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ABSTRACT 

Changes on an organism by the exposure to environmental stressors may be 

characterized by hyperspectral images (HSI), which preserve the morphology of biological 

samples, and suitable chemometric tools. The approach proposed allows assessing and 

interpreting the effect of contaminant exposure on heterogeneous biological samples monitored 

by HSI at specific tissue levels. In this work, the model example used consists of the study of 

the effect of the exposure of chlorpyrifos-oxon on zebra fish tissues. To assess this effect, 

unmixing of the biological sample images followed by tissue-specific classification models 

based on the unmixed spectral signatures is proposed. Unmixing and classification are 

performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Partial 

Least Squares-Discriminant Analysis (PLS-DA), respectively.  

Crucial aspects of the approach are: a) the simultaneous MCR-ALS analysis of all 

images from one population to take into account biological variability and provide reliable 

tissue spectral signatures, and b) the use of resolved spectral signatures from control and 

exposed populations obtained from resampling of pixel subsets analyzed by MCR-ALS multiset 

analysis as information for the tissue-specific PLS-DA classification models. Classification 



results diagnose the presence of a significant effect and identify the spectral regions at a tissue 

level responsible for the biological change. 
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1.  INTRODUCTION 

In order to characterize the human impact on Earth, the effect of contaminant and drug 

exposure on life organisms has to be studied. Environmental –omics consists of the 

characterization, quantification and study of the variation of biological molecules of an 

organism when exposed to an environmental stress. The most used techniques for this purpose, 

HPLC-MS, GC-MS, immunoassays, NMR, etc.[1–6], are usually destructive techniques. In this 

work, hyperspectral images (HSI) are used because they allow preserving the natural 

morphology of the sample and provide spatial and chemical information. The spatial 

information preserved by HSI permits a better characterization of the contaminant/drug effect at 

a specific biological component level (tissue/sub-tissue) in the organism. 

HSI may be performed with many different spectroscopic techniques (fluorescence, 

ultraviolet-visible, infrared, Raman…) as well as mass spectrometry [7–10]. In this work, 

Raman HSI have been used. Raman spectroscopy is used to observe vibrational and rotational 

modes of molecule bonds. The so-called “fingerprint region” of Raman spectra (900-1800 cm-1) 

is usually acquired for biological samples because it contains wide information about different 

families of biological molecules [9,11–13], e.g. lipids, proteins, DNA… Raman spectroscopy 

coupled with MCR analysis has been used to monitor different biological molecular 

components in biochemical processes in tissues [14] or cells [15]. 

This study proposes a general strategy to assess and interpret the effect of an 

environmental stressor on an organism by the combined use of HSI and chemometric tools. As a 

proof of principle we have analyzed the effect of chlorpyrifos-oxon (CPO), the biologically 

active metabolite of the pesticide chlorpyrifos, on zebrafish (Danio rerio) larvae cryosections. 

Zebrafish is an organism that is increasingly used as a vertebrate model in toxicology, 

developmental biology and drug discovery [16–19]. Zebrafish is easy to breed, has small size 

and a high permeability to small external molecules, which are suitable properties for 

environmental –omics studies [20–24]. CPO is an acetylcholinesterase inhibitor leading to 

neuronal and muscle toxicity on living organisms. A recent study by Faria et al.[25] described 

the development of a chemical model of severe acute organophosphorus poisoning (OPP) in 

zebrafish by CPO exposure. Interestingly, this zebrafish model of severe showed a clear 

retinotoxicity. Zebrafish retina closely resembles the human retina, exhibiting a similar cell 

layout with the lens at the top and the retinal pigment epithelium (RPE) at the bottom (Figure 

1a) [26]. Therefore, the zebrafish eye has been considered an interesting target tissue to perform 

the HSI analysis proposed in our work. 

 



 

Figure 1: Retinal histology of a representative 8 days post-fertilization zebrafish control larva. 

a) Transverse plastic semithin section of the eye, where all the retinal layers and the lens are 

clearly identified; b) Cryosection of the eye. Dashed red rectangle is an approximation of the 

surface scanned. RPE: retinal pigment epithelium; ONL, outer nuclear layer; OPL, outer 

plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, granular cell layer. 

