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Abstract

This work presents two important subjects of modern mathematics, Lie Groups and
semi-Riemannian Geometry, and shows a beautiful theorem that arises as a combination
of both matters: the isometry group of a semi-Riemannian manifold is a Lie group. The
structure of the proof presented is as follows. First, we introduce a theorem by Palais [1],
which gives a sufficient condition for a group G of diffeomorphisms acting on a smooth
manifold M to be a Lie group: that the set of all vector fields on M which generate global
1-parameters subgroups of G generates a finite-dimensional Lie algebra. Then we show
that this result can be applied to the isometry group of semi-Riemannian manifolds, by
proving that the set of all complete Killing vector fields generates a finite-dimensional Lie
algebra.

Resum

Aquest treball presenta dos temes importants de la matemàtica moderna, els Grups
de Lie i la Geometria semi-Riemanniana, i mostra un bonic teorema que en sorgeix com
a combinació: el grup d’isometries d’una varietat semi-Riemanniana és un grup de Lie.
L’estructura de la demostració seguida és la següent. Primer, introduïm un resultat per
Palais [1], que dóna una condició suficient per tal que un grup de difeomorfismes G que
actua sobre una varietat diferenciable M sigui un grup de Lie: que el conjunt de tots
els camps vectorials de M que generen subgrups globals uniparamètrics de G genera
un àlgebra de Lie de dimensió finita. A continuació apliquem aquest resultat al grup
d’isometria de varietats semi-Riemannianes, demostrant que l’àlgebra de Lie generada
pels camps Killing complets té dimensió finita.

2010 Mathematics Subject Classification. 22E15, 22F50, 53B20, 53B30, 53C22, 53C50.



Introduction

The main goal of this work is to prove that the isometry group of a semi-Riemannian
manifold is a Lie group, and to do so in a self-contained way, assuming no prior knowl-
edge of Lie Group Theory or Semi-Riemannian Geometry on the part of the reader. Fa-
miliarity with Topology, Abstract Algebra, Euclidean Geometry, and Multivariable Calcu-
lus is expected, as they are subjects usually covered in any undergraduate Mathematics
program, but nevertheless we include an appendix with some important results for com-
pleteness, as this text may also be of interest to theoretical physicists with weaker training
on abstract mathematics. Not included in the appendix but also necessary for the under-
standing of some vital results are the Existence and Uniqueness Theorems for initial value
problems of ordinary differential equations. As for Differential Geometry, it is covered on
the first chapter of this work. However, some acquaintance with the subject is expected
too, so a few proofs shall be skipped or sketched for the sake of brevity.

The motivations behind this work are manifold. First, to give a concise yet wide enough
presentation on the subjects of Lie Groups and semi-Riemannian Geometry, while show-
ing a beautiful combination of their results. Both subjects are of utmost value in modern
mathematics and theoretical physics, yet unluckily not covered enough during undergrad-
uate training besides some low-dimensional Riemannian Geometry. On the one hand, Lie
groups are manifolds endowed with a group structure compatible with the smooth man-
ifold structure. From this combination of structures arise powerful geometrical results.
Moreover, Lie Groups have an infinitesimal counterpart, their Lie algebras, which allow
one to study Lie groups from a local and linearized point of view. On the other hand,
semi-Riemannian Geometry deals with manifolds furnished with a metric tensor of arbi-
trary index. A metric tensor is a smooth choice of a scalar product (i.e. a symmetric non-
degenerate bilinear form) on each tangent space of the manifold. Hence, semi-Riemannian
Geometry includes Riemannian Geometry as the particular case in which the metric tensor
is required to be positive-definite, in addition to the properties stated above.

Our second motivation is to introduce the notion of isometry in a broad sense, whilst
also highlighting its importance. Linear isometries of Rn (seen as an inner product vector
space) are isomorphisms which preserve distances and angles between vectors. Gener-
alizing this concept to semi-Riemannian Geometry, it translates to isometries being dif-
feomorphisms of semi-Riemannian manifolds which preserve the metric tensor. Hence,
isometric manifolds are equivalent from the point of view of semi-Riemannian Geometry,
since also all concepts that derive from the metric, such as geodesics and curvature, are
preserved. The set of all isometries of a semi-Riemannian manifold is easily seen to form
a group under the composition operation. It is also straightforward to give it a natural
topology which turns it into a topological group: the compact-open topology.

Our last goal, but not the least important, is to present a complete and self-contained
proof of the fact that the isometry group of a semi-Riemannian manifold has the structure
of a Lie group. Again, this result is a generalization of the known result on Rn. Seen
as an inner product vector space, the linear isometries of Rn form the orthogonal group
O(n,R). This group consists of rotations, and rotations composed with a reflection; and it
is a Lie group. Therefore, it is only natural to ask if the set of all isometries of any semi-
Riemannian manifold has a natural Lie group structure compatible with the compact-open
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topology, and in this work we shall prove that indeed that is the case. It is not a trivial
matter, as the proof requires sound knowledge on both Lie groups and semi-Riemannian
manifolds. Therefore, graduate level books on semi-Riemannian geometry usually only
give the statement of the theorem, without a proof and, similarly, books devoted mainly
to Lie groups do not present enough semi-Riemannian geometry to prove the theorem
either. There are of course notable exceptions, such as Michor’s [2] Topics in differential
geometry, but they are deeper books for the advanced reader.

