
The role of dark matter halos in the motion of stars in galaxies

Author: Jordi de la Barrera Bardalet
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain

Advisor: Alberto Manrique Oliva

Abstract: In this paper, we study the effects produced by a dark matter halo on the regular or
chaotic nature of the orbits of a star moving near the galactic plane. The potential consists of three
components: a spherical core, a disk and an ellipsoidal dark matter halo. We run simulations with
three different halo shapes at three different energies. Using Poincaré sections we visually analyze
the transition from regular to chaotic orbits and confirm that the shape of the dark halo is a key
element: the spherical halo keeps the orbits stable, the prolate halo induces more chaotic orbits
globally while the triaxial ellipsoid only does so at the core.

I. INTRODUCTION

Dark matter halos are in the present moment of ex-
treme relevance in galactic dynamic studies as more com-
plex systems are arising and new questions need to be
answered. Although they cannot be seen directly and we
don’t know their exact shape, we cannot omit the inter-
action a dark halo has with the stars in the galaxy, as it is
the primary gravity source that rules galactic dynamics,
thus, star motion.

There are plenty of studies that try to fit a halo model
that is compatible with the real observations (Law et al.
(2010)[1]). In the present paper however, we take the
opposite approach: choosing three realistic halos with
different shapes we analyze how the motion of the stars
is affected and what are the differences between each halo
effects. This paper follows the studies of Hénon & Heyles
(1964)[3] on the existance of a third isolating integral
that led to the orbits of the stars transition from regu-
lar to chaotic. They analyzed this transition using an
arbitrary potential which did not represent any galac-
tic potential. Following their methodology, we study the
transition with a real galactic potential with three com-
ponents taken from Law et al. (2010)[1], one of them
being a dark matter halo.

Firstly, we take three cases of halo shapes: a triaxial
ellipsoid, a shpere and lastly a prolate ellipsoid (rugby
ball shape). We then integrate a set of initial conditions
at three different energies and compute the Poincaré sec-
tions in the (y, ẏ) plane, which are 2D projections of the
evolution of the particle in the phase space. This study
provides a qualitative understanding of the halo effects
in the motion of a star near the disk.

This paper is structured as follows. Section II starts
by describing the galactic potential model and gives a
detailed description of each of the parameters, equations
of motion and constraints of the system. It also includes
a brief explanation on the computational methodology
and how Poincaré sections are constructed. In Section
III we show the results analyzing the Poincaré sections
for each case and energy. Finally in Section IV we present
the results with the conclusions.

II. EQUATIONS

A. The galactic model

The galactic potential used in this paper is taken from
Law et al. (2010) [1]. It is composed by three compo-
nents: a Hernquist spheroid as the core, a disk, and a tri-
axial dark matter halo modeling the Milky Way potential
with its characteristic parameters. The disk component
is described by the potential used in Miyamoto & Nagai
(1975) [2]. Thus,

Φ = Φsphere + Φdisk + Φhalo, (1)

Where each component is given by the following ex-
pressions:

Φsphere = − GMsphere√
x2 + y2 + z2 + cs

, (2)

Φdisk = − GMdisk√
x2 + y2 +

(
ad +

√
z2 + b2d

)2 , (3)

Φhalo = v2haloln

(
r2halo + C1x

2 + C2y
2 + C3xy +

(
z
qz

)2)
, (4)

While the constants of the dark halo are given by:

C1 =

(
cos2 φ

q21
+

sin2 φ

q22

)
, (5)

C2 =

(
cos2 φ

q22
+

sin2 φ

q21

)
, (6)

C3 = 2 sinφ cosφ

(
1

q21
− 1

q22

)
, (7)
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The parameters ad and bd caracterize the central
concentration and the thickness of the disk, respectively,
and cs refers to the radius of the spherical core.

The dark matter halo represented in this form
describes an ellipsoid with major/intermediate/minor
semi-axes a/b/c rotated by an angle φ about the Galactic
Z-axis. Both q1 and q2 denote the axial flattening of the
disk axis while qz does so with the axis perpendicular to
the Galactic disk. We take the origin φ = 0o in the case
where q1 and q2 are coincident with the Galactic X/Y
axes and it increases in the direction of the Galactic lon-
gitude. Finally, vhalo is the normalization parameter of
the total mass of the dark halo and rhalo is a scale length.

This study is developed in units of kpc for distances,
solar masses and Myrs for time. Thus, the resulting units
of the energy are [E] = kpc2Myr−2M−1

� , which in fact
corresponds to an energy per mass unit, as it can be easily
seen in Eq. (4) which has velocity squared dimensions per
unit of mass. From now on, we will drop the M−1

� when
writing energy units.