 

To start the study of the effect of CPO on zebrafish, two separate sets of Raman HSI are 

acquired on eye cryosections coming from control and CPO-exposed populations and submitted 

to analysis by chemometric tools. For an initial assessment of the contaminant effect, two 

multiset structures, formed by the images of control and CPO-exposed populations, 

respectively, are analyzed separately by Multivariate Curve Resolution-Alternating Least 

Squares (MCR-ALS)[27–30]. MCR-ALS analysis of each multiset structure provides a single 

set of resolved pure spectral signatures, valid for all images in the multiset, and distribution 

maps related to the biological components in each of the images. In the case of biological 

samples, resolved components by MCR-ALS are usually formed by the signal of a mixture of 

molecules, i.e., the fingerprint, normally related to different kinds of tissues (or cell 

compartments) in the image [31]. Visual comparison of resolved spectral signatures of 

analogous biological components observed in the multisets of control and exposed populations 

has been performed in order to obtain a qualitative characterization of the effect of CPO on 

zebrafish cryosections at a biological component level.  

In order to obtain a statistical assessment of the significance of the effect of the 

contaminant, partial least squares-discriminant analysis (PLS-DA) [32,33] has been performed 

based on the use of MCR resolved spectral signatures of analogous components in both control 

and CPO-exposed populations. This new approach applies PLS-DA to HSI information taking 

advantage of the representative and component-specific information enclosed on the resolved 

spectral signatures provided by MCR multiset analysis. To do so, a suitable resampling strategy 



has been applied to obtain many multisets formed by different representative pixel subsets of all 

images belonging to the same population. All resampled multisets (from control and CPO-

exposed populations) are separately analyzed by MCR-ALS. For each biological component, 

the sets of resolved signatures for both control and CPO-exposed resampled multisets are 

submitted to build a component-specific PLS-DA model. The classification parameters provide 

a reliable assessment of the significance of the contaminant effect and, when significant, the 

variable importance in projection (VIP) identifies the spectral features changing because of the 

contaminant exposure. Doing it in this way, the effect of CPO exposure is statistically assessed 

and interpreted at a biological component (tissue or sub-tissue) level.  

 

2.  EXPERIMENTAL 

2.1. Fish husbandry and larvae production  

Adult wild-type zebrafish were maintained in fish water [reverse-osmosis purified water 

containing 90 µg/ml of Instant Ocean (Aquarium Systems, Sarrebourg, France) and 0.58 mM 

CaSO4˙2H2O] at 28 ± 1°C in the Research and Development Centre of the Spanish Research 

Council (CID-CSIC) facilities under standard conditions. Embryos were obtained by natural 

mating and maintained in fish water at 28.5°C. Larvae were not fed during the experimental 

period. All procedures were conducted in accordance with the institutional guidelines under a 

license from the local government (DAMM 7669) and were approved by the Institutional 

Animal Care and Use Committee at the Spanish Research Council. 

2.2. Stressor exposure and samples collection  

Chlorpyrifos-oxon (CPO) (CAS#5598-15-2, 98.1% purity) was purchased from Chem 

Service (West Chester, USA, PA). For the severe acute OP intoxication model generation, 

zebrafish larvae were transferred to 48-well plates (1 larva per well) at 7 days post-fertilization 

(dpf) and exposed for 24 h to 3 µM CPO, in a dark incubator at 28.5°C. Control larvae were 

exposed to the same concentration of the carrier (0.1% DMSO) under identical conditions. The 

zebrafish model was characterized by a compacted head with areas of opacification at the gross 

morphological level. At the end of the experiment, control and treated larvae were mounted with 

TissueTek (O.C.T), plunge frozen in liquid nitrogen and the head was cryosectioned at 10 µm in 

a Leica CM30505 cryostat microtome (Leica Biosystems, Nussloch, Germany). CaF2 optical 

windows were used as a support for the cryosections. Since the retina is a multilayer organ and 

the precise location of one specific layer may be difficult to identify in the cryosections, high 

quality semithin sections of the central eye of representative control and CPO-treated larvae 



were obtained following the protocol described by Faria et al. and are used as a support 

information for result interpretation [25]. 

 

2.3. Image acquisition 

Raman HSI were acquired at the Institut de Ciències Fotòniques (ICFO) by an inVia 

Raman Microscope spectrometer (Renishaw, Gloucestershire, UK). A 532 nm laser beam 

focused through a 20X objective (NA=0.4) was used as a light source. A continuous point 

mapping (StreamHRTM) for fast imaging has been performed (1.5 s for each pixel position). The 

studied spectral range goes from 450 cm-1 to 1745 cm-1, with a spectral resolution of 2 cm-1 and 

pixel size of 5×5 µm2. For this study, eight eye cryosections of control fish and ten cryosections 

of CPO-exposed fish have been analyzed. All images correspond to the central part of the eyes, 

containing from the RPE of the retina to the lens (Figure 1b). 

