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Abstract 

CoNi and Pt-CoNi magnetic layers on indium-tin oxide (ITO) substrates modified by an alkanethiol 

self-assembled monolayer (SAM) have been electrochemically obtained as an initial stage to prepare 

Semiconducting layer-SAM-Magnetic layer hybrid structures. The best conditions to obtain the 

maximum compactness of adsorbed layers of dodecanethiol (C12-SH) on ITO substrate have been 

studied using contact angle, AFM, XPS and electrochemical tests. The electrochemical 

characterization (electrochemical probe or voltammetric response in blank solutions) is fundamental to 

assure the maximum blocking of the substrate. Although the electrodeposition process on the SAM-

modified ITO substrate is very slow if the blocking of the surface is significant, non-cracked metallic 

layers of CoNi, with or without a previously electrodeposited seed-layer of platinum, have been 

obtained by optimizing the deposition potentials. Initial nucleation is expected to take place at the 

pinhole defects of the C12-SH SAM, followed by a mushroom-like growth regime through the SAM 

interface that allows the formation of a continuous metallic layer electrically connected to the ITO 

surface. Due to the potentiality of the methodology, the preparation of patterned metallic deposits on 

ITO substrate using SAMs with different coverage as templates is feasible. 

Keywords: hybrid structures, electrodeposition, ITO-SAM substrate, magnetic layer, CoNi 

 

1. Introduction 
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The functionalisation and nanopatterning of substrates by means of self-assembled monolayers 

(SAMs) has been exploited for low-cost, high aspect ratio hierarchical growth applications in 

molecular spintronics1, selective adsorption of nanostructures2-6, biosensing7 and nanolithography8. 

Alkanethiol SAMs have been widely utilized for modifying conducting substrates, in particular well-

defined Au surfaces9-17. Among all plausible nanomodifications, the formation of continuous metallic 

layers over SAM-modified Au electrodes has drawn a burgeoning interest. Several methodologies for 

obtaining a continuous metallic layer on the top of a SAM have been explored, the most performed 

being electrochemical methods. Unlike the cost-intensive physical methods such as vacuum layer 

deposition18,19 or metal nano-transfer printing20-24, electrochemical methods stand out as an excellent 

choice due to their low cost and environment-friendly nature that allow easy tailoring of the 

composition, crystalline structure and thickness of metallic layers by an exhaustive control of both 

deposition conditions and electrolytic bath composition25. Kolb and co-workers intensively pursued the 

selective metallization of SAM surfaces by means of Cu or Ag underpotential deposition (UPD)26-29, 

but diffusion and nucleation of the metallic ions at the Au-SAM interface impeded the selective 

formation of a continuous film on the top of the SAM. The presence of nanopores, even in densely-

packed alkanethiol SAMs, favoured the electrocrystallisation of the metal at the SAM pinholes due to 

inferior electrical resistance by means of a mushroom-type growth mechanism30,31. This phenomenon, 

undesired for obtaining metal-spacer-metal thin film hybrid structures, was used by Schilardi and co-

workers to obtain thin metal films connected to the substrate by means of narrow wires obtained 

during the columnar growth32. Further studies revealed the possibility of using the SAM defects as a 

low-adherent support to nanopattern electrodeposited metallic films following the morphology of a 

templated substrate33,34. 

Despite of the aforementioned, alkanethiol SAM formation on non-metallic surfaces has been scarcely 

studied, the most known examples being over SnO2 (110)35, manganite (La2/3Sr1/3MnO3)
36, magnetite 

(Fe3O4)
37 or fluorine-doped tin oxide38. One of the most promising substrates for such purpose is 

indium-tin oxide (ITO). ITO, a transparent semiconducting oxide, has extensively been used in 

numerous applications such as liquid-crystal displays (LCD), organic light-emitting diodes (OLEDs)39 

and solar cells40 due to the combination of its optical transparency along with its electrical 

conductivity41. As a consequence, the formation of a highly-compact alkanethiol SAM above an ITO 

surface could easily modulate its electronic properties, thus expanding its application range. Several 

works have attempted to pursue this, with variable results: Grunze and co-workers studied the 

formation of octadecanethiol (C18-SH) or hexadecanethiol (C16-SH) SAMs over freshly-deposited or 

UV/ozone cleaned ITO substrates, by immersion in the neat liquid or in an ethanol solution, obtaining 

high-compactness SAMs42. Karsi et al. managed to obtain compact decanethiol (C10-SH), 
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dodecanethiol (C12-SH) and octadecanethiol (C18-SH) SAMs over ITO commercial substrates by 

immersion in the neat liquid, using a pre-treatment method alternative to UV/ozone43. However, the 

electrochemical characterization of the substrates to evaluate defects in the SAM or a further 

deposition of a metallic layer above the ITO-SAM structure was not evaluated. 

The electrodeposition of metallic alloys on SAM-modified semiconducting substrates has not been 

accurately studied. These studies present high interest in order to confer magnetic or electronic 

properties for the development of devices for electronics44 and spintronics45. Along with this, the 

formation of a strongly bonded SAMs on a semiconducting surface, if allowing the formation of 

metallic thin films on it, would hamper diffusion of metallic layer constituents in the SiO2 

semiconductor substrate46. Moreover, thiol SAM-ITO substrates have been proposed to improve 

compactness and growth rate of metallic layers with respect to bare ITO47, as well as to inhibit Ni 

electroless deposition over Pd seeds48. Thus, the electrodeposition of metallic layers, either 

ferromagnetic or non-magnetic, over alkanethiol-modified ITO substrates, deserves further 

investigation. 

