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Abstract 

 

Adenosine, hypoxanthine, xanthine, guanosine, and inosine levels were assessed by 

HPLC, and the activity of related enzymes 5’-nucleotidase (5’-NT), adenosine 

deaminase (ADA), and purine nucleoside phosphorylase (PNP) measured in frontal 

(FC), parietal (PC) and temporal (TC) cortices at different stages of disease 

progression in Alzheimer’s disease (AD) and in age-matched controls. 

Significantly decreased levels of adenosine, guanosine, hypoxanthine, and xanthine, 

and apparently less inosine, are found in FC from the early stages of AD; PC and TC 

show an opposing pattern, as adenosine, guanosine, and inosine are significantly 

increased at least at determinate stages of AD whereas hypoxanthine and xanthine 

levels remain unaltered. 5’-NT is reduced in membranes and cytosol in FC mainly at 

early stages but not in PC, and only at advanced stages in cytosol in TC. ADA activity 

is decreased in AD when considered as a whole but increased at early stages in TC. 

Finally, PNP activity is increased only in TC at early stages. 

Purine metabolism alterations occur at early stages of AD independently of 

neurofibrillary tangles and β-amyloid plaques. Alterations are stage- and region-

dependent, the latter showing opposite patterns in FC compared with PC and TC. 

Adenosine is the most affected of the assessed purines. 

 

Key words: Adenosine, Alzheimer’s disease, cerebral cortex, purine metabolism. 
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Introduction 

Alzheimer disease (AD), the most common neurodegenerative disease in adulthood, is 

characterized neuropathologically by β-amyloid deposition forming plaques and 

amyloid angiopathy, and hyperphosphorylated tau in neurons with neurofibrillary 

tangles (NFTs) and pre-tangles, dystrophic neurites of amyloid plaques, and neuropil 

threads (24, 31). NFTs increase in number and distribution from selected nuclei of the 

brain stem, and entorhinal and transentorrhinal cortex (stage I-II) to the hippocampus 

and limbic cortex (stage III-IV), and eventually the neocortex (stages V-VI) (14). Clinical 

symptoms in AD manifest several years after the appearance of classical 

neuropathological findings and that AD pathology is not restricted to β-amyloid and tau 

(13, 26). On the contrary, alteration of multiple metabolic pathways and cell types 

converge and contribute to the development of AD (26). 

Purines and pyrimidines are components of a large number of key molecules. Primary 

purines adenine and guanosine, and pyrimidines cytosine, thymidine, and uracyl are 

the core of DNA, RNA, nucleosides, and nucleotides involved in energy transfer (ATP, 

GTP) and co-enzymes (NADH, FADH2) (6, 32). 

Adenosine produced by neurons and astrocytes modulates excitatory and inhibitory 

neurotransmission, and influences relevant brain functions including sleep and arousal, 

cognition and memory, and neuronal damage and degeneration, by acting as an 

extracellular molecular via specific adenosine receptors (8, 29, 53, 55). There are four 

G-protein coupled receptors for adenosine A1, A2A, A2B and A3 (29, 55). Importantly, A2A 

receptor is necessary for neurodegeneration and memory impairment in animal models 

of AD and tauopathy (16, 17, 21, 45, 61). Moreover, A2A receptor is necessary and 

sufficient to trigger memory impairment in adult mice (47, 51). 

 

Adenosine is generated intracellularly by the hydrolysis of AMP and S-adenosyl 

homocysteine (SAH) by soluble 5’-nucleotidase (5’-NT) and S-adenosyl homocysteine 

hydrolase, respectively. It can then be phosphorylated to AMP by adenosine kinase 
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(ADK) or transformed into inosine by adenosine deaminase (ADA). Extracellularly, ATP 

can be dephosphorylated to AMP by ectonucleoside triphosphate diphospho-hydrolase 

CD39 and AMP dephosphorylated to adenosine by 5’-nucleotidase CD73. In addition, 

adenosine can be transported to intracellular and extracellular compartments by 

specific transporters (28). In the intracellular space, the products of adenosine 

degradation, such as AMP and inosine, are transformed into inosine or hypoxanthine 

by AMP deaminase and cytosolic 5’-nucleotidase II (cN-II) or by purine nucleoside 

phosphorylase (PNP), respectively. Inosine is also able to exit by nucleoside 

transporter. Hypoxanthine can be oxidized by xanthine oxidase and transformed into 

xanthine. Inosine, hypoxanthine, and xanthine can also be transported to the 

extracellular compartment. Guanosine is derived from GMP (guanosine 

monophosphate) by nucleotidase and can be phosphorylated and deaminated into 

xanthine (11, 57). Ecto-5’-nucleotidase has a role in the activation of A1 and A2 

receptors (19, 23, 25, 54). Figure 1 shows some of these metabolic connections. 

Although not addressed in the present paper, other enzymes are important in 

adenosine signaling (10, 50, 52). A1 and A2A receptors are modified in brain in AD (63). 

A1 and A2A receptors are increased in frontal cortex with respect to age-matched 

control (1). A1 receptors are increased in degenerating neurons and A2A receptors in 

glial cells of the hippocampus in AD (5). These data contrast with previous studies 

reporting decreased A1 receptor in dentate gyrus and CA3 region of the hippocampus 

in AD patients (34). 

