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Abstract: Quantum algorithms based on simulating states of a quantum system cannot simulate
these states without an error. This work studies the relations between the error of an approximated
quantum circuit that simulates the ground state of a Hamiltonian and the error of the energy and
Von Neumann entropy of this state. In addition, we relate the errors with the gate cost of the
approximated quantum circuit using the Solovay-Kitaev theorem.

I. INTRODUCTION

Over the past few years, quantum computing has be-
come more plausible due to the great advances in technol-
ogy. In particular, quantum computers will have a huge
impact in simulations of large quantum systems, since
the data stored on them scale logarithmically with the
dimension of the Hilbert space. In order to simulate the
dynamics of a quantum system it is necessary to prepare
certain states of a many-body Hamiltonian in a quantum
circuit. However, in the gate model of quantum comput-
ing, one of the main issues is that the set of quantum
gates is limited and most of the algorithms will carry an
error with respect to ideal ones. Specifically, quantum
algorithms for ground state preparation are able to ap-
proximate the ground state of the system with a certain
non zero error.

In this paper we study the relations between the er-
ror of an approximated quantum circuit and the errors
of the energy and Von Neumann entropy of the approxi-
mated states. In the first part of the paper we present the
Solovay-Kitaev theorem and give an expression for two
close unitary operators. Then, we present the relations
between the errors of a quantum circuit and the energy
and entropy of the simulated states. Finally we check the
relations using a classical simulation.

II. APPROXIMATE UNITARY OPERATORS

Let H be a complex Hilbert space, and X : H → H be
a bounded linear operator. Its operator norm is defined
as

‖X‖ = sup
||ψ〉|=1

|X |ψ〉 |, (1)

where | · | denotes the standard vector norm. The op-
erator norm induces a distance in the group of unitary
operations U(n). Thus, a unitary operator Ũ approxi-

∗Electronic address: joseplumbreraszarapico@gmail.com

mates the unitary operator U with precision ε if

‖Ũ − U‖ = O(ε). (2)

Also, Ũ is called an ε-approximation for U .
Since U†U = I, if Ũ is a “good” approximation for U

it follows that

ŨU† = I + εB (3)

for some sufficiently small ε > 0 and matrix B with norm
‖B‖ ≤ 1. Note that this expression is an ε - approxima-

tion for the identity, ‖ŨU† − I‖ = O(ε) .

Since Ũ and U are unitary, Eq. (3) should also be
unitary. Imposing that condition to the terms of order ε,
implies that B†+B = 0. So, it is useful to define A = iB
and the condition will be −A†+A = 0, which means that
A is hermitian. Thus, Eq. (3) can be expressed as

ŨU† = I − iεA. (4)

The term iεA gives a small change to a vector, so, since
I is unitary, the operator of Eq. (4) is almost a unitary
operator. In order to achieve a unitary operator we would
need to develop terms of higher order in ε. The resulting
operator is the exponential function of a matrix, i.e.

ŨU† = e−iεA. (5)

Equivalently, Ũ can be expressed in terms of U as
Ũ = e−iεAU for some hermitian matrix A. Calculating
the operator norm of ‖e−iεAU − U‖, we find that Ũ is a
ε-approximation for U .

III. SOLOVAY-KITAEV THEOREM

In classical computing a universal set of logic gates
is a set that can implement any Boolean function. In
quantum computation the notion of universal set is quite
different since the operations are elements of the unitary
group U(n). Given a finite set of quantum gates it is
not possible to achieve an arbitrary unitary operation
because the group U(n) is uncountable and a finite se-
quence of gates is countable. Instead, a set of quantum
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gates will be universal if it can implement any unitary
operation with a given error. More precisely, a universal
set of quantum gates is a set G of unitary operators such
that for any unitary operator U and error ε > 0, there
exists an ε-approximation for U , g1 · · · gn, with gi ∈ G
and n <∞.