In this report we analyse the electrochemical preparation of metallic deposits of CoNi or Pt-CoNi 

composite on an alkanethiol SAM-modified ITO substrate. The C12-SH SAM formed by immersion 

over a commercial ITO substrate is analysed by means of X-ray photoelectron spectroscopy (XPS), 

atomic force microscopy (AFM), electrochemical probe and contact angle measurements. The 

optimization of the incubation time, C12-SH solution concentration and ITO pretreatment are 

demonstrated to be critical for the compactness of the SAM. Electrodeposition of CoNi and Pt/CoNi 

on the ITO-SAM structure is studied in order to obtain non-magnetic or ferromagnetic hybrid 

structures. Surface morphology and magnetic response of the ITO-SAM-CoNi structure is evaluated 

by SEM and SQUID measurements. Although the electrodeposition process of the magnetic alloy is 

drastically hindered by the presence of the SAM layer, electron exchange can start through SAM 

surface defects leading to a continuous metallic layer on the SAM surface electrically connected to the 

ITO substrate by means of nanometric columns, probably formed by the accepted mushroom growth 

mechanism proposed for the electrodeposition on metallic substrates as gold. 

 

2. Experimental 

2.1 SAM solutions 
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1-dodecanethiol (C12-SH) (Merck, ≥ 98%, synth. grade) was used as received. 5 mM and 50 mM thiol 

solutions were prepared with absolute ethanol (Panreac, UV-IR-HPLC PAI) and preserved at 5°C prior 

to use.  

2.2 Substrate pretreatment and SAM preparation 

ITO-coated (25nm) glass (2 mm) substrates were pre-treated by means of ultrasonication in ultrapure 

water and a subsequent immersion in freshly prepared saturated NaOH solution (Merck, pellets, 

analytical grade) and pure H2SO4 (Acros Organics, 96%). The freshly pre-treated ITO substrates were 

immersed in 5mM C12-SH, 50mM C12-SH or in pure C12-SH for different time at room temperature 

in a hermetically closed opaque glass vial. After incubation, samples were carefully rinsed in copious 

amounts of absolute ethanol and ultrapure water to remove physisorbed thiols, and blown dry with N2. 

2.3 SAM characterization 

AFM measurements were performed in a AFM Nanotech Microscope (Nanotech Electrónica S.L., 

Cervantes AFM system) in tapping mode using a 4.6 µm, 45 µm, 160 µm (thickness, width, length) 

Arrow-NCR-20 monolithic, highly doped silicon tip (Nanoworld). Analysis of the topographical 

images (mean surface roughness) was performed by means of the WSxM 5.0 software49. XPS 

measurements were carried out in a PHI ESCA-5500 Multitechnique System (Physical Electronics), 

with a monochromatic X-ray source (Al Kα line of 1486.6 eV energy and 350 W), placed 

perpendicular to the analyzer axis and calibrated using the Ag 3d5/2 line with a full width at half 

maximum (FWHM) of 0.8 eV. The analysed area was a circle of 0.8 mm diameter, and the selected 

resolution for the spectra was 187.85eV of pass energy and 0.8eV/step for the general spectra. For 

high-resolution spectra of the elements, 58.7 eV of pass energy and 0.25 eV/step were used as XPS 

acquisition parameters. All measurements were made in an ultra-high vacuum (UHV) chamber, with a 

pressure between 5·10-9 and 2·10-8 torr. Angle-resolved XPS (AR-XPS) measurements were 

performed with the experimental conditions stated previously, but varying the angle between the 

surface and analyser from 15° to 90°. CoNi deposits were etched by means of argon ions sputtering up 

to few nm prior to AR-XPS acquisition. Multipak 8.2 software was used for digital acquisition and 

peak deconvolution (single Gaussian curves fit), and all spectra were calibrated by setting the C1s C-

C/C-H component at 285 eV. Contact angle measurements (5 µl ultrapure water drop, 15 sec. wait 

before image acquisition) were performed in a goniometer equipped with a Logitech CCD camera and 

Dropsnake analysis software. Electrochemical probe measurements were performed in a 2 mM 

Fe(CN6)
3-/ Fe(CN6)

4- solution containing a 0.2M KNO3 supporting electrolyte. 

2.4 Electrochemical measurements 
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A customized 3-electrode electrochemical cell comprising a Pt spiral counter electrode, a double 

junction reference electrode (Metrohm, Ag/AgCl/KCl 3M) and a SAM-modified or bare ITO substrate 

was used. A microcomputer-controlled PGSTAT30 or PGSTAT12 potentiostat/galvanostat with GPES 

software was used. Prior to every essay, the Pt counter electrode was flame annealed to light red and 

quenched in ultrapure water, and the electrolytic bath was de-aerated 15 min by Ar bubbling. 

2.5 Electrochemical deposition 

Pt deposits were obtained in a 5mM Na2PtCl6 aqueous solution (Alfa Aesar) by applying a potential 

E=-0.32 V (vs. Ag/AgCl). CoNi deposits were carried out in a 0.2M CoCl2 (Panreac), 0.9M NiCl2 

(Merck), 0.5M H3BO3 (Merck) and 0.7 g·l-1 sodium saccharin (Merck) electrolytic bath, adjusted at 

pH=3. Sodium saccharin is a well-known additive that allows minimizing electrodeposit internal strain 

during growth. All reagents used have analytical grade purity and are used as received. Aqueous 

solutions were prepared with ultrapure water (18.2 MΩ·cm) from a Millipore Gradient A10 UV 

purification system (Millipore). Deposits composition was determined by means of a X-ray 

Fluorescence Fisherscope system XDAL controlled with WinFTM software. A JEOL JSM-6510 

equipment was used for the acquisition of FE-SEM micrographs, at a 15 keV working voltage. Film 

thickness measurements were carried out in a Leica DCM 3D interferometer; data analysis was 

performed with the SensoScan DCM3D 3.1 software. Magnetic properties of the prepared structures 

were characterized using a SQUID magnetometer at 300 K in helium atmosphere. Measurements were 

performed under the application of a magnetic field in both perpendicular to plane and in-plane 

directions.  