 

3. DATA TREATMENT 

The data treatment includes the preprocessing of the Raman HSI, the application of 

MCR-ALS analysis to the multisets of the different biological sample populations separately 

and the use of PLS-DA for a statistical assessment and interpretation of the effect of the 

environmental stressor at a biological component level.  All these steps are described below in 

detail. 

Data treatment has been mainly performed using in-house made routines under 

MATLAB platform (MathWorks Inc., Natick, MA, USA). A graphical user interface for MCR-

ALS was proposed by Jaumot et al.[29] and can be downloaded from the MCR webpage [34]. 

PLS-DA[32,33] analysis has been performed using the PLS-toolbox software (Eigenvector 

Research Inc., Manson, WA, USA). 

3.1. Data preprocessing 

HSI data can be described as a cube structure, with two dimensions related to pixel 

coordinates and one dimension to the spectral information. To perform the HSI data treatment, 

the cube is unfolded to create a D matrix with all spectra of the image one under the other. The 

data preprocessing applied to the images involves the following steps: 

1. Elimination of irrelevant and anomalous pixels, i.e., pixels with low intensity signal 

that do not contain relevant information for the analysis, e.g., pixels from sample 

support and pixels with saturated signal. To do so, a small threshold value is set by 



visual inspection (pixels removed are not used for further analysis). Saturated pixels 

can be easily recognized because the Raman intensity of the spectrum suddenly 

drops to zero. All valid pixels have Raman intensities clearly above the null signal, 

even if they have small values at some Raman shifts. In this way, a gap is created 

between low Raman intensities and null values, where it is easy to set a threshold 

value. Figure S1 in supplementary material shows an example of raw and 

preprocessed data and displays the threshold used to remove saturated pixels.  

2. Spectra smoothing by a Savitzky-Golay filter with a 2nd order polynomial and 11 

point spectral channels window width [35]. 

3. Baseline correction by Asymmetric Least Squares (AsLS) [36]. This method is 

based on a recursive fitting of the whole spectrum using a baseline, which is 

afterwards subtracted. To do so, two parameters are used to control the baseline 

fitting (see equation 1), one associated with the smoothness of the fit (λ) and the 

other with the penalty imposed to the spectral readings related to channels providing 

positive residuals, i.e., signal above the fitted baseline (p). The error function, S, 

minimized is shown below:  

𝑆 = ∑ 𝜔𝑖(𝑦𝑖 − 𝑧𝑖)2 + 𝜆 ∑ (Δ2𝑧𝑖)2
𝑖𝑖        Eq. 1 

where y is the signal to correct and z the fitted baseline, ωi=p if yi>zi or otherwise 

ωi=1-p, and  Δ2𝑧𝑖 = 𝑧𝑖 − 2𝑧𝑖−1 + 𝑧𝑖−2 . 

The AsLS parameters have been optimized using the median spectrum of the 

dataset as a reference of spectrum to be baseline corrected. The parameters are 

adjusted until they are suitable to generate a baseline that fits the median spectrum 

(checked by visual inspection). Then the correction is applied to all spectra of the 

dataset.  

3.2. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

Once the image preprocessing is performed, two column-wise augmented multiset 

structures that contain the hyperspectral images of the control and the CPO-exposed population, 

respectively, are built. Augmented data matrices D in a multiset contain different submatrices Di 

(in this case, each Di submatrix contains the pixel spectra of an image of a particular 

population). The control multiset is formed by pixel spectra of eight images and the CPO-

exposed multiset contains pixel spectra of ten images. The multiset structures are submitted 

separately to MCR-ALS analysis. Information provided by multiset structures reflects 

appropriately the biological variability among samples and cryosections within the same 

population and, hence, allows for a more reliable recovery of representative spectral signatures 

of the existing biological components.  



3.2.1. Image analysis by MCR-ALS and qualitative interpretation of 

contaminant exposure 

Image resolution by MCR-ALS [28,30,31] allows the decomposition of a data matrix D 

formed by an individual image or by a set of images in a multiset structure into the distribution 

maps (C) and the pure spectra (ST) of the constituents present in the image. MCR-ALS is based 

on recovering the underlying spectroscopic bilinear model of the data, as shown in Equation 2, 

where D is the matrix of raw pixel spectra, C contains the concentration profiles of the pure 

components, ST the related pure spectra and E the experimental error contained in the raw 

measurement and unexplained by the MCR model.  

