. platyrhynchos (Anas platyrhynchos),

C. livia (Columba livia) T. scripta (Trachemys scripta), M. musculus (Mus musculus), R. norvegicus (Rattus norvegicus), H. sapiens (Homo sapiens), M. mulatta (Macaca

mulatta), S. scrofa (Sus scrofa), O. aries (Ovis aries), B. Taurus (Bos Taurus), B. bubalis (Bubalus bubalis), S. meridionalis (Silurus meridionalis), D. rerio (Danio rerio),

C. idella (Ctenopharyngodon idella), O. mykiss (Oncorhynchus mykiss, S. salar (Salmo salar), T. orientalis (Thunnus orientalis), V. moseri (Verasper moseri),

M. salmoides (Micropterus salmoides), S. maximus (Scophthalmus maximus), S. aurata (Sparus aurata), A. schlegelii (Acanthopagrus schlegelii), L. japonicus

(Lateolabrax japonicus), D. labrax (Dicenthrachus labrax), E. coioides (Epinephelus coioides), L. crocea (Larimichthys crocea), S. chuatsi (Siniperca chuatsi),

O. mossambicus (Oreochromis mossambicus), O. niloticus (Oreochromis niloticus), C. melanopterus (Carcharhinus melanopterus). Length of the branches

corresponds to number of substitutions per site and confidence values (based on a bootstrap number of 1,000) are shown above and below the lines, respectively.
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FIGURE 3 | Relative gene expression across a tissue screening of

preproghrelin (A) and Ghrelin receptors ghsr1a and ghsr1b (B). Data are

shown as means ± SEM from three individual fish (n = 3). Prox. Int, proximal

intestine; Dist. Int, distal intestine.

fasting effects were not found either but at 5 h post-prandial the
expression levels in the brain were significantly down-regulated
(Figure 6D) compared to the initial sampling (−21 days), and
similar low expression values were maintained at 1 and 7 days
post-feeding.

The mRNA expression profile of both pituitary ghsrs isoforms
(Figures 6B,C) was similar along the experiment, stable during
fasting and down-regulated significantly at 5 h refeeding. After
1 and 7 days, the expression of ghsr1a increased significantly
reaching the levels as before fasting, while the ghsr1b expression
remained low until the end. Moreover, the gene expression
patterns of both ghsrs in the brain (Figures 6E,F) were almost
identical, being practically irresponsive to either 21 days of fasting
or the onset of feeding.

Gh/Igf-1 axis members
Pituitary gh gene expression (Figure 7A), similarly to plasma
Gh, progressively increased to reach maximum levels at

1 day post-refeeding, decreasing back to basal levels at
day 7.

The liver gene expression of total igf-1 (Figure 7D) remained
stable after fasting and in the early post-prandial period, but after
1 day, the lowest levels were observed, and at day 7 returned to
baseline. The igf-1 splice variants (Figure 7E) showed a similar
gene expression profile than that of total igf-1, especially igf-1a
with little effects of fasting and lowest expression levels at 1 day
post-refeeding, recovering basal values after 7 days. Moreover,
igf-1b and igf-1c showed a significant post-prandial dip at 2 h,
maintaining still lower values at day 1, to return to basal levels
at day 7.

Concerning liver Gh receptors, both were significantly down-
regulated due to fasting (Figures 7B,C). However, different post-
prandial responses were observed: ghr-1 stopped decreasing at 2
and 5 h, while ghr-2 expression continued to decline until 2 h,
remaining low up to 1 day post-refeeding. The expression of
both receptors was then up-regulated at day 7 in comparison to
early post-prandial measurements. In the case of Igf-1 receptors,
the only isoform detected in liver was igf-1rb (Figure 7F). Its
expression was not affected by fasting but was significantly down-
regulated at 2 h of refeeding, to then recover at 7 days initial
expression levels.

The gene expression of four igfbps is shown in Figures 7G,H.
igfbp1a and igfbp2a expression had similar stable patterns, except
that igfbp1a showed a significant abrupt peak in expression 2 h
post-refeeding, returning to basal levels at 5 h. The expression
of igfbp4 and igfbp5b was detected for the first time in gilthead
sea bream liver. Both presented a similar profile, but igfbp5b did
not show significant changes while the response for igfbp-4 was
more pronounced, with a significant decrease at 5 h and 24 h
post-prandial compared to the onset of refeeding. Then, such low
expression level was maintained after 1 day post-refeeding and
basal levels were recovered after 7 days.