 

3. Results and discussion 

3.1 Evaluation of ITO pretreatment  

Substrate cleanliness is reported to play a critical role in the formation of high-compactness SAMs50. 

In gold electrodes, aggressive methods such as mechanical polishing, immersion in piranha solution or 

flame annealing result in a residue-free, high-quality surface feasible to further modification by a 

SAM51. However, these treatments cannot be used with ITO as they would compromise its surface 

integrity. Alternative pre-treatment methods, such as UV/ozone, UV/H2SO4 or UV/NaOH have been 

proposed but, despite achieving efficient contaminants removal, they imply the use of high-cost 

equipment. As a consequence, recent studies have focused on developing alternative procedures. Clark 

et al. studied the viability of a solvent-based cleaning protocol under proper solvent polarity election 

and sequential ordering52, and Karsi et al. suggested an ultrasonication (ultras.) degreasing step 
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followed by a basic-acid media treatment43. The results of using these procedures in our ITO 

commercial samples, monitored by contact-angle measurements, are summarized in Table 1. It is 

noticeable the irreproducibility of the solvent-based treatments proposed by Clark et al., as they yield 

contact angles much higher than the value expected (θth~ 30°)52. On the other hand, the basic-acid 

media treatment manages to obtain a highly-hydrophilic surface (θf<5°), in agreement with the 

theoretical value reported for this treatment (θth<5°)43, that guarantees successful and reproducible 

removal of both physisorbed inorganic and organic impurities. As a result, all ITO samples will be pre-

treated by this procedure prior to SAM formation.  

ITO pre-treatment method θo / º θf / º θth / º 

Detergent solution (5%) + ultrapure water + hexane + 

isopropanol + acetone + methanol (20 min ultras. per step) 
80 64 28 

Detergent solution (5%) + ultrapure water + acetone + 

isopropanol (20 min ultras. per step) 
80 56 34 

Acetone + isopropanol (20 min ultras. per step) 80 63 56 

Ultrapure water  sonication + saturated NaOH + pure H2SO4 80 <5 <5 

Table 1. Evaluation of ITO pre-treatment methods as a function of the initial (θo), final (θf) and 

theoretical (θth) contact angle in water. 

3.2 C12-SH SAM preparation 

3.2.1 Adsorption kinetics: contact angle measurements 

Contact angle measurements are excellent qualitative criteria for evaluating surface hydrophobicity 

variation. The study of the adsorption kinetics of C12-SH over pre-treated ITO substrates, shown in 

Fig. 1A, reveals the influence of both incubation time and C12-SH solution concentration in the 

compactness of the SAM. At initial incubation stages (less than 5 min), contact angles below 70° 

inform that C12-SH molecules chemisorption kinetics has not reached its saturation rate. As a 

consequence, the resulting SAM is expected to exhibit an inhomogeneous, short-range orientational 

order due to its low compactness. At longer incubation times, effective SAM reorganization along the 

surface and further C12-SH molecules chemisorption occurs, allowing the formation of a more densely 

packed structure. This is supported by the fact that the maximum contact angle stabilizes at θ~100°, 

independently of the C12-SH solution concentration and incubation time. This value is similar to those 

attributed to a densely packed C12-SH SAM on ITO43, initially confirming the capability of forming 
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an alkanethiol monolayer over ITO by incubation either in ethanol solutions (5mM or 50 mM) or in 

neat liquid. 

3.2.2 XPS analysis 

The interaction involved in the formation of a C12-SH SAM over ITO was elucidated by means of 

XPS measurements. The high-resolution XPS spectrum analysis of the sulphur S2p region, shown in 

Fig. 1 (B,C,D) was performed on ITO samples immersed in 5 mM C12-SH and pure C12-SH. The 

5mM C12-SH sample signal can be decomposed into two components, with binding energies of 162.3 

and 168.5 eV, respectively. The first one is ascribed to the S2p3/2:S2p1/2 doublet with a 2:1 intensity 

ratio characteristic of a thiolate group, confirming the formation of a covalent bond between the C12-

SH sulphur group and the ITO surface. This value, ~0.4 eV higher than that of an In-S or Sn-S bond on 

pure metal plates42, is attributed to the ITO surface composition and, in particular, the influence of the 

oxide species present. The S2p1/2 component, with an expected binding energy of 163.5 eV, is not 

well-resolved in the spectrum due to low sulphur S2p signal intensity and, as a consequence, its 

deconvolution is not possible. The second component, ascribed to highly oxidized sulphur (sulfate, 

sulfonate), can be related to the oxidation of unbounded thiol molecules located at the SAM surface by 

the X-ray irradiation during spectrum acquisition43 or to the presence impurities of oxidized sulphur 

species bonded to the ITO surface. Sulphur peaks broadening and appearance of additional XPS 

signals have already been reported for alkanethiol SAMs due to X-ray secondary electrons damage 

upon long X-ray time exposures53. The pure C12-SH sample signal can be decomposed into two 

complex components. The first component comprises a doublet, with binding energies of 163.5 and 

164.7 eV. It is attributed again to the S2p3/2: S2p1/2 thiolate group doublet with intensity ratio 2:1. The 

second component comprises two peaks with binding energies of 169 and 170.3 eV. Unlike the 5mM 

C12-SH sample, more than one oxidized thiol species seems to contribute to the observed XPS signal. 

The XPS analysis allows detecting chemisorption of C12-SH molecules to ITO by means of a covalent 

bonding between the thiolate end group and In or Sn. However, other highly oxidized sulphur species 

originate the second component, as the manner that a densely-packed SAM layer cannot be formed. 