𝐃 = 𝐂𝐒𝐓 + 𝐄 Eq. 2 

For column-wise augmented multisets, the matrix D is formed by submatrices 

containing the pixel spectra of several images (Di). The MCR model arising from a multiset 

structure is formed by a single set of pure spectral signatures resolved (ST), common to all the 

images of the multiset, and a column-wise augmented concentration matrix, which can be 

divided in small submatrices Ci that correspond to each image of the multiset (Di) (see equation 

3). The previous knowledge of the 2D geometry of each image is used to refold the Ci matrices 

into the distribution maps of the components resolved on each one of the images (see Figure 2). 

𝑫 = (

𝑫𝟏

𝑫𝟐

…
𝑫𝒏

) = (

𝑪𝟏

𝑪𝟐

…
𝑪𝒏

) 𝑺𝑻 + (

𝑬𝟏

𝑬𝟐

…
𝑬𝒏

)    Eq. 3 

 



Figure 2: MCR-ALS multiset resolution for image analysis. D contains the unfolded images of 

the multiset structure, C the concentration profiles for each one of the images and ST the pure 

signatures, which are common to the whole multiset. C can be refolded into the distribution 

maps of the resolved components. 

MCR-ALS performs the decomposition of the raw data set D using an iterative alternating 

least-squares algorithm. Some constraints can be applied during the resolution to obtain 

chemically meaningful resolved profiles and to decrease the ambiguity in the final solutions. 

The diversity and optional application of constraints makes MCR-ALS suitable to tackle a high 

variety of data sets (images, processes, environmental data…). In this work, the constraints 

applied to deal with Raman spectra from HSI have been non-negativity on ST and C profiles and 

correspondence among species, which allows setting presence/absence of components in each 

Ci submatrix of the dataset. The main steps to perform MCR-ALS are the following: 

1. Determination of the number of chemical contributions in the raw data (D) 

2. Generation of initial estimates of the ST matrix using a method to select the purest 

image spectra based on SIMPLISMA [37]. 

3. Calculation of C and ST iteratively by alternating least squares under constraints until 

convergence is achieved. 

 

The number of chemical contributions has been estimated using singular value 

decomposition (SVD)[38]. Then, the initial estimates of the ST matrix have been generated by a 

SIMPLISMA-based approach[37]. Finally, the least squares algorithm is applied and involves 

the operations 𝐂 = 𝐃𝐒(𝐒𝐓𝐒)−𝟏 and 𝐒𝐓 = (𝐂𝐓𝐂)−𝟏𝐂𝐓𝐃  alternatingly in each iterative cycle and 

the corrections of the profiles according to the constraints selected. The convergence criterion is 

achieved when the original data is well reproduced by the bilinear model and there is no 

significant variation in the model fit among two consecutive iterative cycles. The parameters 

used to assess the quality of the model are the percentage of lack of fit (see Equation 4) and the 

variance explained, r2 (see Equation 5). 

𝐿𝑜𝑓(%) = 100 × √
∑ 𝑒𝑖𝑗

2
𝑖,𝑗

∑ 𝑑𝑖𝑗
2

𝑖,𝑗
 Eq. 4 

𝑟2(%) = 100 × (1 −
∑ 𝑒𝑖𝑗

2
𝑖,𝑗

∑ 𝑑𝑖𝑗
2

𝑖,𝑗
) Eq. 5 

Where dij is the ijth element of the original data set and eij the residual associated with 

the reproduction of this value by the MCR model.  



The application of the correspondence among species constraint requires information of 

the composition of the different samples (images). When prior knowledge does not exist, as 

usually happens in biological samples, a previous MCR analysis on individual images helps to 

identify which components can be present or absent in each of the images forming the multiset 

[28,39,40]. 

MCR-ALS analysis is performed on both CPO-exposed and control image multisets. 

For the qualitative interpretation of the results obtained, analogous components resolved in both 

multisets, detected by similar morphology of the distribution maps (precise location at 

histological level) and similar resolved spectral signatures, are identified. The interpretation of 

the CPO exposure effect is mainly done by the comparison of analogous resolved spectral 

signatures in both populations. Relevant changes in Raman spectral features can be associated 

with changes in the biological compounds related to the identified bands.  In case of presence of 

specific resolved components on only one of the multisets, these components should be 

considered a direct effect of the CPO exposure, whether they appear or disappear in the CPO-

exposed population when compared with the control.   