Apart from the finite set of gates, near term quantum
computers will be restricted by the numbers of opera-
tions. Moreover, these operations must be done in a
fault-tolerant way, and fault-tolerant constructions are
typically available only for a limited number of gates
(e.g., the Clifford group gates and π/8 gate [1]). For
those reasons, it is important to find efficient ways of
implementing quantum algorithms with a limited set of
quantum gates.

The Solovay-Kitaev theorem states that any universal
set of quantum gates can approximate any unitary oper-
ation quickly and with a good precision. In the simplest
form, the theorem states:

Theorem 1 (Solovay-Kitaev). Let G be a universal set
of quantum gates in SU(2) closed under inversion. Then
for any error ε > 0 and U ∈ SU(2), there is a sequence of
elements g1, ..., gl ∈ G such that ‖U − gl · · · g1‖ ≤ ε with
l = O(logc(1/ε)) and c ≈ 4.

The proof of the theorem does not give us any practi-
cal construction of the approximated unitary, but it tells
us that it is possible to achieve efficient constructions
of the desired unitary with a given set of gates. For
example, quantum algorithms like Shor’s can be broken
into a sequence of m quantum gates U1, · · ·Um. A rea-
sonable assumption is that each quantum gate can be
approximated with an accuracy of ε > 0 using O(1/ε)
quantum gates from the given set [2]. Then, if we want
to approximate the entire sequence to an accuracy of
ε > 0, each gate should be approximated to an accu-
racy of O(ε/m), and the total length of the approxi-
mation would be O(m2/ε), a quadratic increase in the
original size of the circuit. The Solovay-Kitaev theorem
provides that each quantum gate can be approximated
with O(logc(m/ε)) quantum gates, and the total length
of the circuit would be O(m logc(m/ε)). Thus the theo-
rem reduces the total length from a quadratic to a poly-
logarithmic increase over the original size.

Solovay announced the theorem in 1995 for the case
SU(2) but he did not publish it. In 1997, Kitaev proved
the theorem independently for the general case SU(d) in
a review paper [3]. Later Kitaev, Shen and Vylaly showed
an alternative proof where the constant c was reduced to
3 [4]. In particular, the best value for the constant c
that we can achieve is 1 [5], and it was proved that for a
particular choice of the set of gates the optimal value for
c can be achieved [6].

IV. ENERGY ERROR

Throughout this paper, let H be a d × d Hermitian
matrix that represents some quantum Hamiltonian, and
let E0 be the ground energy of this Hamiltonian with
|ψ0〉 its eigenstate.

Since the choice of the set of gates is limited, the imple-
mentation of most quantum algorithms for ground state
preparation of a Hamiltonian will carry an error. Hence,
the ground energy of the simulated state will not be ex-
actly the ground energy of the system. The number of
gates that are required for the quantum circuit is related
to the error with respect to the ideal one, so these three
quantities can be related: number of gates, error of the
circuit and error of the energy.

The Solovay-Kitaev theorem states that is possible to
find the approximated circuit, so our work will be to re-
late the error of the approximated circuit with the error
of the approximated eigenvalue of the target state. Using
the results of the previous sections, we prove the follow-
ing result:

Theorem 2. Given a universal set of quantum gates G
closed under inversion, a Hamiltonian H, and error ε > 0
it is possible to find a quantum circuit Ũ such that it can
simulate an approximation for the ground state |ψ̃0〉, with
an error of the energy of O(ε2) in a gate complexity of

O(logc(1/ε)) (6)

for some constant c, c ≤ 4.