Studies on enzymes linked to purine metabolism in AD are scant. AMP deaminase 

activity is increased in AD with respect to control cases (58). 5’-NT activity is reduced in 

brain homogenates of AD (37). 

Our previous studies have shown altered expression of several genes involved in 

purine metabolism and abnormal levels of certain purine metabolites in the entorhinal 

cortex, frontal cortex area 8, and precunneus in AD which are region- and stage-

dependent (6). The present study is focused on the assessment of adenosine, 
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hypoxanthine, xanthine, guanosine, and inosine levels as well as on differences in the 

activity of related enzymes 5’-NT, ADA, and PNP in three cortical regions -frontal 

cortex, parietal cortex and temporal cortex- in AD with disease progression and age-

matched controls. 

 

Material and Methods 

 

Human samples 

Human brain samples were obtained from the Institute of Neuropathology HUB-ICO-

IDIBELL Biobank following the Spanish legal regulations (Real Decreto 1716/2011) and 

the approval of the local ethics committee of the Bellvitge University Hospital. Brains of 

patients with AD and age-matched controls were obtained at from 3 to 24 h after death 

and were immediately prepared for morphological and biochemical studies. Special 

attention was paid to minimize limitations related to molecular studies of the post-

mortem brain including combined pathologies, metabolic syndrome, medication that 

could interfere with biochemical studies, long agonic stress, reduced post-mortem 

delay and controlled conditions of temperature and tissue processing as detailed 

elsewhere (27). A slight deterioration of the quality of brain samples is expected to 

dramatically alter signals related to stress in the brain, such as ATP (56) or adenosine 

(30). However, brain samples pH value was not an interfering factor in the present 

study as it has not been related to postmortem delay or time in storage (48). Even 

considering an optimal scenario, restricted sampling conditions imply not acceptance of 

certain cases thus reducing the number of suitable cases for study. 

During autopsy, half of the brain was fixed in formalin, while the other half was cut into 

coronal sections 1 cm thick from which selected areas were dissected and immediately 

frozen on dry ice and stored at -80°C until use. The neuropathological study was 

carried out on formalin-fixed, de-waxed 4-mm thick paraffin sections of the frontal (area 
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8), primary motor, primary sensory, parietal and temporal superior, temporal inferior, 

anterior cingulate, anterior insular, and primary and associative visual cortices; 

entorhinal cortex and hippocampus; caudate, putamen and pallidum; medial and 

posterior thalamus; subthalamus; Meynert nucleus; amygdala; midbrain (two levels); 

pons and medulla oblongata; and cerebellar cortex and dentate nucleus. The sections 

were stained with hematoxylin and eosin, Luxol fast blue-Klüver Barrera, and for 

immunohistochemistry to glial fibrillary acidic protein, CD68, and Iba1 for microglia, β-

amyloid, phosphorylated tau (clone AT8), αβ-crystallin, α-synuclein, TDP-43, and 

ubiquitin. AD-related pathology was categorized following the classification of Braak 

and Braak for neurofibrillary tangle pathology adapted for paraffin sections (simplified 

as stages I-II, III-IV, and V-V) (12), and the phases of Thal (59) for β-amyloid burden. 

Special care was taken to use AD cases with no or minimal co-morbidities to avoid bias 

related to combined pathologies. Cases with added proteinopathies and with vascular 

pathology other than small blood vessel disease were excluded. Cases with infectious 

and inflammatory diseases of the nervous system, and systemic metabolic diseases 

including those linked to chronic ethanol consumption, were not considered suitable in 

the pathological and control groups. Main characteristics of cases are summarized in 

Table 1. 

Fresh frozen samples of the frontal area 8, parietal area 7, and temporal area 21 were 

used in this study for the determination of adenosine, guanosine, hypoxanthine, 

xanthine, and inosine levels, and the enzymatic activity of 5’-nucleotidase, adenosine 

deaminase, and purine nucleotidase phosphorylase. 

 

Membrane and cytosol fractions purification 

Samples were homogenized in 30 volumes of isolation buffer (50 mM Tris HCl, pH 7.4 

containing 10 mM MgCl2 and protease inhibitors) in DOUNCE homogenizer (10xA, 10x 

B). After homogenization, samples were centrifuged for 5 min at 1,000xg in a Beckman 

JA 20 centrifuge (Coulter, Madrid, Spain). Supernatants were recovered and 
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centrifuged for 20 min at 27,000xg, and the resulting pellet (membrane fraction) was 

finally re-suspended in isolation buffer and homogenized again (DOUNCE 

homogenizer, 10xA, 10xB). Cytosol was concentrated in Vivaspin 20 columns (MW cut 

off 3 kDa) (GE Healthcare Life Sciences, UK). Columns were cleaned with Milli-Q water 

and centrifuged for 20 min at 5,000xg. After this, 15 ml of supernatant was added to the 

columns which were then centrifuged for 110 minutes at 5,000xg at 20°C. The eluted 

fraction was lyophilized overnight in Vitris Sentry Benchtop 3L Freeze Drying System. 

This fraction was employed for HPLC analysis. 

Protein concentration was determined with the Lowry method using bovine serum 

albumin as standard. 

