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Abstract 

  

We have established a facile and generalizable electrochemical synthesis of metallic mesoporous 

nanorods in the nanochannels of commercial polycarbonate membranes using microemulsions containing 

ionic liquids. Herein, we report the preparation of magnetic CoPt nanorods with various meso or 

nanopores distributions, depending on the microemulsion type (ionic liquid –in-water (IL/W), 

bicontinuous (β) or water-in-ionic liquid (W/IL)). The synthesized porous nanorods show a much 

enhanced electrocatalytic activity for methanol oxidation in comparison with compact Pt nanorods (up to 

12 times) or Pt/C electrocatalyst (Pt nanoparticles or commercial black platinum). Therefore, the 

synthesized CoPt mesoporous nanorods could be excellent catalysts in direct methanol fuel cells 

(DMFC’s), as they have high surface areas, large pore volumes and high corrosion stability, and they 

exhibit promising catalytic properties. 
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 Much better performance than usual platinum catalysers 

 A facile electrochemical approach of synthesis of highly mesoporous nanorods  

 Microemulsions containing ionic liquids as synthesis medium of the nanostructures  

 

Keywords 

Methanol electro-oxidation, catalysts for fuel cells, CoPt nanorods, mesoporous nanorods, 

electrodeposition, microemulsions 

1. Introduction 

In the past decade, a wide range of proposals have been devoted to synthesizing different 

nanomaterials as nanoparticles [1-3] or nanorods [4-6], due to their potential applications, 

particularly in the areas of catalysis, adsorption, fuel cells and biomaterials. 

Nowadays, nanomaterials arouse an enormous interest as regards in energy conversion and 

storage devices, due to their effectiveness as electrocatalysts for Methanol (DMFCs) or Ethanol 

(DEFCs) Fuel Cells [7, 8]. However, the disadvantages of the high cost and low supply of Pt-

based catalysts, the crossover effect, as well as their poor durability, seriously limit their 

commercial availability. Currently, significant improvements in the DMFCs have been made by 

combining different tactics, but several problems still remain unsolved. The major advances focus 

on enhancing their durability and their electrocatalytic activity by increasing both the surface –

volume ratio and the catalytic performance [9-12].  

The use of nano or mesoporous structures has been proved to be an effective approach to lowering 

the loading of Pt and improving its catalytic activity as a consequence of their high surface-

volume ratio. Mesoporous nanomaterials can be prepared through several methodologies 

including the traditional hard-templating [13, 14], phase separation [15, 16] and alloy-dealloying 

approaches [17-19], amongst others. In the last years, soft-template systems like liquid crystals 

have been proposed as a new synthetic route [20-23]. Nevertheless, these approaches are not very 

simple enough, so trying to find new facile and successful pathways to produce nano or 
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mesoporous nanomaterials of metals and alloys has become a new challenge in the fabrication of 

nanocatalysts.  

Recently, surfactant micelles have been demonstrated as a useful tool to synthesizing mesoporous 

Pt nanorods in the confined space of polycarbonate membranes [24]. This method, however, has 

only been used to fabricate platinum nanorods with a single pore size and in very specific 

conditions. 

The preparation of bimetallic platinum catalysts with 3d-transition metals (Fe, Co, Ni, among 

others) is another widely applied strategy to enhance the electrochemical activity for methanol 

oxidation (reduction of poisoning by adsorbed intermediates) and to reduce the catalyst costs [25, 

26]. 

Lastly, magnetic nanostructures have emerged as a new type of promising multi-functional 

architectures for potential applications in data storage, magnetic carriers for biomedical devices or 

magnetic catalysts [27, 28]. The manipulation and recyclability of the catalytic material would be 

easier with magnetic catalysts, because their magnetic behaviour facilitates the anchoring or 

recovery of the material by applying an external magnetic field [29, 30]. Magnetic CoPt alloys 

permits combining both characteristics. Moreover, the CoPt alloys are generally more stable than 

other platinum alloys (with Ni, Fe or V), due to the higher degree of alloying of the cobalt with 

the platinum [31, 32].  

Herein we report a new, facile and successful approach for synthesising CoPt magnetic nano or 

mesoporous nanorods in a single pot. These are grown, by means of electrodeposition method, in 

the nanochannels of commercial polycarbonate membranes, using water-in-ionic liquid (W/IL) as 

well as bicontinuous (β) and ionic liquid-in-water (IL/W) microemulsions. The bimetallic 

nanostructures synthesized with this procedure show much enhanced activity, strong methanol 

tolerant capability and corrosion resistance in comparison with compact CoPt nanorods, 

commercial Pt/C catalysts or other recent state-of-the-art Pt-based nanostructures.   