3.2.3 AFM measurements 

ITO topography imaging before and after the adsorption of a C12-SH layer was performed by means 

of tapping-mode AFM. Prior to this, the analysis of the topography of the ITO before (Fig. 1E) and 

after (Fig. 1F) undergoing the basic-acid pretreatment was performed, by evaluating the influence of 

the pretreatment in the surface root mean square roughness (RMS). Only a slight modification in RMS 

was observed (1 nm prior to pretreatment and 3 nm after pretreatment); in both cases usual 

characteristic holes at the ITO surface were observed. As a consequence, despite of its aggressive 
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nature, the selected pretreatment is compatible with the formation of alkanethiol SAMs on ITO. The 

presence of holes (50 to 200 nm) in the ITO can create non-conductive pinholes in the semiconducting 

layer. RMS values and surface topography after incubation of the pre-treated ITO substrates in a 5mM 

C12-SH solution (Fig. 1G) or in neat C12-SH (Fig. 1H) revealed an effective smoothing of the ITO 

surface as well as a significant masking of the ITO characteristic surface pattern. Both issues would 

initially confirm that, upon incubation in both cases, the C12-SH SAM is formed over ITO. Moreover, 

the filling of the aforementioned holes might respond to either a multilayer of physisorbed C12-SH 

molecules (if holes depth reaches glass surface) or to a monolayer of chemisorbed C12-SH molecules 

accompanied by physisorbed C12-SH molecules at their surface (if holes depth is inferior to 25 nm). 

The presence of physisorbed molecules at the holes might explain the XPS S2p signals observed at 

higher binding energies, ascribed in this report to the in-situ oxidation of unbounded thiol molecules or 

to the presence of oxidized thiol impurities. The removal of these molecules is expected to be 

hampered by the difficulty of the solvent to penetrate the nanometric holes.  

3.2.4 Electrochemical response on ITO-SAM substrates  

In order to test the compactness of the SAM, the voltammetric response of a test electrochemical 

process (electrochemical probe) on the ITO-SAM substrate was performed. The charge transfer is 

intrinsically dependent on both the nature of the electrode surface as well as the structure of the 

electrical double-layer54. The presence of a SAM (dielectric nature) on an electrode hinders the 

electron transfer either by an effective reduction of the electrode electroactive area or by impeding the 

approach of the redox species to its surface. The Fe(CN6)
3-/ Fe(CN6)

4- redox pair is a standard probe 

because it implies a reversible, one-electron, outer-sphere redox reaction (E=0.153 V, k= 0.03cm·s-1)55. 

If the compactness of the SAM is high, the redox pair Fe(CN6)
3-/ Fe(CN6)

4- will not manage to get in 

direct contact with the ITO surface, leading to a substantial decay in the electrochemical current 

density of the redox processes involved. If the compactness of the SAM is low, the electroactive 

species will manage to perform electron transfer processes through SAM surface defects, observing a 

non-negligible current density.   

Figure 2 shows the cyclic voltammograms obtained in a 2mM Fe(CN6)
3-/ Fe(CN6)

4- solution for the 

C12-SH SAM modified ITO electrodes at different times of incubation in 5mM or pure C12-SH. For 

the 5mM C12-SH incubated ITO samples, a significant decay of the current density was observed at 2 

h of incubation, but a similar electrochemical response was obtained for 5 h of incubation, which 

reveals that a limit in the coverage of the ITO was attained and that, accordingly, a densely-packed 

SAM was not formed in these conditions. The presence of a low compact C12-SH layer allows the 

approaching of the electroactive species (through the SAM defects) to the ITO electrode and the 
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subsequent electron transfer. When longer inmersion times were tested, the electrochemical response 

of the redox probe increased, indicating the presence of an even less compact SAM. This could be 

attributed to the fact that, in an ethanol media, a dynamic competitive adsorption process could occur. 

As the interaction of alkanethiols with ITO is expected to be weaker than to a gold surface, ethanol 

molecules may replace C12-SH adsorbed molecules at the ITO surface upon long modification times, 

leading to a decrease in the SAM compactness. A similar phenomenon was reported for silane-based 

SAMs56, for which upon substrate rinsing, a SAM unpacking process occurred that could not be 

reversed upon re-immersion in the SAM solution. The former phenomenon would be in agreement 

with the results obtained by Obeng and Bard for the adsorption of the complex [Ru(bpy)2(4-methyl-4’-

(dodecyl-1-thiol)-2,2’-bipyridine)]2+ over commercial ITO by immersion in 2 mM solutions in 

dichloromethane57. Repeated washing of the ITO-modified samples with dichloromethane, methanol 

or ethanol can produce some competitive replacement of the thiol molecules with solvent molecules at 

the ITO surface. Kondo et al. observed also that, upon preparation of ferrocenylalkane thiol SAMs 

over ITO upon incubation in 1 mM solutions at 50°C for between 10 and 40 hours, both maximum 

surface concentration Γmax and adsorption rate constant kads were much smaller than with respect to the 

Au substrate despite using higher temperatures and thiol solution concentrations58. This was adduced 

to the weak interaction of the adsorbed thiol molecules to ITO in this concentration range, which may 

lead only to partial surface coverages of the substrate. As a consequence, the electrochemical probe 

analysis leads to the conclusion that both contact angle and AFM topographies of samples prepared by 

this methodology only deliver qualitative information about SAM compactness. Hence, 

electrochemical characterization of the SAM should be always performed to estimate its compactness, 

especially in the case of posterior electrodeposition. 