3.2.2. PLS-DA analysis based on MCR-ALS results   

In order to perform a classification model based on PLS-DA [32,33], a sufficiently large 

and representative set of spectra per class and a balanced number of spectra among classes is 

required. Many options can be suggested for doing it, but some of them are not suitable for 

hyperspectral images coming from biological samples, e.g.: 

a) Taking all pixel spectra of CPO-exposed and control images to build a PLS-DA 

model is not a good option because the sample surface (cryosection) is 

heterogeneous and formed by different biological components. Very often, the 

spectral differences among different biological components within a cryosection are 

far more significant than the spectral differences among populations for a particular 

biological component due to contaminant exposure.   

b) Using average image spectra for PLS-DA models would not be a good approach 

either. This would lead at best to a general information about the significance of the 

effect of the contaminant at a general organism level, something that can be better 

achieved using other analytical methods. In addition, even small changes among 

cryosections may introduce spectral changes more related to the different 

representation of organism tissues in each section than to the exposure to the 

contaminant. 

Instead, the use of resolved spectral signatures of analogous components in the 

compared populations obtained by MCR multiset analysis is a good strategy to alleviate all the 



problems mentioned above. On the one hand, the variability due to the different individuals 

imaged and to the non-equivalence of cryosections within a population is suppressed because 

the single set of resolved spectral signatures is representative of all images in the multiset. On 

the other hand, the unmixing provided by MCR allows the study of the effect of the contaminant 

exposure at a biological component level instead of on the total organism.  

At this stage, the only problem resides in the fact that MCR analysis on the complete 

control and CPO-exposed multisets provides a single set of resolved spectral signatures per 

population (i.e., a single matrix ST), which is insufficient to build a PLS-DA model. The 

resampling strategy proposed in this work is focused on obtaining a sufficient number of 

different spectra per class to build a PLS-DA model, keeping the advantages linked to the 

information provided by MCR multiset analysis. For the resampling operation, all images 

within the same population are divided in 2×2 pixel blocks according to the original 2D sample 

surface structure and the spectrum of one pixel is selected randomly within each of the blocks 

(see Figure 3a). This procedure is performed until the complete multiset is resampled. This local 

random resampling is done to ensure that representative information of all sample surface, i.e., 

of all biological components, is preserved, as opposed to what could happen if random pixel 

selection on the global image was carried out. The selected pixel subset, representative of all 

images in the original multiset, is submitted to MCR analysis maintaining the constraints of the 

original resolution (explained in section 3.2.1). A set of pure resolved spectral signatures is 

obtained from the resolution and is stored as well as the resolution quality parameters. This 

procedure is repeated as many times as necessary and a new set of pure resolved spectral 

signatures is obtained every time. In this way, all the spectra obtained will be related to the 

original dataset but will present small differences because different pixel subsets have been 

selected in each resampling run. Resampling done in this way provides: 

a) A good estimate of the variability of each resolved spectral signature, since the pixel 

spectra subsets used in the resampled multisets refer to different real parts of the sample surface 

of images and yet always maintain representative information on the original images, and   

b) A sufficient number of spectra (as many of resampled runs) per class to build a good 

balanced PLS-DA model.  



 

Figure 3: Scheme of image resampling strategy. a) Image multisets are divided in 2x2 pixel 

blocks (  ) and for each block one of the pixels is randomly selected (   ). The selected pixels are 

analyzed by MCR-ALS obtaining a single set of resolved spectral signatures (ST). b) Several 

resampled multisets from each population are analyzed by MCR-ALS. A set of resolved 

spectral signatures containing as many spectra as resampled multisets is obtained for each MCR 

contribution. A PLS-DA model is built for each analogous MCR contribution on both 

populations. 

Once the resampling is finished, a number of PLS-DA models equal to the number of 

analogous resolved biological components in both population multisets is created. In each of 

these models, all resolved spectral signatures related to the same biological component for both 

control and CPO-exposed populations are grouped together to create the PLS-DA model of that 

specific MCR component, as shown in Figure 3b. For all PLS-DA models, 300 spectra have 

been used (150 from control and 150 from CPO-exposed populations). 200 of them have been 

used as training set for building the classification model and the other 100 as external validation 

set. 

PLS-DA [32,33] is a classification method based on the PLS regression between the X 

block, which contains Raman spectra of the two populations studied, and the Y block, which is 

formed by the class membership information about control and CPO-exposed spectra. A 

venetian blinds cross-validation method (10 splits and samples assigned one by one 

alternatingly to each split) has been performed to decide the number of components of the 

models. The number of components providing the best classification rate has been adopted. 