DISCUSSION

Preproghrelin and Ghsrs Characterization
Since its discovery, the preproghrelin nucleotide and amino
acid sequences have been described in many vertebrate species
(36). In the present study, phylogenetic analysis of the gilthead
sea bream translated sequence highlighted the conservation
of the most characteristic features. In fact, Preproghrelin is
considered a well-conserved protein, but with a perceptible
evolution among classes and orders. The gilthead sea bream
Preproghrelin resulted more closely related to other Sparidae
species, flatfishes and European sea bass (Dicentrachus labrax),
but more distant to salmonids, cypriniformes, siluriformes and
chondrictyes.

The expression of preproghrelin was detected mainly in
stomach and pyloric caeca, which agrees with previous studies
in mammals and other fish species, establishing that the main
source of Ghrelin is the stomach (3, 4, 6, 12, 13). Moreover,
weak preproghrelin expression was detected in other tissues and
organs as in different fish species (5, 6). One of the main targets
of Ghrelin is the brain, where it is reported to act in appetite-
regulating areas to induce (or decrease in some species) feed
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FIGURE 4 | Mean body weight (A), condition factor (CF) (B), hepatosomatic index (HSI) (C) and viscerosomatic index (VSI) (D) of fish during the fasting and refeeding

experiment. The postprandial period is shown in gray boxes and the time in hours. Data are shown as means ± SEM (n = 6). Letters indicate significant differences

(p < 0.05) by one-way ANOVA and Tukey HSD or LSD test.

FIGURE 5 | Plasma concentration of Ghrelin (A), Gh (B) and Igf-1 (C) during the fasting and refeeding experiment. The postprandial period is shown in gray boxes

and the time in hours. Data are shown as means ± SEM (n = 6). Letters indicate significant differences (p < 0.05) by one-way ANOVA and Tukey HSD or LSD test.

intake (19, 22). Thus, the detection of preproghrelin mRNA
expression locally in the brain may also contribute to confirm the
existing hypothesis that Ghrelin is synthetized both peripherally
and centrally (22). In our screening, the low preproghrelinmRNA
levels detected in the brain may be due to the fact that the
whole brain was taken, instead of only the hypothalamus, which
is supposed to be the main production site and target in the
brain.

The gene expression screening of the two ghsrs showed that
both are widely distributed among multiple tissues and organs,
in line with previous research (16). The tissues with higher
expression were pituitary, brain and liver, which support that
these are the main targets of Ghrelin action in gilthead sea bream,
as in many other vertebrate species (15, 37). Furthermore, as
far as we know, this is the first time that it is observed that
isoform a is more abundant in brain and pituitary, while isoform
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FIGURE 6 | Relative gene expression of stomach preproghrelin (A), pituitary ghsr1a (B) and ghsr1b (C) and brain preproghrelin (D), ghsr1a (E) and ghsr1b (F) during

the fasting and refeeding experiment. The postprandial period is shown in gray boxes and the time in hours. Data are shown as means ± SEM (n = 6). Letters indicate

significant differences (p < 0.05) by one-way ANOVA and Tukey HSD or LSD test.

b is more abundant in liver. Such differential expression in these
tissues could suggest that Gh secretion requires the presence of
the truncated isoform to achieve better regulation, as suggested
(15, 16).

Fasting and Refeeding Effects on Growth
Performance and Ghrelin
Although gilthead sea bream tolerates long periods of food
deprivation well (25, 38–40), the morphometric parameters
reduction after 21 days of fasting confirmed that the fish had
entered in a catabolic state, which was progressively reverted
upon refeeding, as demonstrated by the recovery of the body
indexes at the end of the experiment.

The existing literature reveals that the response of Ghrelin to
fasting may be, especially in fish, species-specific. Thus, fasting
has been reported to up-regulate, down-regulate or unchange the
gastrointestinal tract and brain ghrelin mRNA levels in diverse
fish species (7, 41–45). Such a variety of responses could indicate
that other factors, such as sex and age of individuals (44),
temperature (46), fasting duration (42) or diet (13) may also
affect Ghrelin production. Interestingly, during the development
of the present work, Babaei et al. (13) also reported a tissue-
specific preproghrelin expression response to fasting in gilthead
sea bream.

The different response observed to 21 days of fasting with
Ghrelin plasma levels and preproghrelinmRNA levels in stomach,
is consistent with previous fish studies (45, 47) and suggests
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FIGURE 7 | Relative gene expression of pituitary gh (A), liver ghr-1 (B) ghr-2 (C) total igf-1 (D), igf-1 splice variants (E) igf-1rb (F), igfbp1a and igbp2a (G) and igfbp4

and igfbp5b (H) during the fasting and refeeding experiment. The postprandial period is shown in gray boxes and the time in hours. Data are shown as means ± SEM

(n = 6). Letters indicate significant differences (p < 0.05) by one-way ANOVA and Tukey HSD or LSD test.