Proof. To prove this result we will need to use the Solo-
vay Kitaev theorem and standard perturbation theory.
Suppose that exists a quantum circuit U such that

U |0〉⊗d = |ψ0〉 . (7)

Then using the Solovay-Kitaev theorem we have that is it
possible to find an ε-approximation Ũ for U in the sense
of Eq. (2) using O(logc(1/ε)) gates from our set G.
Using the calculations of the previous section, the ap-
proximated Ũ can be expressed as Ũ = e−iεAU for some
bounded Hermitian matrix A, (‖A‖ < 1). Expanding Ũ
with the usual definition of the matrix exponential to the
first order on ε, we can calculate the approximated state
|ψ̃0〉 of the exact ground state

|ψ̃0〉 = Ũ |0〉⊗d = |ψ0〉 − iεA |ψ0〉+O(ε2). (8)

Recall that since A is bounded, this |ψ̃0〉 is a ε-state
close to |ψ0〉. Finally, it suffices to compute the en-

ergy of the state |ψ̃0〉 as Ẽ0 = 〈ψ̃0|H |ψ̃0〉. Using that
E0 = 〈ψ0|H |ψ0〉,

Ẽ0 = E0 + ε2 〈ψ0|AHA |ψ0〉 . (9)
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The terms of order ε have cancelled thanks to the hermic-
ity of A and the change of sign produced by the conjuga-
tion of the factor i. Thus, the result |Ẽ0 − E0| = O(ε2)
follows.

The Solovay-Kitaev theorem does not give us the con-
struction of the approximated circuit, but if the quantum
circuit has a certain error with respect to the ideal one,
this result still guarantees the quadratic improvement in
the error of the energy compared to the error of the cir-
cuit. Moreover, fixing the number of gates of the set, this
result tells us the order of the error of the energy that we
can achieve with an approximated quantum circuit.

V. ENTROPY ERROR

Let H be a bipartite Hilbert space for two subsystems
A and B i.e H = HA ⊗HB . The entanglement between
the systems A and B of a quantum state can be measured
using the Vonn Neumann entropy. Since |ψ̃0〉 is an ap-

proximate state for |ψ〉, the entropy of |ψ̃0〉 will carry an
error respect to |ψ〉. Let ρA0 be the corresponding density
matrix of the state |ψ0〉 for the subsystem A, i.e,

ρA0 = TrB |ψ0〉 〈ψ0| . (10)

The Vonn Neumann entropy for the state |ψo〉 can be
computed as

S0 = −Tr ρA0 log2 ρ
A
0 = −

∑
i

λi log2 λi, (11)

where λi are the eigenvalues of ρA0 . In fact, it is possi-
ble to choose the logarithm in another base because all
logarithms are related up to a constant factor.

In order to relate the Von Neumann entropy S̃0 of the
state |ψ̃0〉 with S0 and the number of gates of the ap-

proximated circuit Ũ , we prove the following result:

Theorem 3. Given a universal set of quantum gates G
closed under inversion, a Hamiltonian H, and error ε > 0
it is possible to find a quantum circuit Ũ such that it can
simulate an approximation for the ground state |ψ̃0〉, with
an error of the Von Neumann entropy of O(ε) in a gate
complexity of

O(logc(1/ε)) (12)

for some constant c, c ≤ 4.

Proof. Using the same construction as in Th. 2, we can
find an ε -approximation Ũ of the ideal circuit, that pro-
duces an approximated state |ψ̃0〉. In order to compute

S̃0 it is useful to compute the density matrix of |ψ̃0〉,

ρ̃A0 = ρA0 + iεTrB(−A |ψ0〉 〈ψ0|+ |ψ0〉 〈ψ0|A) +O(ε2).
(13)

Note that the terms of order ε does not cancel, thus
‖ρ̃A0 − ρA0 ‖ = O(ε). Let λ0, ..., λm and λ̃0, ..., λ̃m be the

eigenvalues of ρA0 and ρ̃A0 respectively. Then the eigen-
values can be related:

λ̃i = λi + εci +O(ε2) (14)

where ci is some constant such that |λ̃i − λi| = O(ε),
and the terms of higher order on ε are ignored. Finally,
it suffices to compute the terms λi log2 λi. Expressing

log2 λ̃i = log2(λi(1 + εci/λi)) and using the Taylor ex-
pansion for the logarithm we find that:

λ̃i log2 λ̃i = λi log2 λi + ciε log2 λi + ciε+O(ε2) (15)

Then summing over all the terms λ̃i log2 λ̃i the result

|S̃0 − S0| = O(ε) follows.