The first general result on isometry groups of semi-Riemannian manifolds was pub-
lished by Myers and Steenrod in 1939 [3]. They proved a particular case of the theorem
we present: the isometry group of a Riemannian manifold, that is, a manifold with a
positive-definite metric tensor, is a Lie group. Their proof is based on one of the many
beautiful properties which hold for Riemannian manifolds but cannot be generalized to
metrics with arbitrary index: Riemannian manifolds can be described as metric spaces
by defining a notion of distance, and the topology the manifold gets as a metric space
coincides with the one it already has as a differentiable manifold. The distance between
two points is defined as the infimum of the length of curves joining both points. In order
to prove their result, Myers and Steenrod showed that (Riemannian) isometries defined as
diffeomorphisms preserving the metric tensor are equivalent to (metric space) isometries
defined as diffeomorphisms preserving distance.

Generalizing the result of Myers and Steenrod, in 1953 Nomizu [4] proved that the
group of transformations of a differentiable manifold which preserve an affine connection
is a Lie group, by applying a version of Myers and Steenrod’s theorem to the bundle of
linear frames of such manifold. This result by Nomizu already proves our goal, since
every semi-Riemannian manifold has a unique affine connection associated, called the
Levi-Civita connection. However, we will take a different path.

Finally, in 1957, Palais [1] obtained a beautiful general theorem from which these re-
sults and many others related can be derived: Let G be a group of diffeomorphisms of a
differentiable manifold M. Let S be the set of vector fields which generate global 1-parameter sub-
groups of transformations in G. If S generates a finite dimensional Lie algebra, then G is a Lie
group. The proof was presented by Palais on a booklet of over a hundred pages, which is
one of the reasons many modern books prefer to skip it. However, there is an excellent
1963 paper by Chu and Kobayashi [5] wherein the authors review many results concern-
ing groups of transformations of a manifold. It includes a short, self-contained proof of
the theorem of Palais, from which they derive all other results. Kobayashi then wrote a
book [6] on transformation groups in 1972, again concerning this subject, which we will
use as a reference on this matter.

Our path shall be the following. After presenting some basic notions of Differential
Geometry in an introductory chapter, we then move on to Lie groups. Special attention
is given to the definition of the exponential map, as it is one of the most important fea-
tures of Lie Group Theory, and it is a fundamental tool we will need. The final part of
the chapter on Lie groups presents their application as transformation groups, that is, Lie
groups that act smoothly on a differentiable manifold. The last result of this section is
the aforementioned theorem of Palais, presented with an extended version of Kobayashi’s
proof. The third chapter deals with semi-Riemannian geometry. It is not meant to be a
complete account of the matter, and so only those results necessary for our goal are pre-
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sented in detail. The final chapter is entirely devoted to isometries and their infinitesimal
counterparts: Killing vector fields. We will prove that the flow of a Killing vector field is
a 1-parameter group of isometries, and that every 1-parameter group of isometries is the
flow of a given Killing vector field. Afterwards, we shall see that the set of all complete
Killing vector fields generates a finite dimensional Lie algebra, which will allow us to use
Palais’ result, concluding that the isometry group of a semi-Riemannian manifold is a Lie
group. We end this work by showing some interesting examples and further results on
isometries.

Notation

We will denote the set of real numbers by R. If n > 0 is a natural number, let Rn =

R× n· · · ×R = {(a1, ..., an) | ai ∈ R, i = 1, ..., n}.
The canonical coordinate functions for Rn will be denoted by the function ri : Rn → R,

defined by ri(a1, ..., an) = ai.
Let U ⊆ Rn, V ⊆ Rm be open sets. We say that a map f : U → V is smooth (or C∞) if

all of the partial derivatives ∂k f /∂ri1 · · · ∂rik exist and are continuous.
We will use Einstein’s summation convention: whenever a mathematical expression

carries a repeated index, one as a super-index and the other as a sub-index, a summation
must be understood. For example, XiYi = ∑i XiYi, or gijgij = ∑i,j gijgij.



Chapter 1

Differentiable Manifolds

Differential Geometry is the combination of calculus, multilinear algebra and geometry
that allows us to generalize concepts such as differentiation, curve, or vector; from Rn

to a geometrical object called a manifold. A manifold is essentially a space which is
locally similar to an Euclidean space, so that it can be mapped, and which has enough
structure so that the concepts mentioned above can be carried over, in a way that they are
coordinate independent. Manifold theory is devoted to the study of such objects with no
other structure, and mainly to the properties which are invariant under diffeomorphisms.

Later on we will want to add additional structure to these objects. A manifold equipped
with a group structure smoothly compatible to the manifold structure will be a Lie group,
as we will see in Chapter 2; and in Chapter 3 a manifold furnished with a metric tensor
will become a semi-Riemannian manifold.

In this chapter we will present some basic notions of differentiable geometry. Some
familiarity with the subject is expected, even if its only on low-dimensional submanifolds
of R3, as we will skip some proofs for the sake of brevity. We refer the reader with no
such previous knowledge to [7]. The main references for this chapter are [2], [8], [9], and
[10], although the style followed is more similar to that of the introductory chapters of
[11] and [12], which is more straightforward.

1.1 Basic Definitions

Let M be a topological space.