that post-transcriptional mechanisms are in place. However,
Ghrelin plasma levels were also high at 1 and 7 days post-
refeeding probably due to the 24 h fast. In sea bass, a rise
in preproghrelin expression was observed during the first days
of fasting, to then decrease progressively to fed control values
after 21 days of fasting (48). In grass carp, a peak of intestinal
ghrelin expression was described after 7 days of fasting (49).
In goldfish, Unniappan et al. (42) found that fasting for 3 and
5 days significantly increased Ghrelin plasma levels, while in
gut or hypothalamus preproghrelin expression did not increase
until after 7 days of fasting. Moreover, in Atlantic salmon,
Ghrelin levels were significantly increased after 2, but not
14 days of fasting (50). Together, these observations support
the idea that in diverse fish species, the response increasing
Ghrelin plasma levels occurs mainly during the early stage
of fasting and is not always related to changes in gut gene
expression.

Besides, with refeeding Ghrelin plasma levels that were still
high at 2 h, were followed by a significant decrease at 5 h,
suggesting an inhibitory effect on Ghrelin secretion as food
enters the stomach. These decrease in Ghrelin coincided with the

beginning of circulating Gh decline, suggesting the relationship
between these two hormones. A similar decrease was also
observed at 1 h post-prandial in tilapia (51), and in refed striped
bass (52). Moreover, such reduced plasma levels coincided with
the peak in stomach preproghrelin mRNA levels, whereas the
minimum expression 1 day after refeeding corresponded with
the recovery of Ghrelin plasma levels, indicating an inverse
relationship between the regulation of the gene expression and
the circulating hormone. Thus, it appears that during this specific
postprandial stage (2, 5, and 24 h) preproghrelin gene expression
could be regulated by Ghrelin plasma levels.

Unniappan et al. (42) also observed that in goldfish,
preproghrelin mRNA levels (in gut and hypothalamus) and
Ghrelin plasma levels were sensitive to feeding when analyzed
periprandially. At 3 h pre-meal, Ghrelin plasma andmRNA levels
were high, and 1 and 3 h after feed intake were down-regulated
in both tissues. Similar results were observed by Hatef et al.
(53) in zebrafish, in which preproghrelin mRNA levels in brain
and gut were down-regulated 3 h post-meal and increased in
fasted fish. These studies are in accordance with the observed
decrease in plasma Ghrelin and brain preproghrelinmRNA at 5 h
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post-feeding in the present experiment, indicating that Ghrelin
may be mainly regulated by feed intake also in gilthead sea
bream.

Fasting and Refeeding Effects on Ghsrs
The ghsrs responded differentially to refeeding in brain and
pituitary. The expression in brain remained constant, while
in the pituitary decreased progressively up to 5 h to recover
at 1 or 7 days of refeeding the expression of ghsr1a, and to
a lesser extent of ghsr1b. In rats, brain and pituitary ghsrs
were up-regulated in fasting and decreased after refeeding (15,
54, 55). However, the function of Ghsrs in fish and other
non-mammalian vertebrates is still not fully understood. Thus,
although Ghsrs have crucial roles in the ghrelinergic system
and their expression is finely regulated by nutritional condition,
hormonal status and environmental factors, their response is
highly variable depending on the species especially in fish, in
which a higher number of Ghsrs isoforms has been described
(19).

Peddu et al. (51) did not find in Mozambique tilapia brain
a clear response to fasting in ghsrs expression, but at feeding
time (just before food administration) both receptors were up-
regulated to decrease at 1 and 3 h post-feeding. In the same
species, a significant change was not observed in brain ghsr1a
expression between 1 and 7 days of fasting, while ghsr1b increased
after 3 but not 5 fasting days (56). In Atlantic salmon, a fasting
period of 2 or 14 days did not change ghsr1a brain expression
(50), neither it did 15 days of fasting in zebrafish ghsrs (57).
Contrarily, Kaiya et al. (58) found that 7 days of fasting induced a
decrease in the expression of ghsr1a in the vagal lobe of goldfish.
Thus, although species differences exist it seems that there is
regulation of ghsrs depending on the alimentary condition.

Ghrelin receptors in fish pituitary have been poorly
investigated, but low basal expression levels have been

found in tilapia (56), goldfish (59, 60) or yellow catfish
(61). In the case of grass carp, 14, 21, and 28 days of fasting
resulted in increased pituitary gene expression of ghsr1a
that correlated with increased plasma Gh and preproghrelin
pituitary gene expression (62). Moreover, these authors found
that Ghrelin administration provoked an increase in pituitary
ghsr1a expression. In the present study, the decrease in ghsrs
expression during the post-prandial stage was noticeable and
related with circulating Ghrelin, pointing to a slowdown
of the system during food intake. To summarize, Ghrelin
receptors expression in the brain do not show a uniform
regulation among fish species and seem to be less influenced
by the nutritional condition in comparison to mammals.
Furthermore, less is known about pituitary Ghsrs dynamics
during fasting in fish, but in gilthead sea bream, both isoforms
present a similar response that parallels Ghrelin plasma
levels.