In the case of ITO samples incubated in pure C12-SH, a more significant decay of the current density 

was observed, and a quasi-stationary voltammetric profile was obtained from 5-6 hours of incubation 

onwards. In these conditions, the maximum coverage was attained, but the non-negligible current 

density detected informs of the presence of defects in the SAM. However, in order to prepare the 

metallic deposits over the ITO-SAM structures, an incubation time of 5 hours in pure thiol was 

selected to minimize pinhole presence at the SAM and, consequently, to ensure preferential 

electrodeposition of the metallic layer on the top of the SAM. 

Once the experimental conditions have been optimised, the electrochemical stability of the ITO-SAM 

structure was analysed by recording cyclic voltammogram in an aggressive medium (H2SO4 0.05 M). 

Both ITO and ITO-SAM exhibit in the -0.5/+1.5 V potential range only redox processes concerning 

the solvent (massive hydrogen evolution or oxygen formation) (Fig. 2C). This issue shows the wide 

electrochemical window exhibited by both samples, confirming the stability of the ITO-SAM system 
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in acidic media that allows further metal electrodeposition. Moreover, the ITO-SAM sample exhibits a 

significant displacement of redox processes to higher absolute potentials values as well as a lower 

interfacial capacitance (2.5 µF·cm-2) with respect to bare ITO (6.25 µF·cm-2) in the 0.9-1.1V voltage 

range, as a consequence of the organic layer adsorption. Theoretical interfacial capacitance (Cth) value 

for a C12-SH monolayer (assuming dielectric constant ε=2.5, molecular length d=17.6 Å, and tilt angle 

with respect to normal surface axis α= 0°)59,60 is 1.3 µF·cm-2. Differences observed between both 

theoretical and experimental values can be ascribed to deviations with respect to the parallel plate 

model assumed for calculating Cth and to the presence of defects in the SAM. A more tilted 

conformation of C12-SH molecules present in a SAM with surface defects with respect to a densely-

packed C12-SH SAM leads to an overestimation of the distance between the parallel plates, i. e. the 

electrical double layer thickness, consequently leading to higher interfacial capacitance values.   

3.3 Electrodeposition of a ferromagnetic CoNi alloy over ITO-SAM: electrochemical study 

The cyclic voltammograms of ITO and ITO-SAM substrates in an electrolytic bath containing Co(II) 

and Ni(II) will allow us to determine whether electrodeposition is possible over these substrates and if 

this deposition leads to the formation of a metallic alloy. The voltammetric profile obtained over ITO 

is similar to that obtained in other substrates such as vitreous carbon, silicon, Si/Ti/Ni or Si/Cr/Cu61, 

and the deposition process starts at approx. -750 mV (Fig. 3, curve a). Over the ITO-SAM structure, 

deposition current is observed only at more negative potentials (E= -850 mV) and the process is 

drastically slower (Fig. 3, curve b), as predicted by electrochemical probe results. The presence of the 

C12-SH SAM hinders significantly the electron transfer kinetics, requiring higher cathodic potential 

values to permit the deposition process. Moreover, for both redox processes (deposition and alloy 

oxidation), the j/E slopes are substantially lower for the ITO-SAM.  Upon inversion of the scanning 

sweep, the nucleation and growth loop characteristic of electrodeposition processes is observed. This 

issue confirms the viability of electrodeposition over SAM-modified ITO samples, although very 

hindered by the presence of the SAM. The detection of a single oxidation peak in the anodic region is 

in good agreement with the formation of a CoNi metallic alloy. The high value of the Qox/Qred ratio 

obtained for bare ITO (0.96) and for ITO-SAM sample (0.89) in the potential range applied (-0.75/-1.2 

V and -0.85/-1.4 V, respectively) informs of the low contribution of hydrogen evolution during the 

deposition process. To favour the electrical contact with the ITO-SAM samples, a colloidal Ag layer 

was applied to the end of the ITO-coated side of the sample that connects the working electrode (WE) 

to the electrochemical cell. The cyclic voltammogram of the colloidal Ag-coated ITO-SAM sample in 

the Co(II)/Ni(II) electrolytic bath (Fig. 3, curve c) exhibits a significant increase in the j/E slope in 

comparison to the non-coated sample, resulting in a two-fold increase of the deposition current density 
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at -1.4 V. Thus, all electrochemical deposits over ITO-SAM samples will be prepared according to this 

methodology to increase the deposition rate. 

The potentiostatic electrodeposition of the CoNi alloy was tested, at two deposition rates, on both ITO 

and ITO-SAM substrates. In each case the deposition potentials were adjusted to attain similar j-t 

profiles on ITO and ITO-SAM, in order to compare the deposits obtained over the two substrates at 

similar deposition rate. Over the ITO-SAM substrate, more negative potentials were applied to obtain 

the same j-t profile than over bare ITO, due to the blocking effect of the SAM in the electron transfer 

process. 

The deposition at the more negative potentials (-0.94 V for ITO, -1.1 V for ITO-SAM) (curves g and f 

in Figure 4), selected to achieve growth rates similar to those obtained for CoNi deposits on Si/Ti/Au 

substrates61 leads to incoherent, low adherence deposits with micrometric cracks. However, when the 

deposition process is slower (0.78 V for ITO, -0.92 V for ITO-SAM) (curves b and d in Figure 4) 

uniform, non-cracked deposits were obtained. The FE-SEM micrographs (Figs. 4B and 4C) show that 

both deposits present a thin-grain, nodular morphology, whose grain size cannot be estimated 

quantitatively due to the technique resolution limits, this commonly observed with some CoNi 

deposits62. As similar stationary current density (approx. -2 mA·cm-2), corresponding to a similar 

deposition rate, was achieved for the two substrates, similar composition (74 wt% Co), morphology 

and thickness (270 nm for deposition at a charge density <σq>=-1C·cm-2 over ITO, 250 nm for 

deposition at a charge density <σq>=-0.7C·cm-2 over ITO-SAM) of the CoNi films is obtained. Thus, 

similar deposition rates, obtained by careful election of deposition potentials, lead to equivalent 

morphologies and compositions of the resultant deposits in ITO as well as ITO-SAM. If CoNi 

electrodeposition is performed over ITO-SAM with the applied potential optimised for ITO, the 

chronoamperometric profile (E= -0.78V, Fig. 4, curve a) confirms the significant hindrance of the 

SAM in the electron transfer process. Deposition of CoNi layers is, therefore, possible on the ITO-

SAM substrates: the expected initial growth of the deposits through the SAM defects evolves to a 

metallic fine grained layer of CoNi covering the sample, probably according to a mushroom growth 

mechanism accepted for SAM-modified metallic substrates30,31. 