Definition 1.1. A chart on M is a pair (U, ϕ) where U ⊆ M is open and ϕ : U → ϕ(U) ⊆ Rn

is a homeomorphism of U onto an open subset ϕ(U) of Rn.
We say that charts (U, ϕ) and (V, ψ) are C∞-related if whenever U∩V 6= 0, the maps (ϕ ◦ψ−1) :
ψ(U ∩V)→ ϕ(U ∩V) and (ψ ◦ ϕ−1) : ϕ(U ∩V)→ ψ(U ∩V) are C∞.

Definition 1.2. An atlas Ψ on M is a collection of charts Ψ = {(Uα, ϕα)} such that {Uα} is
an open cover of M and every pair of charts is C∞-related. A differentiable structure on M is
an atlas Φ which is maximal: if a chart (V, ψ) is C∞-related to every chart (Uα, ϕα) ∈ Φ, then
also (V, ψ) ∈ Φ. The functions xi = ri ◦ ϕ, where ri = Rn → R denote the canonical coordinate
functions ri(a1, ..., an) = ai, are called the coordinate functions on U for ϕ.

1



2 Differentiable Manifolds

Proposition 1.3. Let Ψ be an atlas on M. Then, there exists a unique differentiable structure Φ
on M such that Ψ ⊆ Φ.

Proof. Φ = {(U, ϕ) chart on M | (U, ϕ) is C∞-related to every chart in Ψ}.

Definition 1.4. A smooth manifold of dimension n is a pair (M, Φ) of a second countable
Hausdorff topological space M and a differentiable structure Φ on M such that each chart in Φ
takes its values in Rn.

Indistinctly we will talk about smooth manifolds, C∞-manifolds, differentiable mani-
folds, or simply, manifolds. Smoothness will be always implied. A differentiable structure
will be always implied too, even if it is not specified. We could have relaxed the def-
inition by only asking for Cr-differentiability, or by dropping the Hausdorff or second
countability requirements, but such manifolds are uncommon and harder to deal with.
For example, the fact that every smooth manifold admits a Riemannian metric is a direct
consequence of second countability and the Hausdorff condition, through the existence of
partitions of unity. In summary, whenever we talk about a manifold M, we will mean a
second countable Hausdorff smooth manifold (M, Φ).

Remark 1.5. Notice that in order to specify a differentiable structure on M, one need only
specify an atlas on M. Proposition 1.3 directly gives us the differentiable structure.

Remark 1.6. Open subsets V of a manifold (M, Φ) are also smooth manifolds, with dif-
ferentiable structure ΦV = {(Uα ∩ V, φα|Uα∩V) | (Uα, ϕα ∈ Φ)}. Also, if (M1, Φ1) and
(M2, Φ2) are smooth manifolds, then (M, Φ), with Φ defined as the maximal set contain-
ing all product charts (Uα ×Vβ, ϕα × ψβ), with (Uα, ϕα) ∈ Φ1 and (Vβ, ψβ) ∈ Φ2, is also a
manifold.

Example 1.7. 1. Obviously Rn is a manifold, with atlas {Id}.
2. Any real vector space V is also a manifold, as all real vector spaces are isomorphic

to Rn for some n through a coordinate choice.

3. The n-dimensional sphere, Sn = {a ∈ Rn+1 | a2
1 + · · ·+ a2

n = 1} is a manifold. The
stereographic projections Sn → Rn from the north and south pole are an atlas on Sn.

4. The set of all n× n invertible matrices Gl(n,R) := {A ∈ Mn×n(R) | det A 6= 0} is a
manifold, with an induced differentiable structure as an open subset of Rn2

.

Definition 1.8. We say that a function f : M → R is smooth if its coordinate expression
( f ◦ ϕ−1) : ϕ(U) → R is C∞ for all charts (U, ϕ) on M, in the usual calculus sense. We will
denote the set of all smooth functions on M by F (M). Similarly, any map φ : M → N between
two manifolds is also called smooth if (ϕN ◦ φ ◦ ϕ−1

M ), defined on a suitable open subset of RdimM,
is C∞ for all charts (UM, ϕM) and (UN , ϕN) on M and N, respectively. We say that a map
φ : M → N between two manifolds is a diffeomorphism if it is smooth, bijective, and its inverse
map φ−1 is also smooth.

Proposition 1.9. The set of all diffeomorphisms Diff(M) of a manifold M onto itself is a group.

Proof. The composition of maps is associative, and it is trivial to prove that the identity
map, the inverse map, and compositions of diffeomorphisms are all diffeomorphisms.
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As we can see from the definitions above, in order to see whether a mathematical object
is smooth on a manifold, one need only check if its coordinate expression is smooth for
all charts in the differentiable structure of the manifold. A partition of unity is a collection
of functions which allows one to do the opposite: to build global concepts from local ones
by "stitching" them smoothly so that they become independent of the local chart.

Definition 1.10. A partition of unity on a manifold M is a collection { fα}α∈A of smooth func-
tions fα ∈ F (M) such that

• 0 ≤ fα(p) ≤ 1 for all α ∈ A and p ∈ M.

• {supp fα}α∈A is locally finite, where supp fα = f−1
α (Rr {0}).

• ∑α fα(p) = 1 for all p ∈ M.

We say that { fα}α∈A is subordinate to the cover {Uβ}β∈B if for all α ∈ A there exists a β ∈ B
such that supp fα ⊆ Uβ.

Proposition 1.11. Manifolds are locally compact.