The results of Th. 2 and Th. 3 are given for the
ground state as the target state to simulate but they
can be generalized to other quantum states. Preparing
excited states of a Hamiltonian seems to be more difficult
and most of the existing quantum algorithms are focused
on ground state preparation.

VI. SIMULATIONS FOR THE ENERGY AND
ENTROPY

In this section we are going to check Th. 2 and Th. 3
with a numerical simulation for a particular Hamiltonian.
To carry out the simulation it is important to choose a
Hamiltonian such that we can calculate the exact ground
energy and the exact Von Neumann entropy. For the
simulations we have chosen the Heisenberg Hamiltonian
without a transversal field and constant equal weights,

H =
∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1. (16)

Note that the approximated circuit Ũ produces a state
|ψ̃0〉 ε-close to the ground state, so, instead of finding the
approximate circuit, it suffices to implement the state
|ψ̃0〉 and calculate Ẽ0 and S̃0. With this Hamiltonian
we have calculated the ground state |ψ0〉 for the specific
cases of 4,6 and 8 qubits using standard programming
techniques. With the ground state calculated, the state
|ψ̃0〉 is generated with the following expression

|ψ̃0〉 =
|ψ0〉+ ε |φ〉
| |ψ0〉+ ε |φ〉 |

(17)

where |φ〉 is a random state equivalent to the A |ψ0〉 term
of Eq. (8).

In order to find how the error of E0 and S0 scale, we
will suppose that they scale as O(εk) for some exponent
k. Then, calculating E0 and S0 with different values of
ε, the exponent k can be computed using the following
linear regressions

log |Ẽ0 − E0| = kE · log(ε) + cE , (18)
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kE kS
4 qubits 1.9986 0.9975
6 qubits 1.9988 1.0123
8 qubits 1.9988 1.0851

TABLE I: Values for the coefficients kE and kS of the linear
regressions of Eqs. (18-19) using the results from Fig. 1 and
Fig. 2.

FIG. 1: Ground energy errors for the Hesienberg Hamil-
tonian for 4,6 and 8 qubits. The error ε and energy error
|Ẽ0 −E0| are shown in a logarithmic scale. The energy error
scales like O(ε2) for all cases.

FIG. 2: Ground entropy errors for the Heisenberg Hamilto-
nian for 4,6 and 8 qubits. The error ε and entropy error
|S̃0−S0| are shown in a logarithmic scale. The entropy error
scales like O(ε) for all cases.

log |S̃0 − S0| = kS · log(ε) + cS , (19)

where cS and cE are some constants. The values of kE
and kS are the exponent of O(ε). These values are shown
in Table I. The simulations plotted in Fig. 1 and Fig. 2
have been averaged over 100 times.

From the values of kE , we see in a clear way that the
error of the ground energy scales like O(ε2). For the error
of the Von Neumann entropy, the values of kS show that
the entropy error scales like O(ε). Moreover, Fig. 1 and
Fig. 2 show that there is no dependence on the number
of qubits. These results prove the dependencies of the
errors established in Th. 2 and Th. 3.

VII. GATE COMPLEXITY

In order to check the gate complexity of Th. 2 and
Th. 3 we will use the Variational Quantum Eigensolver
(VQE) algorithm [7] for the case of the Heisenberg Hamil-
tonian of Eq. (16) with 4 qubits. The VQE algorithm
consists on:

1. Prepare a quantum circuit U(~θ) depending on k

parameters, ~θ = (θ1, · · · , θk). Pick an initial state

|0〉⊗n, a set of initial parameters for ~θ, and compute

the state |ψ̃〉 = U(~θ) |0〉⊗n.

2. Measure the expectation value Ẽ0(~θ) = 〈ψ̃|H |ψ̃〉.

3. Use a classical minimization algorithm to minimize

the value of Ẽ0(~θ).