 

HPLC procedure 

HPLC reagents 

Stocks of adenosine, guanosine, hypoxanthine, xanthine, and inosine standards were 

prepared at 1 mM with water (HPLC-grade) in a final volume of 100 ml. NaOH (100 µl 

of 1 M) was added to hypoxanthine and xanthine stocks whereas inosine and 

guanosine were heated for optimal homogenization. All purines were from Sigma 

(Madrid, Spain), except adenosine which was from Fluka (Madrid, Spain). Purine 

standards were filtered using a 0.25 µm filter. 

Preparation of standard curves and samples 

The standard curves were obtained using five concentrations of each purine: 500 µM, 

100 µM, 10 µM, 1 µM, and 100 nM. The initial stock was 1 mM and dilutions were 

prepared with water (HPLC-grade). The samples were reconstituted with water (HPLC-

grade) and adjusted to pH between 2 and 3 with 1 M HCl. The final volume of the 

samples was 400 µl. 

HPLC protocol 

Chromatographic analysis was performed with Ultimate 3000 U-HPLC (ThermoFisher, 

Madrid, Spain) and data peaks were processed with Chromaleon 7 (ThermoFisher, 
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Madrid, Spain). HPLC diode array was used working at a 254 nm wavelength. We 

employed a C18 column of 4.6 mm x 250 mm, 5 µm particle size. Volumes of 10 µl 

were injected for the standard and 40 µl for the samples. Two solvents were used for 

gradient elution: solvent A, 20 mM phosphate buffer solution (pH 5.7), and solvent B 

100% methanol. The gradient was initiated at 95% solvent A and 5% solvent B for 11 

min, followed by 80% solvent A and 20% solvent B for 9 min, and finally 95% solvent A 

for 2 min. The total run time was 22 min with a constant flow rate of 0.8 ml/min at 25°C. 

Retention times for hypoxanthine, xanthine, inosine, guanosine, and adenosine were 

3.5, 3.9, 8.4, 9.4, and 15.5 min, respectively. Each purine level was obtained by 

interpolation from the corresponding purine standard curve. Data were then normalized 

using the protein concentration of each sample. 

Determination of protein concentration in HPLC samples 

Protein concentration was measured with Micro BCA Protein Assay (Thermo Scientific, 

Rockford, USA) using bovine serum albumin as a standard. 

 

Measurement of 5’-nucleotidase activity 

5’-NT activity was measured in the membranes and cytosolic fractions. In the cytosol, 

5’-NT activity was determined with one-time measurement of Vmax at a saturated 

concentration of 500 μM AMP. Membranes and cytosol samples (20 μg protein) were 

pre-incubated in 180 μl reaction medium containing 50 mM Tris, 5 mM MgCl2, pH 9, at 

37°C for 10 min. The reaction was initiated by the addition of 20 μl AMP (final 

concentrations, 10 μM-1 mM in the case of membranes and 500 μM in the case of 

cytosol) and stopped after 20 min by adding 200 μl of 10% trichloroacetic acid (TCA). 

The samples were chilled on ice for 10 min and centrifuged at 12,000xg for 4 min at 

4°C. The supernatants were used to measure inorganic phosphate released (20) using 

KH2PO4 as Pi standard. Non-enzymatic hydrolysis of AMP was corrected by adding 

membranes after TCA in order to denaturalize the enzyme. Incubation times and 

protein concentration were selected in order to ensure the linearity of the reactions. All 

This article is protected by copyright. All rights reserved.



9 
 

samples were run in duplicate. Enzyme activity was expressed as nmol Pi released/min 

x mg of protein (46). 

 

Measurement of adenosine deaminase activity 

ADA activity was measured in the cytosol of AD and control samples with the 

commercially available ADA activity assay kit (Abcam, London, UK) following the 

indications of the supplier. This is an assay where inosine formed from the breakdown 

of adenosine is detected via a multi-step reaction, resulting in the formation of an 

intermediate that reacts with an ADA probe to generate a fluorescent product that can 

be quantified at λex / λem of 535/587 nm. The kit measures total activity of Adenosine 

Deaminase with limit of quantification of 10 μU recombinant Adenosine Deaminase. 

ADA activity was calculated as: 

ΔRFU535/587 nm= (RFU2-RFU2BG)-(RFU1-RFU1BG) 

where ΔRFU535/587 nm was used to obtained X pmol of inosine generated by ADA during 

a reaction time ΔT= T2-T1. RFU2BG and RFU1BG represented background values at 

reaction times, and RFU2 and RFU1 were fluorescence values at the same reaction 

times.  

Adenosine deaminase concentration was calculated as:  

𝐴𝐷𝐴 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑋

∆𝑇×𝜇𝑔 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
∗ 𝐷 = pmol/min/µg=µU/µh 

where X was the quantity of inosine extrapolated from the standard curve (pmol), ΔT 

was the reaction time, µg of protein was the quantity of protein put on each well, and D 

the dilution factor of each sample. 

 

Measurement of purine nucleotidase phosphorylase activity 

PNP activity was measured in the cytosol using Purine Nucleoside Phosphorylase 

activity assay kit (Abcam, London, UK) following the indications of the supplier. This is 

an assay where the hypoxanthine formed from the breakdown of inosine is detected via 
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a multi-step reaction, resulting in the generation of an intermediate that reacts with the 

PNP Probe. The fluorescent product is measured at λex / λem of 535/587 nm. Limit of 

quantification is 0.005 µU recombinant PNP. PNP activity was calculated as: 

ΔRFU535/587 nm= (RFU2-RFU2BG)-(RFU1-RFU1BG) 

where ΔRFU535/587 nm was used to obtained Y pmol of hypoxanthine generated by PNP 

during a reaction time ΔT= T2-T1. RFU2BG and RFU1BG represented background values 

at reaction times, and RFU2 and RFU1 were the fluorescence values at the same 

reaction times.  