Proof. Let p be a point of an n-dimensional manifold M. By the definition of manifold,
there exists a chart (U, ϕ) such that U ⊆ M is an open neighborhood of p and ϕ : U →
ϕ(U) ⊆ Rn is a homeomorphism. Then V := ϕ(U) is also an open neighborhood of
ϕ(p) ∈ Rn, and therefore there exists an ε > 0 such that ϕ(p) ∈ Bε(ϕ(p)) ⊆ V, where
Bε(ϕ(p)) is the open ball of center ϕ(p) and radius ε. Therefore also ϕ(p) ∈ Bε/2(ϕ(p)) ⊆
Bε(ϕ(p)) ⊆ V, for the closed ball of radius ε/2. By Heine-Borel, as Bε/2(ϕ(p)) is closed

and bounded, it is also compact. Therefore, taking the inverse map, p ∈ ϕ−1
(

Bε/2(ϕ(p))
)

which is compact, proving that every p ∈ M has a compact neighborhood.

Proposition 1.12. Every (second countable, Hausdorff, smooth) manifold is paracompact.

Proof. Direct application of the result above and Lemma A.12.

Lemma 1.13. Let U be an open neighborhood of a point p in a differentiable manifold M. Then,
there is a function θ ∈ F (M), called a bump function at p, such that

1. 0 ≤ θ ≤ on M.

2. θ = 1 on some neighborhood V of p.

3. supp θ ⊆ U.

Proof. Let f : R → [0, 1] be defined such that f (t) = e−1/t if t > 0 and f (t) = 0 if
t ≤ 0. Next, choose ε > 0 and define g(t) = f (t)/( f (t) + f (ε − t)), and finally define
b(t) = g(t + 2ε)g(t− 2ε). This function b is a bump function on R at 0, it takes the value
of 1 for |x| ≤ ε and 0 for |x| ≥ 2ε. Then the desired θ is θ = (b ◦ x1) · · · (b ◦ xn) for some
small enough ε, where x1, ..., xn are the coordinate functions of a chart with ϕ(p) = 0.

Theorem 1.14. Let M be a smooth manifold with atlas Φ = {(Uα, ϕα)}α∈A. Then there exists
a countable partition of unity { fi | i ∈ N} subordinate to the open cover {Uα} with compact
support for each for each i.

Proof. See Warner [8] Theorem 1.11, p. 10.
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1.2 Tangent Vectors and Differentials

There are many ways in which one can define tangent vectors. The usual orthodox way
is to define them as a derivation of the algebra of germs of functions (equivalence classes
of functions which coincide in neighborhoods of a point), as it is done in Warner [8].
Physicist, on the other hand, like to describe tangent vectors as n-tuples which transform
contravariantly under coordinate changes, see Curtis and Miller [12]. One may also define
tangent vectors as equivalence classes of smooth curves on M, for the equivalence relation
of their local coordinate expression having the same derivative, as done in Gallot, Hulin
and Lafontaine [13]. For a thorough review of these different definitions, their relations
and their subtleties, see Lee [10] chapter 2. Our approach will be that of O’Neill [11]. It is
a similar yet perhaps less formal approach than that of Warner, but it may be easier to the
non-expert reader, as it needs less prior knowledge on algebras and derivations. It first
defines tangent vectors by axiomatizing their properties and then it proves an equivalence
relation to show that indeed the tangent vector is a local object on M.

Definition 1.15. Let M be a smooth manifold, and p ∈ M a point. A tangent vector to M at p
is a function v : F (M)→ R such that

• v(a f + bg) = av( f ) + bv(g) for all a, b ∈ R and for all f , g ∈ F (M).

• v( f g) = v( f )g(p) + f (p)v(g) for all f , g ∈ F (M).

Notice that this last property resembles the well known Leibnizian property for dif-
ferentiating a product of real functions f , g ∈ F (R), which is ( f g)′ = f ′g + f g′. This
property is key in relating the concept of vector fields to that of directional derivatives of
functions seen in multivariable calculus.

Definition 1.16. The set of all tangent vectors at a point p on M is denoted by Tp M and called
the tangent space to M at p.

It is easy to check that it is vector space over R if we define, for all v, w ∈ Tp M,
f ∈ F (M) and a, b ∈ R,

(av + bw)( f ) = av( f ) + bw( f ).

Let us now see that tangent vectors are local objects:

Proposition 1.17. Let M be a smooth manifold and let p be a point in M. Let v ∈ Tp M, and let
f , g, h ∈ F (M). Let c ∈ R be a constant.

1. If there exists a neighborhood U of p such that f (q) = g(q) for all q ∈ U, then v( f ) = v(g).

2. If there exists a neighborhood V of p such that h(q) = c for all q ∈ V, then v(h) = 0.

Proof. (1.): We have f (q) = g(q) for all q ∈ U. This is equivalent to h̃(q) := f (q)− g(q) = 0.
As tangent vectors are linear, v(h̃) = v( f ) − v(g), so if we prove that v(h̃) = 0 we will
have finished. Be Lemma 1.13, let θ be a bump function at p with support in U. As h̃
is 0 in U and θ is 0 outside U, h̃θ = 0 on all of M. Obviously v(h̃θ) = v(0) = 0, as
v(0) = v(0 + 0) = v(0) + v(0). Therefore 0 = v(h̃θ) = v(h̃)θ(p) + h̃(p)v(θ) = v(h̃).
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(2.): As h coincides in all Up with the constant function c defined on all of M, by (1.)
their image by v will coincide. Now, if 1 is the constant function of value 1, then v(1) =
v(1 · 1) = v(1)1 + 1v(1) = 2v(1). Hence v(1) = 0, so v(h) = v(c · 1) = cv(1) = 0.