B. Equations of motion

Taking the three components of the potential we can
write the Hamiltonan of the system:

H =
1

2

(
p2x + p2y + p2z

)
+ Φ (x, y, z) , (8)

As we work with Cartesian coordinates the equations
of motion are given by:

ẍ = −∂Φ

∂x
, ÿ = −∂Φ

∂y
, z̈ = −∂Φ

∂z
, (9)

The phase space (x, y, z, ẋ, ẏ, ż) has six dimensions and
one isolating integral that is known, which is the total
energy of the star divided by its mass, that is constant
through all the trajectory of the star:

I1 =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ Φ (x, y, z) , (10)

Because of the existence of this isolating integral it
is only necessary to know five of the coordinates in the
phase sphace such as x, y, z, ẏ, ż; then, the sixth compo-
nent, ẋ, can be obtained from Eq. (10) using I1 = E, the
total energy of the star.
Considering that ẋ must be non-negative this defines a
volume in the phase space where the star can evolve. If
no other isolating integrals exist, the star will move and
fill all this volume and the trajectory will be cahotic or
also named ergodic. However, the trajectory will lie on
a surface in case of the existance of a second isolating

integral, which is what this paper aims to show.
As it will be seen futher ahead, when plotting the
Poincaré sections this two behaviours of the trajectories
will correspond to the following: ergodic trajectories fill-
ing an area and regular orbits laying in a curve.

C. Computational methodology

To compute the calculations of the trajectory of each
star, the equations of motion have been integrated using
an Adaptative Runge Kutta method in Fortran [4]
which varies the integration step lenght conveniently,
optimizing to reduce both error and CPU time. A
precision of 10−6 has been acheived with an integration
time of 105 Myr with a number of 107 steps.
In order to make sure of the reliability of the integration
method, the study by Hénnon & Heiles (1964) [3] has
been previously reproduced successfully.

In the present study, the integration of the equation of
motion Eq. (9) has been used to compute the Poincaré
sections in the y, ẏ plane. These sections have been gener-
ated by the succesion of points of the trajectory P1, P2, ...
that intersect with the x = 0 plane, in the upward direc-
tion, which implies that:

x = 0, ẋ > 0, (11)

Only points with |z| < 0.02kpc are represented, this is,
points that move near the galactic equatorial plane. As
previously stated, these points will draw a closed curve
given the existance of a second isolating integral of mo-
tion. In that case we will call these trajectories regular.

On the other hand, if a second isolating integral of
motion doesn’t exist the points will be distributed filling
an area instead, and the orbits will be called ergodic (see
Fig.1(g) for a clear view of the difference between ergodic
and regular orbits in a Poincaré section).

In order to integrate the equations of motion Eq.(9),
we first define the first four initial components, which
are common for all the starting points. Thus, we set x =
z = ẏ = ż = 0. Components z and ż are set to zero with
the goal of studying stars that move in the equatorial
plane. Then, an array of unique y components is created
and finally the sixth component, ẋ, is found by using
the energy conservation isolating integral of Eq.(10). We
then integrate the equations of motion with the initial
condition of each trajectory, which allows us to compute
the Poincaré sections.
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III. RESULTS

A. Effects of the dark halo’s shape

The aim of this section is to study the effects in the na-
ture of the orbits produced by three realistic halo shapes.
Specifically, it is of our interest to distinguish between
regular and ergodic orbits as a function of the energy. For
each case, we integrated three sets of initial conditions at
three different energies: 0.15, 0.22 and 0.28 kpc2Myr−2

and computed the corresponding Poincaré sections in the
plane (y, ẏ).

Parameter Value

Msphere(M�) 1.0 × 1011

Mdisk(M�) 3.4 × 1010

ad(kpc) 6.5

bd(kpc) 0.26

cs(kpc) 0.7

rhalo(kpc) 12

vhalo(km/s) 220

φ(o) 90

Parameter Case 1 Case 2 Case 3

(Spherical) (Prolate)

q1 0.83 1.0 3.0

q2 1.0 1.0 1.0

qz 0.67 1.0 0.5

T 0.55 1 0.91

TABLE I: Parameters used for calculations. The oblate case
has been ommited here because prolate cases were found to
be more relevant for this particular study. T is the triaxiallity
parameter defined in Eq. (12).

In Table I the parameters that we used for each case
have been listed. The parameters from the table on top
are common for all cases and were taken from Law et
al. (2010) [1] while the shape parameters of the three
halos displayed in this study are set on the lower table
in Table I.

Once all parameters are defined, we should have a
method to classify each halo type by its shape. The best
method is the triaxiallity parameter, defined by:

T =
a2 − b2

a2 − c2
, (12)

where T → 0 means it is an oblate ellipsoid with
a ' b > c (Earth-type ellipsoid) and T → 1 means it
is prolate with a > b ' c (like the shape of a rugby
ball). A spherical shaped halo has also been studied
and it corresponds to a = b = c with T=1. To find the
triaxiality value of a given ellipsoid we set a/b/c equal
to the highest/intermediate/lowest of the values from
q1, q2 and qz.

That way, this paper focuses on three halo shapes
with T=0.55, 1 and 0.91 corresponding to a triaxial
ellipsoid, a sphere and a prolate ellipsoid, respectively.

In Figure 1 the Poincaré sections are represented for
the three shapes and energies. Each of the orbits was
obtained from a different initial condition for a given
energy, integrated and followed in the phase space.