PNP concentration was calculated as:  

𝑃𝑁𝑃 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑌

∆𝑇×𝜇𝑔 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
∗ 𝐷 = pmol/min/µg=µU/µh 

where Y was the quantity of hypoxanthine extrapolated from standard curve (pmol), ΔT 

was the reaction time, µg of protein was the quantity of protein put on each well, and D 

the dilution factor of each sample.  

 

Statistical analysis 

Data were analyzed with GraphPad Prism 6.0 program (GraphPad Software, San 

Diego, CA, USA). Differences between mean values of two groups (control and AD) 

were studied with Student’s t-test. The difference between mean values of three or 

more groups (control and AD stages) was evaluated with ANOVA-Fisher’s LSD post-

test; p<0.05 was considered significantly different. Regarding nucleotidase activities, 

the KM and Vmax values were calculated using a nonlinear Michaelis-Menten curve and 

analyzed using unpaired two-tailed Student’s t-test or ANOVA-Fisher’s LSD post-test 

test; p<0.05 was considered significantly different. Pearson r correlation coefficients 

and corresponding P values were obtained by Correlation analysis. 

 

Results 
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Nucleotide measurement in frontal, parietal, and temporal cortex 

Adenosine, guanosine, hypoxanthine, xanthine, and inosine were determined in the 

frontal, parietal, and temporal cortices in control and total AD cases. To study 

Alzheimer’s progression, AD samples were further divided in three groups, initial (I-II), 

intermediate (III-IV), and advanced (V-VI) stages of NFT degeneration. 

Adenosine was significantly decreased in the frontal cortex in AD (9.22 ± 1.91 pmol/µg 

prot, p<0.001) compared with control cases (24.97 ± 5.21 pmol/µg prot). Lower levels 

were observed at stages I-II (3.85 ± 3.39 pmol/µg prot, p<0.01) when compared to 

intermediate (9.76 ± 1.03 pmol/µg prot, p<0.05) and advanced stages (11.91 ± 4.21 

pmol/µg prot, p<0.05). In contrast, adenosine levels were increased in the parietal 

(85.15 ± 7.77 pmol/µg prot, p<0.05) and temporal (73.88 ± 7.60 pmol/µg prot, p<0.05) 

cortices in AD compared with corresponding controls (55.45 ± 7.97 and 44.56 ± 5.65 

pmol/µg prot, respectively). Comparing the adenosine level in control cases in the three 

different brain areas we can observe a lower level in frontal cortex (24.97 ± 5.21 

pmol/µg prot) than in parietal (55.45 ± 7.97 pmol/µg prot) and temporal (44.56 ± 5.65 

pmol/µg prot) cortices (Figure 2). 

Guanosine levels were not significantly altered in the frontal cortex in AD cases when 

compared with controls. Only reduction in the levels of guanosine was found in frontal 

cortex at early stages (AD I-II: 69.03 ± 18.51 vs C: 166.29 ± 22.40 pmol/µg prot, 

p<0.05). In contrast, guanosine levels in AD were increased in the parietal cortex (AD: 

144.20 ± 14.27 vs C: 90.22 ± 13.30 pmol/µg prot, p<0.05) and temporal cortex (AD: 

146.20 ± 11.40 vs C: 73.80 ± 9.00 pmol/µg prot, p<0.01). In the parietal cortex, higher 

values were observed at advanced stages (AD V-VI: 170.50 ± 40.34 pmol/µg prot, 

p<0.05), whereas in the temporal cortex they were significantly increased at early (AD 

I-II: 158.30 ± 10.35 pmol/µg prot, p<0.01) and advanced (AD V-VI: 154.70 ± 30.15 

pmol/µg prot, p<0.01) stages of the disease (Figure 2). Contrary to adenosine control 

values, guanosine level in control frontal cortex (166.29 ± 22.40 pmol/µg prot) was 
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higher than in the parietal (90.22 ± 13.30 pmol/µg prot) and temporal (73.80 ± 9.00 

pmol/µg prot) cortices. 

Hypoxanthine levels were decreased only in the frontal cortex at early stages of AD-

related pathology (AD I-II: 1901 ± 683 vs C: 3534 ± 408 pmol/µg prot, p<0.05). No 

modifications were identified in the parietal and temporal cortices (Figure 2). 

Xanthine levels were decreased in frontal cortex at early stages of AD-related 

pathology (AD I-II: 1290 ± 439 vs C: 2374 ± 219 pmol/µg prot, p<0.01) which resulted 

in a decrease of xanthine levels in total AD (AD: 1888 ± 181 pmol/µg prot, p<0.05) 

when compared with controls. No differences were observed in the parietal and 

temporal cortices (Figure 2). 