Definition 1.18. Let (U, ϕ) be a chart at p in M, with coordinate functions x1, ...xn. For each
i ∈ {1, ..., n} we define the tangent vector at p ∈ M in the xi coordinate direction, denoted by

∂
∂xi

∣∣
p, as

(
∂

∂xi

∣∣
p)( f ) =

∂( f ◦ ϕ−1)

∂ri |ϕ(p)

for all smooth functions f on a neighborhood of p.

It is straightforward to prove that ∂
∂xi

∣∣
p : F (M) → R is in fact a tangent vector in the

sense of Def. 1.15. We will also use the following notation: ∂i =
∂

∂xi .

Theorem 1.19. The set { ∂
∂xi

∣∣
p | i = 1, ..., n} forms a basis of Tp M. Therefore dim Tp M = n.

Under such basis, each tangent vector v ∈ Tp M can be written as

v = vi ∂

∂xi |p

where vi = v(xi) are called the coordinates of v on the basis { ∂
∂xi |p}.

If (U, ψ) is another chart at p in M with coordinate functions y1, ..., yn, so that v = v(yi) ∂
∂yi

∣∣
p,

the way in which the coordinates of v transform is

v(xi) =
(∂xi

∂yj

)
|
p
v(yj).

We say that tangent vectors behave contravariantly under change of coordinates.

Proof. See O’Neill [11] Theorem 1.12, p.8.

Definition 1.20. Let φ : M → N be a smooth map between manifolds. Let p be a point in
M. The differential map (also sometimes called the tangent map) of φ at p is the linear map
dφp : Tp M→ Tφ(p)M which fulfills (dφp(v))( f ) = v( f ◦ φ) for all v ∈ Tp M and f ∈ F (M).

We shall omit the subscript p whenever it is understood from the context.

Remark 1.21. Let φ : M → N be a smooth map, and let p ∈ M. If (U, ϕ) and (V, ψ) are
charts on M and N with coordinate functions x1, ..., xn and Y1, ..., ym respectively, then

dφ(
∂

∂xi

∣∣
p) =

∂(yj ◦ φ)

∂xi

∣∣
p

∂

∂yj

∣∣
φ(p).

Proposition 1.22. Let ψ : M1 → M2 and φ : M2 → M3 be smooth mappings between smooth
manifolds. Then, for all p ∈ M1, d(ψ ◦ φ)p = dψφ(p) ◦ dφp.

Proof. Indeed, for all v ∈ Tp M1 and for all f ∈ F (M3), we have(
d(ψ ◦ φ)p(v)

)
( f ) = v( f ◦ ψ ◦ φ) = dφp(v)( f ◦ ψ) =

(
dψφ(p)

(
dφp(v)

))
( f ).
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Definition 1.23. Let M be a smooth manifold. A submanifold of M is a pair (N, φ) with
φ : N → M smooth such that φ is injective and dφp is non-singular for each p ∈ M.

Let’s see now the generalized version of the inverse function theorem:

Theorem 1.24. Let φ : M → N be a smooth mapping, and let p ∈ M. Then, dφp : Tp M →
Tφ(p)N is a linear isomorphism if and only if there exists an open neighborhood U of p such that
φ|U : U → φ(U) is a diffeomorphism.

Proof. (⇐): Trivial. (⇒): Sketch. Choose coordinate systems (U, ϕ) about p ∈ M and
(V, ψ) about φ(p) ∈ N such that φ(U) ⊆ V. Then we can apply the Inverse Function
Theorem of Multivariable Calculus (Theorem A.21) to ψ ◦ φ ◦ ϕ−1.

1.3 Vector Fields

Definition 1.25. Let M be a manifold. We define the tangent bundle TM as the disjoint union
of all tangent spaces. That is,

TM :=
⊔

p∈M
Tp M.

It is a family of tangent spaces parametrized by M, with the natural projection map
π : TM→ M given by π(v) = p for all v ∈ Tp M. Therefore it may be often useful to write
the elements of TM as (p, v), with p ∈ M and v ∈ Tp M.
One can easily build a differentiable structure for TM starting from the one in M. Let Φ
be the differentiable structure of M. Now, for every chart (Uα, ϕα) ∈ Φ with coordinate
functions x1, ..., xn, consider the chart

(
π−1(Uα), ϕ̃α

)
on TM, where ϕ̃α : π−1(Uα) →

ϕα(Uα)×Rn ⊆ R2n is given by

ϕ̃α(v) =
(

x1(π(v)), ..., xn(π(v)), dx1(v), ..., dxn(v)
)
,

for every tangent vector v ∈ π−1(Uα). Then, the differentiable structure Φ̃ on TM will be
the maximal collection containing the set

{
(
π−1(Uα), ϕ̃α

)
| (Uα, ϕα) ∈ Φ}.

Definition 1.26. A vector field X on M is a lifting X : M → TM which assigns to each point
p ∈ M a vector Xp ∈ Tp M. For all f ∈ F (M), we denote by X( f ) the function which sends each
p ∈ M to the value Xp( f ). We say that a vector field X is smooth in the usual manifold sense.
Equivalently, X is smooth if and only if X( f ) is a smooth function on M for all f ∈ F (M). We
denote the set of all smooth vector fields on M by X(M).