4. Repeat the steps until convergence.

According to the variational theorem of quantum me-
chanics we will get always Ẽ0 ≥ E0. Increasing the gate

complexity of the trial circuit U(~θ), we will check the
value of the constant c of Eq. (6) measuring the energy

error |Ẽ0(~θ)− E0|.
The choice of the quantum circuit U(~θ) is arbitrary,

but not all circuits can produce the desired state. Our
choice of the circuit is based on the universal set of quan-
tum gates G = {H,T,CNOT} [5], where H denotes
the Hadamard gate, T the π/8 gate and CNOT the
controlled-NOT gate. The H and T gates can produce
the following rotations over the Bloch sphere:

Rn̂(α) = THTH and Rm̂(α) = HTHT, (20)

where n̂ and m̂ are the normalized axis ~n =
(cos π8 , sin

π
8 , cos π8 ) and ~m = (cos π8 ,− sin π

8 , cos π8 ) re-
spectively. The angle α is defined by cos(α/2) =
cos2 π/8, and it is an irrational multiple of 2π [8], thus
successive iterations of these rotations can fill up the in-
terval [0, 2π) along their respectively axis. The main idea
of the implementation is that any quantum gate acting
on a single qubit U ∈ U(2) can be decomposed as

U = eiαRr̂(β)Rŝ(γ)Rr̂(δ), (21)

for any non-parallel real unit vectors r̂, ŝ and an appro-
priate choice of α, β, γ, δ ∈ R. So, using the rotations
Rn̂ and Rm̂ it is possible to achieve any quantum gate
U ∈ U(2).

The scheme of Fig. 4 shows the basic building block of
our quantum circuit. In order to study the error of the
circuit with the number of gates, we have implemented
the VQE algorithm as shown in Fig. 3 with the clas-
sical optimizer Nelder-Mead method from the standard
Python library SciPy. The depth of the circuit denoted d,
is the number of times that is repeated the circuit of Fig.
4 in the VQE implementation of Fig. 3. In order to esti-
mate the value of the constant c we have implemented the
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VQE algorithm for d = 1, · · · , 7 and computed the en-
ergy error for each case. The results obtained are shown
in Fig. 5. The results for d = 1, 2 are not shown because
there was not convergence in the energy error. Note that
each d increases the number of gates by 20, so, the total
gate complexity of Fig. 3 is given by l = 8 + 20d.

FIG. 3: Implementation of the quantum circuit for the VQE
algorithm. The general gates Ui corresponds to the circuit of
Fig. 4.

FIG. 4: Circuit for the implementation of the VQE algorithm
of Fig. 3. This circuit has 16 free parameters corresponding
to the Rn and Rm rotations.

FIG. 5: Depth of the circuit of Fig. 3 as a function of log(1/ε)
with ε the energy error. The behaviour of the curve shows that
logc(1/ε) scales with c ≤ 1.

The results show that the value of c scales like c ≤ 1,
according to Th. 2 and Th. 3. Recall that the best value
that the Solovay-Kitaev theorem can achieve is c = 1,
however for particular cases we can achieve a better result
(e.g the trivial case of approximating an operation that
is in the given set).

VIII. CONCLUSIONS

Simulating a quantum state of a Hamiltonian with an
ε-approximated quantum circuit will produce a state with
a quadratic improvement O(ε2) in the error of the energy.
The error of the Von Neumann entropy will scale with the
same order of O(ε). Moreover, the dependencies of the
errors does not depend on the number of qubits, they
depend only on the ε-approximated quantum circuit.

Given a universal set of quantum gates, the Solovay-
Kitaev theorem relates the number of gates that would
cost achieving an approximation for a unitary operator
with the error of the approximation. Using this relation
in Th. 2 and Th. 3 we related the errors of the energy,
entropy and circuit with the number of gates that would
cost the implementation of the circuit. Implementing
the VQE algorithm for the Heisenberg Hamiltonian with
4 qubits we have found the desired scaling stated in Th.
2 and Th. 3 with a value of c ≤ 1.

Acknowledgments

I would like to thank my advisor Dr. José Ignacio La-
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