Fasting and Refeeding Effects on the
Gh/Igf Axis
The rise of circulating Gh during fasting was parallel to gh
mRNA levels in the pituitary, being significantly high at 5 h
post-feeding. The expression of gh remained high until 1 day of

refeeding, and similarly to plasma Gh, returned to basal values
after 7 days, thus indicating the important and extended effect
of fasting in this hormone. This response of Gh to fasting and
refeeding has been observed in previous studies in various fish
species, such as Chinese perch (Siniperca chuatsi), tilapia and
black sea bream (Spondyliosoma cantharus) (63–65). Plasma Igf-1
also responded to nutritional state, presenting an inverse pattern
to that of Gh, decreasing with fasting and slowly increasing
with refeeding. Liver total igf-1 gene expression as well as its
splice variants partially recovered after 7 days of refeeding.
These results are in line with previous works (63, 66). The
inverse correlation between Gh and Igf-1 plasma levels during
fasting was pointed out in gilthead sea bream previously (38, 67,
68), and has been described in several other fish species (e.g.,
coho salmon, chinook salmon, channel catfish, Nile tilapia or
gilthead sea bream) in diverse conditions (26, 47, 66, 69–71).
Moreover, the results support that the circulating Gh/Igf-1 ratio
is a good indicator of metabolic state in gilthead sea bream and
that it is clearly affected by feeding condition (67, 72). Picha
et al. (52) suggested that during fasting in striped bass, high
Ghrelin levels contribute to counteract the negative feedback
normally exerted by Igf-1 on Gh release, in order to maintain Gh
secretion.

The gene expression of ghrs in the liver also reflected the
nutritional status. The dramatic down-regulation of both ghr-
1 and ghr-2 expression, along with increased Gh plasma levels,
suggests a Gh liver desensitization during the fasting period (23).
After refeeding, a rapid increase in the mRNA levels of ghr-1,
the isoform mostly related with anabolic processes in this species
was observed, and later in the expression of ghr-2, indicating
that ingested nutrients may have initiated growth promotion
(23). Furthermore, liver igf-1rb showed a similar tendency to that
of ghrs after refeeding and its abrupt post-prandial expression
drop at 2 h was not recovered until the end of the trial. It is
interesting that this response is parallel to igf-1b and c hepatic
gene expression. Down-regulation of liver igf-1rb expression was
also observed in gilthead sea bream during exercise (26), but as
far as we know, this is the first time that this effect is found in
refed fish.

The expression of igfbps was stable during fasting while 7
days of refeeding recovered their basal values. Nevertheless,
igfbp-4 presented the highest expression after 21 fasting days in
agreement with its Igf-1 conservative function, while the increase
of igfbp-1a at 2 h post-feeding fitted well with its recognized
role in mobilization conditions in this species. Similarly, in a
fasting and refeeding experiment in rainbow trout, Gabillard et al.
(73) observed different responses for igfbps. Hevrøy et al. (50)
described the effects of fasting on Ghrelin and Gh/Igf-1 system
in Atlantic salmon, in which Igfbp-1 seemed to be a marker of
catabolic state. Breves et al. (63) demonstrated different roles of
Igfbps during fasting, and indicated that Igfbp-1b may operate
to reduce Igf-1 signaling during fasting in tilapia. The functional
relationship between Gh, Igf-1 and Ghrelin during fasting in fish
needs to be further investigated.

To summarize, the full preproghrelin, ghsr1a and ghsr1b
nucleotide sequences and their response during fasting/refeeding
have been described for the first time in gilthead sea bream.

Frontiers in Endocrinology | www.frontiersin.org 11 July 2018 | Volume 9 | Article 399

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Perelló-Amorós et al. Ghrelin and Its Receptors Characterization

Both, long term (21 days) and short term (24 h) fasting
increased circulating Ghrelin, which showed the lowest values
few hours post-prandial. The plasma Ghrelin dip was also
reflected by pituitary ghsrs, suggesting that Ghrelin’s stimulatory
action on Gh secretion is modulated by feeding. Plasma
Gh levels were elevated in parallel with its pituitary gene
expression returning to basal levels after 7 days of refeeding,
although at this time circulating Ghrelin was again increased.
Taken together, the data suggest that Ghrelin can be a
regulator of Gh secretion in gilthead sea bream, but the
metabolic state itself and other regulatory molecules may
exert important effects. Finally, this study indicates that in
gilthead sea bream, Ghrelin secretion is mainly related to
the progress of the digestive process, showing a down-
regulation in the post-prandial period to rise again just before
feeding.
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