Proposition 1.27. X(M) is a vector space over R a module over F (M).

Proof. Straightforward, if for all vector fields X, Y ∈ X(M) and p ∈ M we define (aX +

bY)p = aXp + bYp for all a, b ∈ R; and ( f X)p = f (p)Xp for all f ∈ F (M).
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Remark 1.28. Generalizing the coordinate expression of tangent vectors at a point, for any
vector field X on a chart (U, ϕ) with coordinate functions x1, ..., xn we can write

X = Xi ∂

∂xi = Xi∂i ,

where Xi = X ◦ xi : M → R are the coordinate functions for X. The vector field X is
smooth if and only if all Xi functions are smooth. Also then the coordinate expression for
the function X( f ) is

X( f ) = Xi ∂ f
∂xi .

Definition 1.29. A derivation on F (M) is a map D : F (M)→ F (M) such that for all a, b ∈ R
and f , g ∈ F (M),

1. D(a f + bg) = aD( f ) + bD(g) (R− linearity).

2. D( f g) = D( f )g + f D(g) (Leibnizian).

Remark 1.30. The combination of the definitions of smooth vector field and tangent vector
show that any smooth vector field X ∈ X(M) defines a derivation f 7→ X( f ). Conversely
any derivation D on F (M) defines a vector field X by setting Xp( f ) = D( f )(p).

Definition 1.31. Let φ : M→ N be a smooth mapping. We say that vector fields X ∈ X(M) and
Y ∈ X(N) are φ-related if dφ(Xp) = Yφ(p) for all p ∈ M.

One could think that for any vector field X on M there is a unique vector field Y on
N such that X and Y are φ-related, but in general that is not true. We need φ to be a
diffeomorphism. In that case we can define the following.

Definition 1.32. Let φ : M→ N be a diffeomorphism. Let X ∈ X(M) and Y ∈ X(N). We define
the push-forward φ∗(X) ∈ X(N) and the pull-back φ∗(Y) ∈ X(N) by

φ∗(X) = dφ ◦ X ◦ φ−1, φ∗(Y) = dφ−1 ◦Y ◦ φ.

That is, for p ∈ M and q ∈ N,(
φ∗(X)

)
(q) = dφ(Xφ−1(q)),

(
φ∗(Y)

)
(p) = dφ−1(Yφ(p)).

Integral curves

Definition 1.33. A smooth map α : I ⊆ R → M is called a smooth curve on M. Its velocity
vector is defined by α′(t) := dαt(

d
dt ).

Be careful not to be confused with the notation, as we will use t to denote both the
point t in the manifold I ⊆ R, and its coordinate function, which is the identity.

Remark 1.34. The tangent vector applied to a function f ∈ F (M) is

α′(t)( f ) =
d( f ◦ α)

dt
(t).

The coordinate expression of α′on a chart (U, ϕ) with coordinate functions x1, ..., xn is

α′(t) =
d(xi ◦ α)(t)

dt
∂i

∣∣∣
α(t)
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Definition 1.35. Let α : I ⊆ R → M be a smooth curve and X a smooth vector field on M. We
say that α is an integral curve of X if its velocity vector α′(t) is equal to Xα(t) for all t ∈ I.

We can regard vector fields as first order differential equations on a manifold: if we
express the definition of integral curve in terms of local coordinates, given a chart (U, ϕ)

with coordinate functions x1, ...xn, we obtain

d(xi ◦ α)

dt
= (Xi ◦ ϕ−1)(x1 ◦ α, ..., xn ◦ α),

where Xi = X(xi). The Existence and Uniqueness Theorem for the solution of a system of
first order ODEs, given an initial condition, yields the following result:

Theorem 1.36. Let X ∈ X(M) be a smooth vector field on a differentiable manifold M. Then, for
all p ∈ M there exist an interval Ip ⊆ R and a smooth curve αp : Ip → M, such that

1. 0 ∈ Ip and αp(0) = p.

2. αp is an integral curve of X.

3. αp is maximal: if β : Jp → M is a smooth curve on M fulfilling (1.) and (2.), then Jp ⊆ Ip
and β = αp|Jp .

Now, we define a map FlX : D → M, with D =
⋃

p∈M Ip × {p} by FlX(t, p) = FlX
t (p) :=

αp(t). We call it the flow of X.

4. D is an open neighborhood of {0} ×M in R×M.

5. For each t ∈ R, the map FlX
t : Dt → D−t, where Dt = {p ∈ M | t ∈ Ip} is open, is a

diffeomorphism with inverse FlX
−t.

6. For every t, s ∈ R the domain of FlX
t ◦ FlX

s is contained in Dt+s, and is equal if s and t have
the same sign. Moreover, whenever FlX

t ◦ FlX
s is well defined, FlX

t ◦ FlX
s = FlX

t+s. That is,
for all p ∈ M,

FlX
t+s(p) = Fl(t + s, p) = FlX(t, FlX(s, p)) = (FlX

t ◦ FlX
s )(p).

Proof. See Warner [8] (Theorem 1.48 p.37) for a detailed exposition on how to properly
apply the Existence and Uniqueness Theorem of solutions of systems of ODE’s.