In order to avoid overfitting and to assess the reliability of the classification models, 

cross-validation, the use of the external validation set and permutation tests have been used. 

Permutation tests consist of testing the chance to obtain the same quality in classification results 

when building models using the original X and Y data or when using multiple data sets 

generated by using the X matrix and randomly reordering the class membership information 

block (Y). All models are generated in the same conditions as the original model i.e. 



preprocessing and number of components. Each test run compares the original model with a 

model with wrong Y assignments and determines the probability that the predictions for both 

models are significantly different. The probabilities are calculated using pairwise Wilcoxon 

signed rank test, pairwise signed rank test and a randomization t-test[41,42] and the results are 

given at 5% significance level  This procedure is performed for a number of runs (100 in this 

case) to help to assess the correctness of the results. The final probability values presented are 

obtained as the mean of the probabilities (p) obtained in each individual test run. If the average 

probability values are below a certain threshold (5% in our case), it means that the classification 

model obtained is significantly better than one coming from random correlation chance and, 

hence, reliable. The error in classification rate for cross-validated and external validation set is 

also used to assess the quality of the models. 

For the qualitative interpretation of the effect of the exposure to the contaminant, the 

spectral information related to the discrimination of the control and CPO-exposed populations 

in the PLS-DA model built for each biological component has been studied. For this purpose, 

the variable importance in the projection (VIP) indicator is used, which provides the most 

relevant spectroscopic variables responsible for the discrimination among the classes. 

Identification of the Raman bands affected by the exposure to the contaminant for each one of 

the biological components resolved will help to interpret the CPO exposure effect on the 

zebrafish samples. 

4. RESULTS AND DISCUSSION  

4.1. Qualitative interpretation of CPO effect by MCR multiset image analysis  

Eight images of control zebrafish and ten images of CPO-exposed zebrafish have been 

acquired with Raman microscopy as explained in section 2.3 and two separate multisets formed 

by all images of each biological population have been built and subsequently analyzed by 

MCR-ALS, as explained in section 3.2.1 [28,43]. 



  

Figure 4: Distribution maps from MCR resolutions of HSI multisets. a, b) Distribution 

maps of control (a) and CPO-exposed (b) zebrafish larvae eyes are shown (RPE on the left and 

lens on the right). Green distribution maps are related to absent species. Concentration scale 

goes from blue color (low concentrations) to red (high concentrations). Pixel size of distribution 

maps has been slightly distorted to facilitate visualization of component morphological 

structure. C) Topographic histology of the different components in a semithin section of an eye 

from a representative control and CPO-exposed zebrafish larva. 

Both multisets have been described by five MCR components (labeled A-E). The 

distribution maps for the control and CPO-treated larvae, as well as the topographic histology of 

the different identified components are shown in Figure 4. Figure 5 shows overlapped resolved 

spectral signatures of both multisets for analogous components to facilitate comparison. The 

lack of fit and the variance explained for the control multiset were 14.16 % and 97.99 %, 

respectively, and for the CPO-exposed multiset were 13.35 % and 98.22 %. 

The interpretation of the MCR components has been performed by analyzing the 

histological topography of the distribution maps and by comparison with spectral signatures in 

the literature. Components A and E have been identified as two types of melanin located in the 

RPE, the outermost layer of the retina [44,45]. In Figure 4, it is shown that component B is 

located close to the center of the lens. The intense band at 1000 cm-1 indicates that component B 

presents a high amount of proteins, which also agrees with the crystalline lens composition. 



Component D location corresponds with most of the retinal area, from the outer nuclear layer 

(ONL) to the granular cell layer (GCL), corresponding with photoreceptors, amacrine, bipolar, 

horizontal and ganglion cells of the retina. As Beattie et al. reported in their study of porcine 

eyes, this area is probably composed by a combination of fatty acids and an oxidation product of 

melatonin[46]. Finally, the spectral signature of component C does not look like the Raman 

spectra of a chemical component and its location is near the borders of other components. The 

fringe-pattern of this component suggests that it is an interference effect caused by light 

scattering in the CCD camera in the spectrometer (see supplementary material 2 for 

clarification). This component was necessary for an appropriate resolution of the other four 

components but it can be defined as a residual background of the spectral measurement and has 

been excluded from PLS-DA analysis. MCR allows separating biological and non-biological 

contributions and, as a consequence, only the relevant biological components are used for 

further interpretation. This advantage cannot be ensured when using methods providing bilinear 

decompositions based on orthogonality (PCA) or statistical independence (ICA), since most 

often biological and non-biological contributions are mixed in the components obtained.   