Starting with Figure 1(a), which shows the Poincaré
section for the case T=0.55 at E=0.15 (kpc/Myr)2, at
a first glance we observe the symmetry of the galactic
potential in y. It is easily seen that the orbits are all
regular, following closed curves and filling all the allowed
area. It is also noticeable the presence of three invariant
points in the middle of the three loops: one at y=0 which
is hard to see here and the other two at the sides. These
points correspond to stable and periodic orbits.

As discussed in Section II, the presence of closed curves
in the Poincaré section indicates the existance of a second
isolating integral.

In Figure 1(b) the central loop has increased in size
but it seems that all the orbits are still regular including
the ones with missing points. If we were to increase the
integration time we could probably verify that the or-
bits end up closing themselves. However, Figure 1(c) for
E=0.28 (kpc/Myr)2 shows a totally different behaviour
at the core. What before were closed orbits that filled
the whole area with curves, now the points are scattered
and filling most of the area without any kind of order.
Besides that, we still observe the presence of regular or-
bits at the core in the form of the six small islands, 3
in dark blue and another three in orange, and probably
more islands that can be intuited inside the four white
spaces close to the center. What is surprising is that all
the islands of the same color belong to the same trajec-
tory: the star jumps from one island to the other as it
turns around the galaxy.

Another effect of the rise in energy is that the range of
positions y also rises with the star moving further away
from the center at higher energies.

When compared, the only difference between the
section of Figure 1(b), from the spherical halo, and
Figure 1(a) is the absence of the central loop. Besides
that, like in the previous case all the orbits seem to be
regular and there are equally two stable points. Going
at higher energies nothing much changes. As before, the
range in y increases, but in this case all orbits keep being
regular, even for the highest energy. Out of the three
studied cases, the spherical one has turned out to be
the one showing the least effects in the orbits of the stars.
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(a) E=0.15 (kpc2Myr−2) (b) E=0.15 (kpc2Myr−2) (c) E=0.15 (kpc2Myr−2)

(d) E=0.22 (kpc2Myr−2) (e) E=0.22 (kpc2Myr−2) (f) E=0.22 (kpc2Myr−2)

(g) E=0.28 (kpc2Myr−2) (h) E=0.28 (kpc2Myr−2) (i) E=0.28 (kpc2Myr−2)

FIG. 1: Poincaré sections at different energies for three dark halo shapes using the parameters described in Table I. From left
to right: triaxial halo (T=0.55), spherical (T=1) and prolate (T=0.91).

In contrast, the highly prolate halo of case 3, with
T=0.91, has a huge impact on the motion of stars. This
halo has q1 = 3, which is much bigger than the other two
axis.

Due to the rotation of φ = 90o, q1 is aligned to the
Galactic Y-axis, massively elongating the orbits along
that axis as it can be seen in Figures 1(f) and 1(i).

At the lowest energy there are not any remarkable dif-
ferences from the previous cases. However, stepping up
to E=0.22 (kpc/Myr)2 we observe that the regular orbits
have now compressed vertically and streatched horizon-
tally, reaching points 5 kpc further from the center than
the previous cases. Already at this energy, the axis y=0
together with other areas have become chaotic regions
which was an unseen behaviour compared with the pre-
vious two at this energy.

Groups of regular islands, also known as chain islands,

are also present. The white space between the boundary
of the Poincaré section in color blue and the chaotic area
is probably a region of regular orbits. Had we chosen an
initial condition inside this area, not with ẏ = 0 as we
have in this case, we could have this hypothesis verified,
although it can also be done by looking at Figure 1(i) and
confirming the presence of regular orbits in that region.

Finally, in Figure 1(i) the regular region at the center
shrinks considerably and the white area seems to move
closer to the center. Moreover, we can observe another
unseen behaviour. Up to this point, we have only seen re-
ductions of the regular regions as the energy is increased.
Surprisingly, looking at the side edges we observe two lit-
tle regular regions from Figure 1(f) that have increased in
size in Figure 1(i), which makes us think that if we were
to increase the energy even more we could have more
regular regions.
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IV. CONCLUSIONS

This paper’s goal was to study whether the shape of
the dark halo had an effect on the star motion and how it
affected the nature of it. The results in Section III allow
us to conclude that:

• First, the shape of the dark matter halo is a key ele-
ment that drives the dynamics of the stars near the
equatorial plane, which reinforces the importance
of following with further studies on the topic.

• Secondly, we observed that energy plays an impo-
rant role on the transition from regular to chaotic
orbits. Over a certain energy there are regions
where the second isolating integral ceseases to exist
and the orbits in that region become chaotic.

• The three studied shapes have given completely dif-
ferent orbits. The spherical halo (T=1) seems to
make orbits stable even at high energies, the pro-
late ellipsoid (T=0.91) induces chaotic orbits glob-

ally and it’s the one affecting the most and finally,
the triaxial halo (T=0.55) produces transforma-
tions from regular to chaotic orbits only near the
center.

The present paper has taken a qualitative approach to
the problem. One remaining question is, at what energy
do the orbits start to become chaotic. A quantitative
study could be done following Hénon & Heyles method-
ology of the fraction of area developed in [3] and use it
to find the most altering shapes of the halo.
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