Inosine levels were not significantly altered in the frontal cortex in AD. Increased levels 

were found in AD parietal cortex (AD: 1083 ± 99 vs C: 735 ± 93 pmol/µg prot, p<0.05) 

and AD temporal cortex (AD: 1030 ± 86 vs C: 610 ± 82 pmol/µg prot, p<0.01) when 

compared with controls. Values were higher at advanced stages in the parietal cortex 

(AD V-VI: 1260 ± 280 pmol/µg prot, p<0.05), and at early (AD I-II: 1133 ± 84 pmol/µg 

prot, p<0.01) and advanced (AD V-VI: 1075 ± 226 pmol/µg prot, p<0.05) stages in the 

temporal cortex (Figure 2). 

 

Enzymatic activities 

5’-Nucleotidase (5’-NT), adenosine deaminase (ADA), and purine nucleoside 

phosphorylase (PNP) activities were measured in the same frontal, temporal, and 

parietal cortex of AD and control samples used for nucleotide assessment. 

 

5’-NT activity in membrane 

Prior to the 5’-NT activity assessment, the possible contribution of alkaline 

phosphatase to the conversion of AMP into adenosine was evaluated. To this end, the 

hydrolysis of 500 µM AMP was assayed in the absence or the presence of 100 µM 

levamisole, a specific inhibitor of alkaline phosphatase, using both control and AD 
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samples from different membrane and cytosol preparations. No significant differences 

were found after comparing results obtained in the absence or the presence of the 

inhibitor which allow to suggest that alkaline phosphatase did not participate in AMP 

hydrolysis under our conditions (Figure 3). 

5’-NT activity was measured at different concentrations of AMP (10 μM to 1 mM) and 

the results indicated that this activity increased with increasing AMP concentrations 

until saturation. Data were fitted to Michaelis-Menten model with a non-linear 

regression and the corresponding Vmax and KM values were obtained. Reduced Vmax 

and KM values were found in frontal cortex in AD compared with control cases (Vmax 

AD: 0.019 ± 0.002 vs C: 0.034 ± 0.004 nmol Pi/mg prot · min, p<0.01; KM AD: 56.8 ± 

7.2 vs C: 152.7 ± 34.7 µM, p<0.01). Significant decreased Vmax and KM values occurred 

through all disease stages. No significant differences in parietal or temporal cortices 

were found in AD (Figure 4). 

 

5’-NT activity in cytosol 

In the frontal cortex, cytosolic 5’-NT activity was significantly decreased in the AD 

group, mainly at early stages of NFT pathology with respect to control cases (AD: 

0.009 ± 0.001 vs C: 0.014 ± 0.002 nmol Pi/mg prot · min, p<0.05). No other significant 

modifications were observed in parietal cortex, but decreased 5’-NT activity occurred in 

the temporal cortex at advanced stages of AD (AD V-VI: 0.007 ± 0.001 vs C: 0.013 ± 

0.001 nmol Pi/mg prot · min, p<0.05) (Figure 4). 5’-NT activity measured in the present 

work was not associated to postmortem delay neither in membrane nor cytosolic 

fractions (Figure 5). 

 

ADA activity 

ADA activity was significantly decreased in the frontal cortex in AD cases (AD: 27.25 ± 

3.00 vs C: 36.78 ± 3.65 pmol/ µg prot · min, p<0.05), but increased in the temporal 

cortex in AD (AD: 38.21 ± 9.17 vs C: 17.69 ± 2.06 pmol/ µg prot · min, p<0.05), mainly 
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at early stages (AD I-II: 57.92 ± 20.98 pmol/ µg prot · min, p<0.05), with no significant 

differences between AD stages. No modifications in ADA activity were noted in the 

parietal cortex in AD cases (Figure 6A). ADA activity was not associated to postmortem 

delay neither in membrane nor cytosolic fractions (Figure 6B). 

 

 

PNP activity 

PNP activity did not show significant differences between control and AD cases in 

frontal or parietal cortices. PNP activity was significantly increased in the temporal 

cortex at early stages of AD with respect to control cases (AD I-II: 24.39 ± 9.71 vs C: 

9.26 ± 1.43 pmol/ µg prot · min, p<0.05) (Figure 7A). ADA activity was not associated 

to postmortem delay neither in membrane nor cytosolic fractions (Figure 7B). 
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Discussion 

Previous experiments have determined that nucleoside concentrations are unevenly 

distributed in different human brain areas (15, 40, 41, 43). For instance, similarly to our 

results, adenosine was found at lower levels in frontal than in parietal (42) or temporal 

(41) cortex in control human brain samples. In turn, guanosine in frontal cortex has 

higher levels than in parietal or temporal cortex. Although we have no detailed 

information to fully explain regional differences in controls in the present study, the 

different regional activity of enzymes related to purines metabolism could be involved 

(41). On the other hand, a comparative study reported that levels of hypoxanthine and 

adenosine are lower in human brain samples (ca. 6 times) as compared to those in rat 

brain. Levels of xanthine and inosine are slightly higher in rat (ca. 2 times) than in 

human brain, while the guanosine level is 2 times higher in human brain (44). 

 

Levels of purines have been assessed in the CSF in AD (33, 35, 36). Levels of cGMP 

but not of cAMP are decreased in AD (60). Altered levels of methionine, tryptophan, 

and products of tyrosine pathway together with increased xanthine and hypoxanthine 

co-relate with mild cognitive impairment in AD-related cohorts (36). Other studies show 

no changes in hypoxanthine but increased levels of xanthine in the CSF in AD (22). 