Definition 1.37. We say that a vector field X ∈ X(M) is complete if its flow is defined globally.
That is, if FlX is defined for all t ∈ R regardless of the point p ∈ M, i.e., if Ip = R for all p ∈ M.

Remark 1.38. Notice that the flow FlX of a complete vector field X defines a 1-parameter
abelian group of diffeomorphisms of M onto itself, also called a 1-parameter group of trans-
formations of M, since

1. FlX
0 (p) = p for all p ∈ M so FlX

0 = IdM.

2. FlX
t ◦ FlX

s = FlX
t+s for all t, s ∈ R, so they commute.

3. (FlX
t )
−1 = FlX

−t.
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If X is not complete, we will call the local flow FlX the local 1-parameter group of X.

Proposition 1.39. Every vector field X on a compact manifold M is complete.

Proof. For each p ∈ M, let Up be a neighborhood of p, and let εp > 0 such that the vector
field X generates a local 1-parameter group of local transformations FlX on (−εp, εp)×Up.
Since M is compact, the open covering {Up | p ∈ M} admits a finite subcovering {Upi |i =
1, ..., k}. Now we can choose ε = min{εpi | i = 1, ..., k}. That way, the flow FlX is well
defined on all (−ε, ε)×Upi , and as

⋃
i Upi = M, it is therefore defined on (−ε, ε)×M, and

hence on all R×M.

Lie Bracket

Definition 1.40. Let X, Y ∈ X(M) be smooth vector fields on M. We define the Lie bracket of
X and Y as the vector field [X, Y] on M such that, for all p ∈ M and for all f ∈ F (M)

[X, Y]p( f ) = Xp
(
Y( f )

)
−Yp

(
X( f )

)
.

Proposition 1.41. The bracket of two smooth fields is also a smooth vector field; and the bracket
operation anti-commutes and fulfills the Jacobi identity. That is, for all X, Y, Z ∈ X(M),

1. [X, Y] ∈ X(M).

2. [X, Y] = −[Y, X].

3. [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

Proof.

1. Since X, Y are smooth vector fields, X( f ), Y( f ) are smooth functions on M, and
therefore X

(
Y( f )

)
, Y
(
X( f )

)
are also smooth functions on M.

2. [X, Y] = XY−YX = −(YX− XY) = −[Y, X].

3. [[X, Y], Z]+ [[Y, Z], X]+ [[Z, X], Y] = [X, Y]Z−Z[X, Y]+ [Y, Z]X−X[Y, Z]+ [Z, X]Y−
Y[Z, X] = XYZ−YXZ−ZXY+ZYX+YZX−ZYX−XYZ+XZY+ZXY−XZY−
YZX + YXZ = 0.

Proposition 1.42. If X, Y ∈ X(M) and f , g ∈ F (M). Then

[ f X, gY] = f g[X, Y] + f
(
X(g)

)
Y− g

(
Y( f )

)
X.

Proof. By applying both sides of the equation to any smooth function h ∈ F (M) one can
easily check that they match.

Proposition 1.43. Let (U, ϕ) be a chart on M with coordinate functions x1, ...xn. Then, the local
coordinate expression on U for [X, Y], given X, Y ∈ X(M), is

[X, Y] =
[

Xi∂i, Y j∂j

]
=

(
Xk ∂Yl

∂xk −Yk ∂Xl

∂xk

)
∂l .
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Proof. Again check that both sides of the equation coincide for any h ∈ F (M).

Lemma 1.44. Let p ∈ M, X ∈ X(M) and f ∈ F (M). Then,

X( f )(p) =
d
dt

∣∣∣
0
( f ◦ FlX

t )(p) = lim
t→0

1
t

[
f
(

FlX
t (p)

)
− f (p)

]
Proof. Obvious from the definition of flow. Taking α(t) := FlX

t (p), which is an integral
curve of X, so X = α′, the result is immediate from 1.34.

Proposition 1.45. Let X, Y ∈ X(M) be smooth vector fields on a manifold M. Let p ∈ M. Then,

[X, Y]p = lim
t→0

1
t

[
dFlX
−t(YFlX

t (p))−Yp

]
.

Proof. Let f ∈ F (M) be a smooth function on M. Now, for a fixed p ∈ M, consider
the mapping θ : R2 → R defined by θ(t, s) := YFlX

t (p)( f ◦ FlX
s ), which is locally defined

near zero for both variables t and s (Theorem 1.36). Notice that θ(t, 0) = YFlX
t (p)( f ) and

θ(0, s) = Yp( f ◦ FlX
s ), so

∂

∂t
θ(0, 0) =

∂

∂t

∣∣∣
0

(
YFlX

t (p)( f )
)
=

∂

∂t

∣∣∣
0

(
Y( f )

(
FlX

t (p)
))

= Xp
(
Y( f )

)
,

∂

∂s
θ(0, 0) =

∂

∂s

∣∣∣
0

(
Yp( f ◦ FlX

s )
)
= Yp

( ∂

∂s

∣∣∣
0
( f ◦ FlX

s )
)
= Yp

(
X( f )

)
,

where the last equalities hold by the previous Lemma. But also,

∂

∂u

∣∣∣
0
θ(u,−u) =

∂

∂u

∣∣∣
0

(
YFlX

u (p)( f ◦ FlX
−u)
)
=

∂

∂u

∣∣∣
0

(
dFlX
−u
(
YFlX

u (p)
))

( f ).