The Co-rich deposits obtained despite of using a Ni-rich electrolytic bath (Co:Ni molar ratio in 

solution being 1:4.5) corroborate that the anomalous codeposition mechanism of the CoNi deposition 

in the selected bath63 is maintained also over ITO-SAM substrates. In this report, we have selected a 

long-stablished, optimized bath with a Co:Ni molar ratio capable of forming continuous, thin-grain and 

non-strained deposits on a wide range of substrates61,63. However, the modification of the Co(II)/Ni(II) 
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molar ratio in the electrolytic bath would allow to tailor the CoNi deposit composition of the CoNi 

layers obtained over the ITO-SAM structures.  

Figs. 5A and 5B show the XPS spectra analysis of a pre-etched CoNi alloy thin film (see 

Experimental) deposited over an ITO-SAM sample in the region of Co2p3/2 and Ni2p3/2, respectively. 

The Co2p3/2 signal can be decomposed in three components with binding energies of 781.2, 783.9 and 

785.9 eV. The first one, ascribed to a CoNi alloy phase, has the largest photoemission intensity of the 

deconvoluted signals, acknowledging the high efficacy and selectivity of the direct electrodeposition 

methodology for preparing alloy metallic layers. The second and third component are assigned to trace 

amounts of oxidised Co species, those being Co3O4 and Co(OH)2, which reveals some partial oxidation 

of the deposits either prior to or during XPS spectra acquisition. The Ni2p3/2 is similarly deconvoluted 

in three components with binding energies of 856.2, 859.2 and 861.9. The first component is again 

assigned to the CoNi alloy phase, and the two remaining components to trace amounts of Ni species as 

NiO and Ni(OH)2. All the element-specific core level CoNi emissions reported in this essay are shifted 

approx. 3 eV to higher binding energies in contrast to the values reported by Kim et. al over a silicon 

surface64. The origin of this shift relies in the junction of a highly conductive CoNi alloy film with a 

low conductive ITO-SAM surface that difficult a proper XPS spectra calibration with respect to the 

C1s C-C/C-H component, as well as the different nature of the substrate where CoNi is deposited. 

AR-XPS measurements were performed to identify where the CoNi layer is mainly present in the ITO-

SAM structure. Figs. 5C and 5D show the relative intensity ratios of the In3d5/2 peak with respect to 

the C) Co2p3/2 and D) Ni2p3/2 peaks ascribed to the CoNi alloy phase of a CoNi electrodeposit 

prepared over ITO-SAM as a function of the XPS take-off angle α (angle between the sample surface 

plane and the direction of the photoelectrons detected by the analyser). The intensity ratios of the 

analysed elements are normalized with respect to the core-level emission values obtained at α=90°.  

Upon the application of a X-ray incident beam, the scape depth of the photoelectrons emitted from the 

sample is highly dependent on α. Nearly grazing X-ray incidence (low α values) measurements are 

sensitive to the more superficial atomic/molecular layers, in this case the surface of the SAM, due to 

the lower scape depth (kinetic energy) of the photoemitted electrons detected. Perpendicular X-ray 

incidence (high α values) measurements are more sensitive to the less superficial atomic/molecular 

layers, in this case to the ITO surface, due to higher scape depth of the photoemitted electrons 

detected. Thus, CoNi deposit is mainly accumulated at the top of the SAM should lead to higher 

photoemission intensities of CoNi at low α than at high α. When going to X-ray normal incidence 

(α=90°) to nearly grazing incidence (α=15°), a steep decay in the In3d5/2 /Co2p3/2 and In3d5/2 /Ni2p3/2 
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normalized relative intensity ratios is observed, indicating that the CoNi metallic film is mainly located 

on top of the C12-SH SAM, in agreement with the mushroom-type growth mechanism. 

The magnetic properties of the ITO-SAM-CoNi structures have been analysed and compared with the 

magnetic response of the ITO-CoNi samples, with the same nominal thickness of CoNi in both cases, 

in order to detect both the formation of a magnetic ITO-SAM-CoNI structure and detect the possible 

influence of the SAM presence. The typical normalized hysteresis curves (M/Ms vs. H, being M the 

magnetization, Ms the magnetization of saturation, and H the magnetic field applied) of ferromagnetic 

materials have been observed in both cases (Figs. 5E and 5F). Due to the shape anisotropy of the films, 

consequence of their 2D nature, the samples are easily magnetized when the magnetic field is applied 

parallel to the film plane. Both CoNi deposits on ITO and ITO-SAM substrates present similar 

differences between the magnetic curves recorded in parallel or perpendicular configuration, which 

demonstrates that CoNi deposits over ITO-SAM are mainly accumulated on the SAM surface, leading 

to a mainly 2D layer, because the shape anisotropy is maintained.  Moreover, the coercivity (Hc) was 

low in both cases, as it is expected for the CoNi deposits65-67, showing the same thickness, composition 

and similar fine-grained morphology. However, zoomed curves reveal that the magnetic signal is 

different, which corroborates the formation of ITO-SAM-CoNi structures, different than the ITO-CoNi 

ones. The difference is the formation of a main CoNi layer over the SAM, but anchored or connected 

to the ITO substrate by means CoNi columns formed through the defects of the SAM. 