Although metabolomics in combination with other measurements can be useful to 

identify biomarkers of disease progression (49), determinations in the CSF and 

peripheral blood do not necessarily reflect molecular events in particular brain regions. 

 

Previous studies in AD, showed deregulation with regional variations of adenine 

phosphoribosyltransferase, deoxyguanosine kinase, RNA polymerase III subunit B, 

ENTPD3, AK5, NME1, NME3, NME5, NME7 and ENTPD2 messenger RNAs (6). In 

addition, liquid chromatography mass spectrometry-based metabolomics in the 

entorhinal cortex identified altered levels of dGMP, glycine, xanthosine, inosine 
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diphosphate, guanine, and deoxyguanosine (6). Purine metabolism has been reported 

to be deregulated in patients with major depression, and certain purines exhibit 

antidepressant properties (2, 7, 38, 39). AD cases in the present series did not have 

major depressive disease. However, the locus coeruleus and the raphe nuclei of the 

brain stem, major sources of noradrenergic and serotoninergic innervations to the 

hippocampus, amygdala and neocortex respectively, are altered at early stages of AD-

related pathology (4, 13). Accordingly, it has been hypothesized that depression in the 

elderly and AD can be linked, at least in part, to AD-related pathology in selected nuclei 

of the brainstem (4). 

 

The present observations reveal three important general aspects. The first of these 

concerns regional variations: 1. the frontal cortex is the most affected area in AD-

related pathology, showing significantly decreased levels of adenosine, guanosine, 

hypoxanthine, and xanthine, and a tendency of inosine to decrease; and 2. parietal 

cortex and temporal cortex show an opposing pattern when compared with the frontal 

cortex, as adenosine, guanosine, and inosine are significantly increased at least at 

defined stages of AD whereas hypoxanthine and xanthine levels do not show 

differences in AD-related pathology when compared with controls. The second point 

concerns adenosine as the purine most commonly affected in all regions: adenosine 

levels are altered, although in opposing directions, in frontal cortex, and parietal and 

temporal cortex, followed by guanosine and inosine. 

 

Regarding enzyme activities, 5’-NT Vmax value is reduced in membranes and cytosol in 

frontal cortex but not in parietal cortex, and only at advanced stages in cytosol in 

temporal cortex. ADA activity is decreased in AD when considered as a whole 

compared with controls but increased at early stages of AD-related pathology in 

temporal cortex. Finally, PNP activity is increased only in the temporal cortex at early 

stages of AD-related pathology. Adenosine, guanosine, and inosine can be generated 
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from AMP, GMP, and IMP, respectively, through the action of 5’-NT. Decreased 5’-NT 

activity in frontal cortex correlates with decreased levels of these metabolites (although 

not significant for inosine) in this region in AD cases. Levels of adenosine, guanosine, 

and inosine in parietal cortex and temporal cortex do not relate to 5’-NT in these 

regions. Significantly decreased Vmax and KM values occurred through all disease 

stages. No significant differences in parietal or temporal cortices were found in AD 

(Figure 3). These results have to be interpreted with care, because 5’-NT, a glycosyl 

phosphatidylinositol-anchored membrane protein, is a dissociation-sensitive enzyme 

(18, 62, 64). However, it has been previously demonstrated, by means of artificial 

postmortem delay experiments, that ecto-nucleotidase activity in human brains was 

stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations 

(3). In agreement, 5’-NT activity measured in the present work was not associated to 

postmortem delay neither in membrane nor cytosolic fractions. As the efficiency of the 

enzyme is defined as (Vmax/[E]total) / KM, 5’-NT enzyme efficiency could be altered due to 

the lower Vmax and the lower KM found in AD cases versus controls. 

 

It may be speculated that reduced levels of adenosine in frontal cortex in AD underlie 

increased expression and activity of adenosine A1 receptors previously described in 

this region throughout disease progression (1). 

 

Adenosine is transformed into inosine by ADA (11). Therefore, changes in inosine can 

be linked to alterations of adenosine. Inosine decrease in frontal cortex and decrease 

in parietal and temporal cortex in AD has the same pattern as that seen for adenosine 

in these regions. However, ADA activity is not significantly decreased in frontal cortex 

and significantly increased only in temporal cortex in the present series. Activity of 

adenosine monophosphate deaminase, another enzyme involved in inositol synthesis, 

is increased in the temporal cortex in soluble and membrane fractions in AD (58). 
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PNP catalyzes the conversion of inosine to hypoxanthine and the degradation of 

guanosine to guanine (9). Therefore, changes in PNP can produce changes in 

hypoxanthine and guanine levels. PNP activity is increased in temporal cortex at 

advanced stages of AD-related pathology; however, hypoxanthine level are not altered 

in temporal cortex and is decreased in frontal cortex at early stages of AD-related 

pathology. Finally, xanthine is obtained from oxidation of hypoxanthine by xanthine 

oxidase (11). Levels of hypoxanthine correlate with xanthine in the frontal, parietal, and 

temporal cortices in the present series. 

 

The third important point identified in this study is the early alteration of purine levels 

and enzymatic activity in different regions of the three cerebral cortices at stages in 

which there is no evidence of NFT pathology or β-amyloid deposition in neocortex 

(Braak stages I-III; Thal phases 0). Reduced levels of adenosine, guanosine, 

hypoxanthine, and xanthine, and a tendency toward decrease of inosine, occur at 

stages I-II of NFT pathology in which tau aggregates in the cerebral cortex are limited 

to the entorhinal and transentorhinal cortices and discrete neurons in the hippocampus. 