2. Experimental 
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2.1. Materials 

Non-ionic surfactant p-octyl polyethylene glycol phenyl ether a.k.a. Triton X-100 (Acros 

Organics, 98%), ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate a.k.a bmimPF6, 

Arcos Organics, >98%), chloroform (Sigma-Aldrich, +99 %), boric acid (Merck, 99.8%),  Co(II) 

chloride (Carlo Erba, > 98.0%), sodium hexacloroplatinate(IV) hexahydrate (Aldrich, 98%), 

ammonium chloride (Fluka, > 99.5%), boric acid (Merck, 99.8%), and deionized water (Millipore 

Q-System) with a resistivity of 18.2 MΩ cm-1. 

2.2. Microemulsion Preparation 

Microemulsions were prepared by mixing a CoPt aqueous solution (2.5 mM CoCl2, 1.2 mM 

Na2PtCl6, 0.1 M NH4Cl, 10 g·dm-3 H3BO3 and pH = 4.5) (W), an ionic liquid (bmimPF6) (IL) and 

a surfactant (Triton X-100 (p-octyl polyethylene glycol phenyl ether)) (S) at 25 ºC in different 

proportions, to define different kind of microemulsions. According to the bibliography [33], a 

66.5 wt. % of water, 5.0 wt. % of bmimPF6 and 28.5 wt. % of Triton X-100 forms an ionic liquid-

in-water microemulsion (IL/W), a 55.8 wt. % of water, 7.0 wt. % of bmimPF6 and 37.2 wt. % of 

Triton X-100  forms a bicontinuous microemulsion (β) and a 26.7 wt. % of water, 11.0  wt. % of 

bmimPF6 and 62.3 wt. % of Triton X-100 forms a water –in-ionic liquid microemulsion (W/IL). 

We use these proportions for preparing the microemulsions, but substituting the pure water for the 

CoPt electrolytic solution. Electrodeposition will take place from the aqueous component of the 

microemulsion. 

2.3. Electrosynthesis of CoPt Nanorods  

20 µm-thick commercially available polycarbonate (PC) membranes (Millipore Co., USA) with 

200 nm pore size diameter, metalized by sputtering with gold (100 nm-thick) on one side, were 

used to synthesize the nanorods. The electrochemical fabrication was performed at room 

temperature (25 ºC) using a three-electrode electrochemical system with a  platinum wire, PC 

membrane, and an Ag/AgCl (3M KCl) electrode as counter, working and reference electrodes, 

respectively, by applying a constant potential of -1.05 V (controlled by potentiostat/galvanostat 
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Autolab with PGSTAT30 Equipment and GPES software) at 25 ºC. Prior to the electrodeposition, 

the PC membranes were immersed 12 h in the different media to assure a uniform filling of the 

pores.  

2.4. Nanorods Characterization   

In order to analyse the morphology and structure of the nanorods, the sputtered gold layer was 

etched with I2/I- solution and the polycarbonate membrane was dissolved with chloroform and 

washed with chloroform (x3), ethanol (x3) and water (x2).  The nanorods morphology was 

analysed by using Field-Emission Scanning Electron Microscopy (Hitachi 800 MT) and High-

Resolution Transmission Electron Microscopy (Jeol 2100). An X-ray analyser incorporated in a 

Leica Stereo Scan S-360 Equipment was used to determine the elemental composition. 

Furthermore, to test the electrocatalytic activity for the methanol oxidation and the corrosion 

behaviour, a glassy carbon electrode was used as a support in which to deposit the nanorods by 

means of an ink with water and 5 wt. % of Nafion solution.    

3. Results and discussion 

The manufacturing procedure of the CoPt nanorods implies the electrodeposition of the CoPt in the 

interior of the channels of the polycarbonate membranes. Therefore, different CoPt nanorods 

(nano/mesoporous or compact as a reference) were synthesized using the pure CoPt aqueous solution 

(100% of aqueous component - W), and the three microemulsions, which are described in the 

Experimental Section:   

 Ionic Liquid-in-Water microemulsion (IL/W): 66.5 wt. % of CoPt aqueous solution, 5.0 wt. % of 

bmimPF6 and 28.5 wt. % of Triton X-100.  