 

3.4 Electrodeposition of CoNi over a preformed Pt nuclei layer: preparation of hybrid composite 

structures 

Once we have confirmed the presence of the CoNi alloy deposit above a SAM, we proceeded to 

evaluate the viability of depositing other metallic elements or hybrid structures on ITO-SAM 

substrates. The architectural growth of hybrid structures over ITO-SAM samples could be easily 

performed upon tailoring both electrodeposition parameters and electrolytic bath composition. In this 

report, the electrodeposition of a CoNi alloy was evaluated on an ITO-SAM substrate modified with a 

Pt sublayer (ITO-SAM-Pt) obtained by electrodeposition (E=-0.32V, t=120 s) in a 5mM Na2PtCl6 

solution. Pt electrodeposition parameters were chosen to overcome C12-SH SAM inherent electric 

resistance and to favour the formation of a continuous layer, after voltammetric analysis of ITO-SAM 

in a 5mM Na2PtCl6 solution (not shown). Figure 6A shows that platinum deposition is indeed hindered 

by the presence of the SAM layer: the stationary current density detected in the chronoamperometric 

experiments at equivalent deposition conditions is drastically lower on ITO-SAM structures (-1.25 

mA·cm-2, curve b) than on bare ITO (-4.5 mA·cm-2, curve a). The presence of platinum on the ITO-
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SAM substrates was detected by a cyclic voltammetry test in 0.05 M H2SO4 medium, which reveals 

the typical profile in which the superficial platinum oxidation from around 0.8 V and the 

corresponding reduction process (peak centered at 0.4 V) are observed (Figure 6B). The resulting 

platinum deposit (theoretical thickness= 12 nm for 100% deposition efficiency) over the ITO-SAM 

sample shows a large presence of thick-grain, nodular Pt nuclei despite the low charge density applied 

(-0.05 C·cm-2) (Figure 6C).  The non-homogeneous size distribution of the observed grains (between 5 

and 150 nm) is characteristic of the mushroom-type growth mechanism30,31, confirming the initial 

nucleation and columnar growth of Pt at SAM surface defects and subsequent 3D growth at the SAM 

surface. The AR-XPS measurements also reveal preferential accumulation of platinum on the top of 

the C12-SAM. The Pt4f  XPS spectrum of the Pt obtained by electrodeposition (Fig. 6D) can be 

decomposed in two components, with binding energies of 71.9 and 75.2 eV, corresponding to the core-

level emissions of Pt4f7/2 and Pt4f5/2, respectively. Binding energy values are positively shifted approx. 

0.7 eV in comparison to the binding energy values expected from a Pt (111) bulk clean surface68. This 

shift can also be adduced to the high-conductive Pt/low conductive C12-SH SAM junction present in 

the sample, previously observed by Uosaki et al. for Pt (111) over a dithiol SAM69. Figs. 6E and 6F 

show the AR-XPS relative intensity ratios of the E) In3d5/2 and F) S2p3/2 deconvoluted peaks with 

respect to the Pt4f7/2 peak, for the platinum on ITO-SAM structure, as a function of α. The intensity 

ratios of the analysed elements are again normalized with respect to the core-level emission values 

obtained at α=90°. As occurred with the CoNi alloy, a steep decay in the In3d5/2/ Pt4f7/2  and S2p3/2 / 

Pt4f7/2 normalized intensity ratios is observed upon going from X-ray normal incidence (α=90°) to 

nearly grazing incidence (α=15°). Uosaki demonstrated that, if both Pt deposit/dithiol SAM and Pt 

deposit/Au substrate normalized XPS intensity ratios decayed with higher α values, the Pt deposit was 

preferentially obtained above the SAM69.  

The presence of a highly-conductive Pt layer grown from the SAM defects but distributed 

preferentially on the top of the SAM is not only expected to ensure CoNi selective deposition above 

the SAM, but also to improve both growth rate and applied potential values. The potentionstatic 

electrodeposition of CoNi was initially performed over ITO-SAM-Pt at the electrodeposition 

conditions selected for the CoNi deposition above a SAM (-0.92 V, -1C·cm-2). A higher stationary 

current density (approx. -3.2 mA·cm-2) (Fig. 4, curve e) is achieved in comparison to the growth rate 

obtained without Pt, confirming the SAM surface conductivity enhancement produced by Pt presence, 

but in these conditions the adherence of the CoNi deposit is very low. The application of less negative 

potentials (-0.88V) (Fig. 4, curve c) to attain similar stationary currents than for CoNi 

electrodeposition over ITO-SAM, allowed the preparation of a high-adherent CoNi deposit over ITO-

SAM-Pt. The FE-SEM micrograph of the resultant deposit (Fig. 7) shows an evident change in the 
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CoNi deposit morphology. Thus, the presence of an underlying Pt layer not only forces additional 

electrodeposition optimisation but also alters the CoNi characteristic surface morphology. To sum up, 

the preparation of a Pt-CoNi hybrid composite structure mainly on the top of an ITO-SAM is also 

possible. Hence, this report widens the experimental techniques available for hybrid composite 

production over SAM-modified substrates, providing a low cost and environment-friendly method 

susceptible to be used for different hybrid structures, such as nanopatterning of soft-magnetic thin 

films over semiconducting substrates (ITO) using SAMs as templates. 

 

4. Conclusions  

Electrodeposition methods allow preparing magnetic layers over ITO-alkanethiol SAM substrates. 