Importantly, adenosine, guanosine, and inosine are increased in the temporal cortex, 

as is adenosine in the parietal cortex during the same early stages. Moreover, 5’-NT 

and ADA activities are reduced in frontal cortex at stages I-II. 

 

The present findings are descriptive and do not contemplate possible functional 

implications. Nor do they pretend to explore the pathogenesis of the disease deeply. 

However, they show 1: alterations of purine metabolism in the cerebral cortex at early 

stages of AD-related pathology which are independent of NFTs and β-amyloid plaques; 

2: alterations which are stage- and region-dependent, the latter showing opposite 

patterns in frontal cortex compared with parietal cortex and temporal cortex; 3: 

adenosine to be the most vulnerable member of the group of assessed purines; and 4: 
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variable correspondence between metabolite levels and enzymes involved in their 

synthesis. 

 

These observations point to the likely implications of these particular patterns in the 

analysis and interpretation of purine modifications in CSF as possible biomarkers in AD 

and other neurodegenerative diseases. 
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Figure legends 

 

Table 1: Summary of the cases; M: male; F: female; P-M delay: postmortem delay 

between death and tissue processing; FC: Frontal cortex; PC: parietal cortex; TC: 

temporal cortex; NFT stage: Braak stage of neurofibrillary tangle pathology; Thal: 

phases of β-amyloid plaques (plaque distribution). 

 

Figure 1: Purine metabolic pathway. E-NTPDases: ecto-nucleoside tri-phosphate 

diphosphohydrolases; PD, ectophosphodiesterase; ADA: adenosine deaminase; 

SAHH: S-adenosyl homocysteine hydrolase; SHMT: S-adenosyl methyl transferase; 

PNP: purine nucleoside phosphorylase; HGPRT: hypoxanthine-guanine 

phosphoribosyl transferase (modified from (57)). 

 

Figure 2: Adenosine, guanosine, hypoxanthine, xanthine, and inosine levels in frontal 

cortex (FC), parietal cortex (PC), and temporal cortex (TC) in control (C) and cases 

with AD-related pathology (AD) at early (AD I-II), intermediate (AD III-IV), and 

advanced (AD V-VI) stages of NFT pathology. Values are expressed as mean ± SEM. 

*p<0.05, **p<0.01 and ***p<0.001 according to ANOVA - Fisher’s LSD test. 

 

Figure 3: Contribution of Alkaline Phosphatase to measured 5’-Nucleotidase (5’-NT) 

activity. Presence of 100 µM levamisole, a selective alkaline phosphatase inhibitor, 

during the assay determining 5’-NT activity did not modify the activity of 5’-NT neither in 

membranes nor cytosolic fraction. 

 

Figure 4: 5’-Nucleotidase (5’-NT) activity in membranes and in cytosol in the frontal 

cortex (FC), parietal cortex (PC), and temporal cortex (TC) in control (C) and cases 
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with AD-related pathology (AD) at early (AD I-II), intermediate (AD III-IV), and 

advanced (AD V-VI) stages of NFT pathology. 5’-NT activity was determined by fitting a 

Michaelis Menten model using a non-linear regression. Values are expressed as mean 

± SEM. *p<0.05 and **p<0.01 significantly different from the control value according to 

ANOVA - Fisher’s LSD test. 

 

Figure 5: Correlation analysis between 5’-Nucleotidase activity and postmortem delay 

values. 5’-NT activity in membranes and in cytosol from the frontal, parietal and 

temporal cortices of control and cases with AD-related pathology (Figure 4). r: 

Pearson’s correlation coefficient. P: P value. Straight line: linear regression fit of 5´-NT 

activity value. 

 

Figure 6: Adenosine deaminase analysis. A. ADA activity in the frontal cortex (FC), 

parietal cortex (PC), and temporal cortex (TC) in control (C) and cases with AD-related 

pathology (AD) at early (AD I-II), intermediate (AD III-IV), and advanced (AD V-VI) 

stages of NFT pathology. Data are mean ± SEM. *p<0.05 significantly different from the 

control value, according to ANOVA - Fisher’s LSD test. B. Correlation analysis between 

ADA activity and postmortem delay values. r: Pearson’s correlation coefficient. P: P 

value. Straight line: linear regression fit of ADA activity value. 

 

Figure 7: Purine nucleotide phosphorylase analysis. A. PNP activity in the frontal 

cortex (FC), parietal cortex (PC), and temporal cortex (TC) in control (C) and cases 

with AD-related pathology (AD) at early (AD I-II), intermediate (AD III-IV), and 

advanced (AD V-VI) stages of NFT pathology. Data are mean ± SEM. *p<0.05 

significantly different from the control value, according to ANOVA - Fisher’s LSD test. 