 Bicontinuous microemulsion (β): 55.8 wt. % of CoPt aqueous solution, 7.0 wt. % of bmimPF6 and 

37.2 wt. % of Triton X-100. 

 Water-in-Ionic Liquid microemulsion (W/IL): 26.7 wt. % of CoPt aqueous solution, 11.0 wt. % of 

bmimPF6 and 62.3 wt. % of Triton X-100. 
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In Figure 1a, the light areas of the cylinders represent the different synthesis media (the electroactive 

species are dissolved in the aqueous component in all the cases), with their nanostructure, whereas the 

dark areas represent the CoPt nanowires synthesized from each system. The three microemulsions used 

contain the same surfactant: ionic liquid ratio (RS:IL) and  a different CoPt solution percentage.  

 

Figure 1. (a) Schematic representation of the different selected systems (aqueous solution and ionic 

liquid-in-water, bicontinuous or water-in-ionic liquid microemulsions). (b) Chronoamperometric curves 

of the CoPt nanorods obtained at -1.05 V in (1) aqueous solution and (2) ionic liquid-in-water, (3) 

bicontinuous and (4) water-in-ionic liquid microemulsions in polycarbonate membranes. The currents are 

normalized by a geometrical area. (c) Deposition rate of CoPt in polycarbonate membranes and 
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conductivity of the deposition systems with respect to the aqueous percentage, on the same surfactant: 

ionic liquid ratio (RS:IL=5.1).    

Nanowires were synthesized potentiostatically, by applying a potential of -1.05 V and circulating a charge 

density of 9 C cm-2 and by maintaining a semi-stirring regime (stirring with argon flow of the solution 

containing the membrane). As can be seen in the chronoamperometric curves (Figure 1b), the 

electrodeposition time necessary to circulate the same charge density is very different depending on the 

microemulsion structure, varying in the sense CoPt aqueous solution < IL/W microemulsion < β 

microemulsion < W/IL microemulsion. The deposition rate depends on the conductivity of the system 

(Figure 1c), which increases when the percentage of the CoPt aqueous solution in the microemulsion 

expands. However, the dependence deposition rate-conductivity is not linear and the structure of the 

microemulsion must also condition the deposition rate. 

The composition of the CoPt nanorods synthesized in the four systems is practically constant 

(Co33±2Pt67±2). Therefore, in these semi-stirring conditions, the composition of the nanorods in a W/IL 

microemulsion does not replicate the relative proportion of Co and Pt in the aqueous component, as we 

observed in the non-stirring deposition of CoPt nanoparticles in a W/IL microemulsion [34, 35].  

Although the composition is the same for the various CoPt nanorods, their morphology is different in 

each case.  SEM and HRTEM pictures in Figure 2a show that compact nanowires are obtained in pure 

aqueous solution (W nanorods). However, the HRTEM pictures in Figures 2b-d show that all the 

nanowires obtained in the microemulsions (IL/W, β and W/IL nanorods) are porous. The diameters of the 

obtained nanorods ranged from 180 to 220 nm due to the non-uniformity of the nanochannels of the 

commercial polycarbonate membranes. The length of the nanorods, with the circulation of the same 

charge density, decreases from 4.1 µm for W, 3.7 µm for IL/W, 3.4 µm for β and 3.1 µm for W/IL 

nanorods, showing a decrease of the electrodeposition efficiency in the same direction as conductivity 

(Figure 1b). The average pore’s size varies in the sense: IL/W > β > W/IL. IL/W nanorods showed a high 

degree of porosity, showing non-spherical pores ranging from 60 to 90 nm, which seemed larger than 

expected for the selected microemulsion system. Careful observation of Figure 2c confirmed that there 

were open mesoporous over the entire area forming a similar structure, as Figure 1a shows. Lastly, the 

maximum porosity and homogeneity was achieved by the nanorods obtained in the W/IL system, for 
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which small pores of 10-14 nm in diameter size, with a narrow pore size distribution, were observed. 

Therefore, the results demonstrate a successful preparation of different nano or mesoporous rods 

depending on the system structure, with a well-defined pore size along the nanorod.   
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Figure 2. (a) SEM, HRTEM and SAED of W Nanorods. (b-d) HRTEM and SAED of IL/W (b), β (c) and 

W/IL (d) nanorods.  