Figure 5: Pure resolved spectra in MCR multiset analysis. Blue spectra belong to the control 

multiset and orange spectra to the CPO-exposed multiset. 

Figure 5 shows paired spectral signatures from analogous components in the multisets 

of both populations. A visual comparison among resolved analogous components shows that 

differences in component A are mainly placed in one of the broad bands (around 1200-1450 cm-

1). Component B, related to the lens, presents very slight differences at 1400 and 1550 cm-1. 

Component D shows many changes between control and CPO-exposed multiset, the main ones 

being the rise of a band at 800 cm-1, the decrease of a band at 1000 cm-1 and the growth of bands 



from 1200 to 1600 cm-1. Finally, for component E, bands at 600, 1000, 1400 and 1600 cm-1 

have been decreased by the effect of the CPO. By simple visual inspection, it can be suggested 

that the CPO effect on the lens component is very subtle, whereas the effect on the two melanin 

spectra and the internal tissue are more important among the compared populations.  

4.2. Statistical assessment of CPO effect by PLS-DA  

PLS-DA[32,33] was performed to obtain a statistical assessment of the significance of 

the effect of CPO on each of the biological components resolved by MCR-ALS. The spectral 

signatures used in each one of the PLS-DA models come from the results of the MCR-ALS 

analysis of resampled pixel subsets obtained using the original data in each population (see 

section 3.2.2). 

 Resampling and subsequent MCR-ALS analysis of the pixel subset obtained has been 

repeated 150 times per population. All the resampled multisets obtained are representative of the 

original multisets. Hence, when resolved by MCR, the variability of the resolved spectral 

signatures per each resolved component is well described. For each analogous biological 

component in both sample populations (A, B, D and E in Figure 5), 200 resolved spectra (100 

from the control and 100 from the CPO-exposed population) are submitted to build the related 

PLS-DA model (see Figure 6a). The remaining 100 resolved spectra (50 from control and 50 

CPO-exposed) are used as external validation set to test the PLS-DA models built. As indicated 

above, no specific PLS-DA model was built for component C, since it is related to an 

instrumental artifact and, hence, does not add any valuable biological information. 

Therefore, four PLS-DA models have been built on the raw data sets for each biological 

component resolved, as described in section 3.2.2. All models needed one latent variable to be 

built and the classification rate both in the calibration and the external validation set was equal 

to 100%. The results of permutation tests indicate that all models at a 95 % confidence level are 

distinguishable from models created with a random Y-matrix and classification results are, 

hence, reliable.  

 



 

Figure 6: a) Spectral signatures of biological components obtained from MCR applied to the 

resampled multisets. Spectral signatures obtained from control (blue) and CPO-exposed 

(orange) populations related to the same biological component have been grouped together. b) 

Variable importance in the projection (VIP) from PLS-DA models. Variables over threshold are 

relevant for discrimination between control and CPO-exposed populations. 

Therefore, the main conclusion is that the zebrafish exposure to CPO produces 

significant alterations across the retina and lens. Such a conclusion could be visually expected in 

components A, E (RPE) or D (from ONL to GCL), where the difference in shape among 

spectral signatures is evident, but was not clear for component B (lens). This last component 

shows a very low variability in the resolved signatures by resampling within a population and, 

hence, small differences in some spectroscopic features between populations, difficult to 

appreciate at naked eye, may be diagnosed as statistically significant.       

Finally, variable importance in the projection (VIP) allows characterizing the effect of 

CPO exposure by identifying the spectral features more relevant in the discrimination among 

control and CPO-exposed populations (see Figure 6b). The Raman shifts with higher VIP values 

for the different components have been compared with the differences found among the spectra 

resolved from control and CPO-exposed images in section 4.1. (shown in Figure 5). Many 

spectral bands found by visual inspection are confirmed by the VIP indicator as important bands 

for discrimination, but additional Raman shifts are provided.  

In the case of component B (lens), most of the Raman shifts that are relevant to describe 

the effect of contaminant exposure are not visible by visual inspection of the ordinary multiset 

resolutions. The opposite effect happens in the internal eye component (D), where many bands 



seemed to vary by visual inspection, but only some of them were actually relevant to 

discriminate among classes. 