B. Correlation analysis between PNP activity and postmortem delay values. r: 

Pearson’s correlation coefficient. P: P value. Straight line: linear regression fit of PNP 

activity value. 
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Case 
number 

Gender Age p-m delay NFT 
stage 

Thal 
phase 

FC PC TC 

1 M 70 13h 0 0 � � � 

2 F 80 21h 0 0 � � � 

3 M 79 7h 0 0 � �  

4 F 66 8h 0 0 � � � 

5 M 48 12h 0 0 �  � 

6 F 65 4h 0 0 �   

7 F 80 3h 30min 0 0 �   

8 M 53 3h 0 0 �   

9 F 46 20h 0 0 �   

10 M 63 17h 0 0 �   

11 F 81 4h 0 0  �  

12 M 71 12h 0 0  � � 

13 F 71 8h 30min 0 0  �  

14 F 69 2h 30min 0 0  � � 

15 M 67 20h 0 0  � � 

16 M 78 19h 0 0  � � 

17 M 80 13h I 0 �   

18 M 85 12h I 0 �   

19 F 79 3h 30min I 0  � � 

20 F 79 6h 30min I 0  � � 

21 F 79 4h 45min I 0  � � 

22 M 72 10h II 0 �   

23 F 97 13h II 0 �   

24 M 71 5h 15min II 0  � � 

25 M 76 4h 15min II 0  � � 

26 M 85 3h 45min II 0  � � 

27 M 75 7h 30min II 0  � � 

28 M 74 24h III 1 �   

29 F 81 14h III 1 �   

30 F 71 6h 45min III 1  � � 

31 M 85 14h IV 1 �   

32 F 82 5h IV 1 �   

33 F 82 10h IV 2 �   

34 F 69 8h IV 2  � � 

35 F 81 5h IV 2  � � 

36 M 64 16h 30min IV 2   � 

37 M 79 5h IV 2  �  

38 F 86 10h V 3 �   

39 M 69 6h V 3 �   

40 F 78 19h V 3 �   

41 M 93 7h 30min V 3 �   

42 M 69 20h  V 3 �   

43 M 93 3h V 3  � � 

44 F 96 17h 30min V 3  � � 

45 F 81 5h 15min V 3  � � 

46 F 56 7h VI 3  � � 

47 F 86 2h 15min VI 4  � � 
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Figure 1: Purine metabolic pathway. E-NTPDases: ecto-nucleoside tri-phosphate diphosphohydrolases; PD, 
ectophosphodiesterase; ADA: adenosine deaminase; SAHH: S-adenosyl homocysteine hydrolase; SHMT: S-

adenosyl methyl transferase; PNP: purine nucleoside phosphorylase; HGPRT: hypoxanthine-guanine 

phosphoribosyl transferase (modified from (57)).  
 

This article is protected by copyright. All rights reserved.



  

 

 

Figure 2: Adenosine, guanosine, hypoxanthine, xanthine, and inosine levels in frontal cortex (FC), parietal 
cortex (PC), and temporal cortex (TC) in control (C) and cases with AD-related pathology (AD) at early (AD 
I-II), intermediate (AD III-IV), and advanced (AD V-VI) stages of NFT pathology. Values are expressed as 

mean ± SEM. *p<0.05, **p<0.01 and ***p<0.001 according to ANOVA - Fisher’s LSD test.  
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Figure 3: Contribution of Alkaline Phosphatase to measured 5’-Nucleotidase (5’-NT) activity. Presence of 100 
µM levamisole, specific alkaline phosphatase inhibitor, during 5’-NT determination assay did not modify 

measured activity neither in membranes nor cytosolic fraction.  
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Figure 4: 5’-Nucleotidase (5’-NT) activity in membranes and in cytosol in the frontal cortex (FC), parietal 
cortex (PC), and temporal cortex (TC) in control (C) and cases with AD-related pathology (AD) at early (AD 

I-II), intermediate (AD III-IV), and advanced (AD V-VI) stages of NFT pathology. 5’-NT activity was 

determined fitted to a Michaelis Menten model using non-linear regression. Values are expressed as mean ± 
SEM. *p<0.05 and **p<0.01 significantly different from the control value according to ANOVA - Fisher’s LSD 

test.  
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Figure 5: Correlation analysis between 5’-Nucleotidase activity and postmortem delay values. 5’-NT activity 
in membranes and in cytosol from the frontal, parietal and temporal cortices of control and cases with AD-
related pathology (Figure 4). r: Pearson’s correlation coefficient. P: P value. Straight line: linear regression 

fit of 5´-NT activity value.  
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Figure 6: Adenosine deaminase analysis. A. ADA activity in the frontal cortex (FC), parietal cortex (PC), and 
temporal cortex (TC) in control (C) and cases with AD-related pathology (AD) at early (AD I-II), 

intermediate (AD III-IV), and advanced (AD V-VI) stages of NFT pathology. Data are mean ± SEM. *p<0.05 

significantly different from the control value, according to ANOVA - Fisher’s LSD test. B. Correlation analysis 
between ADA activity and postmortem delay values. r: Pearson’s correlation coefficient. P: P value. Straight 

line: linear regression fit of ADA activity value.  
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Figure 7: Purine nucleotide phosphorylase analysis. A. PNP activity in the frontal cortex (FC), parietal cortex 
(PC), and temporal cortex (TC) in control (C) and cases with AD-related pathology (AD) at early (AD I-II), 
intermediate (AD III-IV), and advanced (AD V-VI) stages of NFT pathology. Data are mean ± SEM. *p<0.05 

significantly different from the control value, according to ANOVA - Fisher’s LSD test. B. Correlation analysis 
between PNP activity and postmortem delay values. r: Pearson’s correlation coefficient. P: P value. Straight 

line: linear regression fit of PNP activity value.  
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