The Selected-Area Electron Diffraction patterns of the different nanorods can be indexed mainly as the 

(002), (101), (110) and (100) planes of a CoPt-hcp structure (strongly distorted Co-hcp structure).  

Moreover, some CoPt-fcc (slightly distorted Co-fcc structure) and cobalt oxide (Co3O4) planes were also 

detected [35,36]. However, the hcp:fcc ratio (Rhcp:fcc) increases as a result of the gradual decrease in the 

deposition rate from W/IL to W nanorods (Rhcp:fcc W/IL> IL/W>β>W nanorods). A low deposition rate 

favours the formation of the hcp crystalline structure.  

The electrocatalytic performance for methanol oxidation was evaluated in order to analyse the potentiality 

of our nanorods as a catalytic material.  Figure 3a shows the CoPt loading mass-normalized cyclic 

voltammograms, corresponding to the first stabilization sweep, for all the CoPt nanorods in 0.5 M H2SO4 

+ 1 M methanol solutions. All the samples showed two anodic peaks during both the positive and 

negative sweep, which are typical of the methanol oxidation process. The ratio of the currents for the 

methanol oxidation from the forward scan (jf) to the backward scan (jb) is used to evaluate the poisoning 

tolerance of the catalysts towards the intermediate carbonaceous species accumulated on the electrode 

surface during the methanol oxidation in the direct methanol fuel cell [37-39]. The high jf/jb values of all 

nanorods (Table 1) indicate their good poison tolerance, significantly improved compared with that of the 

commercial Pt/C catalysts. In addition, the methanol oxidation peaks corresponding to the nano or 

mesoporous CoPt nanorods clearly increase with respect to those obtained using the compact nanorods 

prepared in pure aqueous solution (W nanorods). The highest mass-normalized current densities of the 

W/IL nanorods (924 mA mg-1 of CoPt), which is around 3.2, 3.5 and 9 times as high as that of IL/W, β 

and W nanorods, respectively, demonstrates the three-dimensional mesoporous network. Furthermore, the 

activity of the W/IL nanorods was also higher than that of the commercial Pt/C (around 250 mA mg-1 in 

the same experimental conditions) or the state-of-the-art of Pt-base nanomaterials reported previously, 

such as mesoporous nanomaterials [15,16, 40-43], nanoplatelets and nanowires [44-46], Pt nanoparticles 

[47, 48] as well as other CoPt nanostructures [49-50].  

Other parameters revealing the quality of the catalysts with respect to methanol oxidation are the onset 

potential of the oxidation process (Eonset) and the value of the mass-normalized current densities at 0.6 V 

(j0.6V), which is the usual potential applied in the DMFCs. The onset potential significantly shifts to 
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negative values (Table 1), which indicates that our nano or mesoporous nanorods are more favourable for 

methanol oxidation than the non-porous CoPt nanorods or commercial Pt/C catalysts [37-40]. The 

specific activity at 0.6 V of the W/IL nanorods is the highest among the samples (Table 1), being 9 times 

as high as that of the non-porous nanorods. Then, a clear dependence of the catalyst efficiency on the 

structure and porosity grade of nanorods is observed. 

 

Figure 3. (a) Cyclic voltammograms (recorded at 50 mV s-1) and (b) chronoamperometric curves (at 0.6 

V) for methanol oxidation catalysed by (A) W, (B) IL/W, (C) β and (D) W/IL nanorods in 0.5 M H2SO4 

containing 1M methanol. (c) Summary on the specific activities at 0.6 V and steady-state mass-

normalized current density at 0.6 V (inset) for all the samples. 

For a further evaluation of the electrocatalytic performance of all the CoPt nanorods, the 

chronoamperometric curves in 0.5 M H2SO4 + 1 M methanol solutions were recorded for 3600 s (Figure 

3b). At short times, the samples show a rapid decay in the mass-normalized current densities, as a 
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consequence of the initial catalyst poisoning by intermediate species. However, the oxidation current 

decay on the W/IL nanorods is significantly slower than for the other nanowires. The W/IL nanorods 

maintain the steady-state mass-normalized current density (jss), which is 3.3 times as high as that of the 

other nano/mesoporous nanorods, and 12 times as high as that of the compact nanorods (Figure 3c). All 

the prepared nano/mesoporous electrocatalysts present a higher steady-state mass-normalized current 

density than that of the commercial Pt/C catalysts [37-40], thus demonstrating their enhanced 

electrocatalytic activity and stability.  