XPS studies allow us to propose the chemisorption of the molecules interacting with the ITO surface. 

However, in order to assess quantitatively the formation of a partial or compact C12-SH layer covering 

the ITO surface, electrochemical probe experiments or cyclic voltammetries in blank solutions are 

necessary. A drastic cleaning of the ITO surface, a five-hour inmersion in pure C12-SH, and a 

posterior severe removal of physisorbed molecules, are proposed as the best conditions to obtain  C12-

SH SAM over ITO. 

The electrodeposition of CoNi alloy on SAM-modified ITO substrate is possible, although it is 

significantly hindered in the conditions selected to attain the maximum thiol adsorption. A metallic 

layer is formed on the SAM, which must be anchored to the ITO surface by nanocolumns grown 

through SAM surface defects according to the mushroom growth mechanism. Cracked or more 

continuous films, of fine-grained morphology, are obtained by controlling the deposition rate. The 

mechanism of the anomalous CoNi alloy co-deposition is maintained on the ITO-SAM substrates. The 

magnetic properties of the structures are influenced by the SAM presence. Pt can be also directly 

deposited, which can be used to promote modified CoNi electrodeposited films on the ITO-SAM 

substrates. The formation of magnetic structures as ITO-SAM-CoNi or ITO-SAM-Pt-CoNi with non-

cracked metallic films has been possible electrochemically by adjusting the deposition potentials and 

the deposition rate. This demonstrates the potentiality of electrochemical methods to contribute at the 

fabrication of hybrid structures in which semiconducting modified substrates can accept metallic 

magnetic layers anchored through the SAM. This can be the first stage of using the SAM surface 

defects as a support to nanopattern electrodeposited magnetic films over semiconductor substrates as 

ITO. 
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Fig. 1. (A) Variation of the ITO contact angle with immersion time in C12-SH 5mM (square), 50 mM (circle) 

and pure (triangle). High-resolution S2p XPS spectra of C12-SH SAMs on ITO upon immersion in (B) 5 mM 

C12-SH for 24 h and in (C,D) pure C12-SH for 5 h. AFM topographical images of (E) bare ITO, (F) pretreated 

ITO and pretreated ITO samples after immersion in (G) 5mM C12-SH  for 24 h and in (H) pure C12-SH for 5 

h; Image size: 3 µm x 3 µm. 
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Fig. 2. Cyclic voltammograms of ITO samples in a 2 mM Fe(CN)6
3-/4- solution with 0.2 M KNO3 after 

incubation in (A) 5mM C12-SH for a) 0 min, b) 2 h and c) 5 h; and in (B) pure C12-SH for a) 0 min, b) 2 h, c) 5 

h and d) 6 h. Scan rate = 50 mV·s-1. (C) Cyclic voltammograms of bare ITO (solid line) and ITO-SAM (dashed 

line) in H2SO4 0.05 M. Inset: zoom of (C) in the 0.9-1.1 V range. Scan rate = 50 mV·s-1. 
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Fig. 3. Cyclic voltammogram, at 20 mV·s-1, of a) bare ITO, b) ITO-SAM, and c) colloidal Ag-coated ITO-SAM  

in the CoNi electrolytic bath.  
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Fig. 4. (A) Chronoamperometric curves of CoNi deposition for a) ITO-SAM (E= -0.78 V, <σq>= -1C·cm-2), b) 

ITO (E= -0.78 V, <σq>= -1.25C·cm-2), c) ITO-SAM-Pt (E= -0.88 V, <σq>= -1C·cm-2), d) ITO-SAM (E= -0.92 

V, <σq>= -1C·cm-2), e) ITO-SAM-Pt (E= -0.92 V, <σq>= -1C·cm-2), f) ITO-SAM (E= -1.1 V, <σq>= -

1.75C·cm-2) and g) ITO (E= -0.94 V, <σq>= -1.75C·cm-2). FE-SEM micrographs of CoNi deposit over (B) ITO 

(E= -0.78 V, <σq>= -1.25C·cm-2, %Co= 74%, x90000) , (C) ITO-SAM (E= -0.92 V, <σq>= -1C·cm-2, %Co= 

74%, x100000)  
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Fig. 5. High-resolution XPS spectra of a CoNi deposit over ITO-SAM in the (A) Co2p3/2 and (B) Ni2p3/2 

region. Angular dependence of the normalized XPS intensity ratios of (C) In3d5/2 vs. Co2p3/2 and (D) In3d5/2 vs. 

Ni2p3/2. (E, F) Hysteresis magnetic curves of the CoNi-ITO and CoNi-SAM-ITO structures, under application 

of a parallel (∥) and perpendicular (⊥) magnetic field. 
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Fig. 6. (A) Chronoamperometric curves of Pt deposition for in Na2PtCl6 5mM for a) bare ITO and b) ITO-SAM 

(E=-0.32V, t=120 s). (B) Cyclic voltammogram in H2SO4 0.05M, at 20 mV·s-1
, of Pt nuclei directly 

electrodeposited over ITO-SAM (<σq>= -0.05C·cm-2). (C) FE-SEM micrograph of Pt nuclei directly 

electrodeposited over ITO-SAM (E= -0.32V, <σq>= -0.05C·cm-2, x10000). (D) High-resolution XPS spectrum 

of Pt nuclei over ITO-SAM in the Pt4f region. Angular dependence of the normalized XPS intensity ratios of 

(E) In3d5/2 vs. Pt4f7/2 and (F) S2p3/2 vs. Pt4f7/2. 
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Fig. 7. FE-SEM micrograph of a CoNi deposit over ITO-SAM-Pt (E= -0.88 V,<σq>= -0.05C·cm-2, %Co= 66%, 

%Pt= 6%, x9000). 
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