Interpretation of relevant spectral features for discrimination according to the VIP 

parameter provides a real understanding of the contaminant effect. In biological samples, some 

molecular vibrations described by Raman bands can be related to a specific group of 

biomolecules. Component A and E have been considered types of melanin because of the broad 

bands presented at 1400 and 1600 cm-1[44] related to the stretching in-plane of the aromatic 

rings and the stretching C-C within the rings respectively. VIP results show that variations in 

component A are mainly in the 1400 cm-1 band and in component E in both bands. Melanin is a 

pigment located at the RPE of the retina, which previous studies using different techniques 

found to be affected after the CPO exposure[25]. The Raman shifts related to discrimination of 

component B (lens) are probably related to variations in the protein composition of the 

crystalline; bands around 800 and 1400 cm-1 are related to amino acids, and bands at 1200, 1480 

and 1660 cm-1 are probably linked to amides (III, II and I respectively, see [13] for a review on 

the significance on Raman bands in biological issues). Component D (retinal tissue) with high 

VIP values around 800 cm-1 may be related to effects on RNA, bands from 1450-1470 cm-1 are 

probably due to CH2 vibrations from lipids or proteins, and bands from 1700 to 1730 cm-1 can 

be linked to stretching of C=O bonds [13].  

5. CONCLUSIONS 

The methodology presented in this work proves that the use of hyperspectral images in 

combination with MCR-ALS analysis and a classification method, such as PLS-DA, allows a 

qualitative interpretation and statistical assessment of the effect of a contaminant in an organism 

at a biological component level. The methodology lies on the joint power of images to preserve 

the morphology of biological samples and tissues and provide very massive and rich spectral 

information and on the use of multiset MCR-ALS analysis on sets of images representing each 

population (control and exposed) for a proper characterization of each biological component 

through its related spectral fingerprint.    

Thus, MCR-ALS analysis of multiset structures collecting several images from the 

same population encloses biological and chemometric advantages. From a biological point of 

view, the different images in a multiset structure can include representative biological 

variability of organisms and tissues through the diversity of cryosections and the massive 

amount of spectra acquired. From a chemometric point of view, MCR-ALS takes advantage of 

the diversity of information to provide less ambiguous results and more reliable spectral 

signatures.    



Using resolved spectral signatures from multiset analysis of HSI to build PLS-DA 

models allows working with compressed and reliable spectral information and at a biological 

component level. The sets of spectral signatures obtained by HSI resampling and subsequent 

MCR-ALS analysis are both representative and useful to express the biological variability in the 

populations compared. They are representative because all resampled pixel subsets contain 

spectra from all images and from all areas within an image (local random resampling). At the 

same time, they show properly the biological variability because every pixel subset resampled 

refers to different material parts of the samples analyzed. Besides, the use of PLS-DA allows for 

the assessment of the statistical significance of the exposure to a contaminant and for the 

qualitative interpretation of the spectral biomarkers most related to the change suffered in each 

biological component.  

The methodology offered is general and implies two main contributions: a) the possibility to 

perform –omic studies investigating effects at a biological component level instead of on a 

global organism and b) the possibility to solve classification problems when hyperspectral 

images come from heterogeneous samples by using consecutive steps of resampling and 

unmixing by MCR-ALS and use of resolved spectral signatures as seeding information for 

component-specific PLS-DA models.  

6. ACKNOWLEDGEMENTS  

The research leading to these results has received funding from the European Research 

Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC 

Grant Agreement n. 32073 (CHEMAGEB project). The authors of this work belong to the 

network of recognized research groups by the Catalan government (2014 SGR 1106) and 

acknowledge the support of the Spanish government through project CTQ2015-66254-C2-2-P. 

ICFO would like to acknowledge financial support from Laserlab-Europe (EU-H2020 

654148), the Spanish MINECO (Severo Ochoa grant SEV-2015-0522), Marató de TV3 

(20142030), and the National Institute of Health (NIH, grant 5R21CA187890-02). The research 

conducted at ICFO’s Super Resolution Light Microscopy and Nanoscopy Facility has been 

partially supported by Fundació Cellex Barcelona. 

 

SUPPLEMENTARY MATERIAL.  

Figure S1: a) Raw data of control image 1 and b) Preprocessed data of control image 1. A zoom 

of the threshold used for elimination of irrelevant pixels is shown. 

Figure S2: Spectra related to pixels from three different compositions of control image 1 are 

shown. A zoom of the spectral range where the interference is more present has been performed 



for a better visualization of the effect. The fringe interference is present before and after 

baseline correction and, hence, is not an artefact of the AsLS method. 
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