The Electrochemically-active Surface Areas (ECSAs) of the nanorods were obtained by integrating the 

charge associated to the adsorption and desorption of hydrogen atoms in cyclic voltammograms recorded 

in 0.5 M of H2SO4 (Figure 4). The ESCA value is a critical parameter for defining the necessary CoPt 

nanorods loadings in the fuel cell application. Table 1 shows that logically, the ECSAs values, which are 

much larger for the W/IL nanorods, depend on their structure and porosity grade. The ESCA values also 

show that the porous architecture was well-developed even at the inner parts of the nanorods. The values 

of ECSA of our porous CoPt nanorods are higher than those of the mesoporous Pt nanorods, whereas the 

values of the compact CoPt are similar to those of the compact Pt nanorods [51-52]. 
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Figure 4. (a) Comparison of cyclic voltammetry curves for W, IL/W, β and W/IL nanorods recorded at 

room temperature in 0.5 M H2SO4 solution at a sweep rate of 100 mV s-1. Cyclic voltammograms of (b) 

W, (c) IL/W, (d) β and (e) W/IL nanorods in 0.5 M H2SO4 solution. The ECSAs are estimated assuming 

the classic value to oxidize a mono-layer of hydrogen on bright Pt (210 μC·cm-2) [53], although slight 

changes in this value have also been proposed [54]. 
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We also investigated the effect of the nano or mesoporous nanostructure of the different synthesized 

nanorods, deposited by means of an ink (water and Nafion) on a Glassy Carbon electrode (GC), on the 

corrosion resistance of the nanostructures. The stability test of the electrocatalysts was carried out after 

immersing the samples until attaining the steady-state potential (Ess) in a solution of NaCl (5 wt. %).  

Figure 5 shows the polarization curves, in a logarithmic scale, obtained by a linear potentiodynamic 

sweep from Ess-300 to +300 mV at 0.1 mV s-1.  The values (shown in Table 1) of corrosion potential 

(Ecorr) were positive, as expected for a Pt-containing alloy, and similar to those obtained for CoPt films of 

similar composition [55], which demonstrates the stability of the nanostructures supported in the Nafion 

ink. Surprisingly, a clear tendency was observed in the order W/IL> IL/W>β>W nanorods, which would 

be surprising due to the higher porosity of the W/IL nanorods with respect to that of the W ones. 

However, the higher corrosion stability of nano or mesoporous structures in comparison with compact 

nanorods can be justified by the different proportion of the hcp phase in each case (Rhcp:fcc) as, for similar 

composition of CoPt, the deposits showing hcp structure present a  more positive corrosion potential than 

those with a fcc structure [55]. 

 

Figure 5. Potentiodynamic polarization curves in logarithmic scale corresponding to W (A), IL/W (B), β 

(C) and W/IL (D) nanorods in NaCl 5 % solution. 

Table 1. Electrocatalysts characteristics. 
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Nanorods 

system 

ECSA / [m2·g-1] Eonset / [V] j0.6V / [mA·(mg CoPt)-1] jf/jb Ecor / [V] 

W 17.1 0.153 55.3 1.08 0.223 

IL/W 45.4 0.055 291.8 1.11 0.325 

β 64.8 0.151 270.1 1.74 0.256 

W/IL 195.4 0.026 909.9 1.13 0.337 

 

4. Conclusions 

We successfully prepared different nano or mesoporous nanostructured CoPt nanorods by means of a 

facile electrochemical synthesis, at room-temperature (25 ºC), inside the channels of a commercial 

polycarbonate membrane, by using different microemulsions containing an ionic liquid. In all cases the 

nanorods prepared present in all cases high values of electrochemically-active surface areas, which 

depend on the nature of the microemulsion used. The present synthesis of porous nanowires has 

remarkable advantages in comparison with traditional or more recent proposals due to its versatility: the 

proposed method permits depositing nano or mesoporous nanorods of different metals or alloys using the 

described ionic liquid based microemulsions, by replacing the aqueous component of the microemulsion 

with any classical electrolytic bath containing the species to deposit. 

In addition, the porous CoPt nanorods, especially the W/IL ones, exhibited high electrocatalytic activity 

for methanol oxidation and good corrosion resistance, along with a facile manipulation and recyclability 

by the anchoring or recovering due to their magnetic behaviour. They also showed a relatively good 

poison tolerance in the methanol oxidation, which makes them promising electrocatalysts for application 

in DMFCs.  
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