1.4 Tensor Fields

In the previous section we have presented and studied vector fields. In the same way
as vectors of a real vector space have their dual counterpart, the linear forms; also vector
fields have their respective dual, the one-forms. Within this last section of Chapter 1,
we will first introduce these objects, and then we will generalize both vector fields and
one-forms to the notion of tensor fields. Since many results concerning tensor fields are
generalizations of known results for vector fields or multilinear algebra, we shall omit
many proofs, and refer the reader to O’Neill [11], Chapter 2.

Definition 1.46. Let M be a smooth manifold, and let p ∈ M. The dual space Tp M∗ of the tangent
space Tp M is called the cotangent space of M at p. Its elements are linear maps Tp M → R.
Similarly to TM, the cotangent bundle is defined as TM∗ =

⋃
p∈M Tp M∗, and also has a

natural description as a manifold.
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Definition 1.47. A one-form ω on a manifold M is a lift ω : M→ TM∗, which assigns to each
point p ∈ M a linear form ωp from the cotangent space Tp M∗.

Let X be a vector field on M. Since each linear form ωp sends each tangent vector Xp
to a value in R, we can define a function ω(X) : M → R by ω(X)(p) = ωp(Xp). We say
that a one form ω is smooth if for all smooth vector field X ∈ X(M) the function ω(X)

is smooth. We will denote by X∗(M) the set of all smooth one-forms on M. Similarly to
vector fields, by defining

(ω + ϑ)p = ωp + ϑp ( f ω)p = f (p)ωp

X∗ becomes a module over F (M).

Remark 1.48. The differential map of a function f ∈ F (M) can be regarded as a one-form
by identifying the tangent space of R with R itself. We shall also denote it by d f , and it
fulfills d f (v) = v( f ) for every tangent vector v ∈ Tp M.

Remark 1.49. For the special case of f being a coordinate function of a chart (U, ϕ) on
M, f = xi, their differentials dx1, ..., dxn are called the coordinate one-forms on U. They are
dual to the coordinate basis ∂1, ..., ∂n, as dxi(∂j) = ∂xi/∂xj = δi

j. Therefore, the coordinate
expressions for one-forms ω and differentials d f are

ω = ω(∂i)dxi = ωidxi, d f =
∂ f
∂xi dxi.

Also, as opposed to vectors, one-forms behave covariantly under a change of coordinates
xi → yi, as ω( ∂

∂yi ) =
∂xj

∂yi ω( ∂
∂xj ).

Definition 1.50. A smooth tensor field T of type (r, s) on a manifold M is an F (M)-multilinear
map A : (X∗(M))r × (X(M))s → F (M). That is, A produces a smooth function when evaluated
on r one-forms and s vector fields, A(ω1, ..., ωr; X1, ..., Xs) ∈ F (M). We denote the set of all
smooth (r, s) tensor fields on M as Tr

s(M).

Remark 1.51. Notice that smooth functions are tensor fields of type (0, 0), vector fields
are (1, 0) tensor fields, and one-forms are tensor fields of type (0, 1).

Proposition 1.52. Let (U, ϕ) be a chart in M with coordinate functions x1, ...xn. If A ∈ Tr
s(M),

its local coordinate expression on U is

A = Ai1,...,ir
j1,...,js ∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs , Ai1,...,ir

j1,...,js = A(dxi1 , ..., dxir ; ∂j1 , ..., ∂js).

Definition 1.53. A contraction C is an operation that shrinks an (r, s) tensor field A to an
(r− 1, s− 1) tensor field CA. If 1 ≤ k ≤ r and 1 ≤ l ≤ s, the contraction Ck

l acting on the tensor
field A = Ai1,...,ir

j1,...,js ∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs is defined by

Ck
l A = Ai1,...,ik−1,m,ik+1,...,ir

j1,...,jl−1,m,jl+1,...,js ∂i1 ⊗ · · · ⊗ ∂ik−1
⊗ ∂ik+1

⊗ · · · ⊗ ∂ir

⊗ dxj1 ⊗ · · · ⊗ dxjk−1 ⊗ dxjk+1 ⊗ · · · ⊗ dxjs .
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Definition 1.54. A tensor derivation D on a smooth manifold M is a set of R-linear functions
{Dr

s : Tr
s → Tr

s}{r≥0,s≥0} such that for any tensors A, B and any contraction C,

1. D(A⊗ B) = DA⊗ B + A⊗DB.

2. D(CA) = CD(A).

Comparing to Def. 1.29 we can see how the case for (0, 0) tensors matches the defini-
tion of derivations on F (M).

Proposition 1.55. Let D be a tensor derivation on M and let A ∈ Tr
s. Then,

D
(

A(ω1, ..., ωr; X1, ..., Xs)
)
= (DA)(ω1, ..., ωr; X1, ..., Xs)

+ A(Dω1, ..., ωr; X1, ..., Xs) + · · ·+ A(ω1, ...,Dωr; X1, ..., Xs)

+ A(ω1, ..., ωr;DX1, ..., Xs) + · · ·+ A(ω1, ..., ωr; X1, ...,DXs).

Theorem 1.56. Given a smooth vector field X ∈ X(M), there is a unique tensor derivation £X
such that

1. £X f = X( f ).

2. £XY = [X, Y].

We shall call it the Lie derivative relative to X.

In Lemma 1.44 and Prop. 1.45 we have seen that the Lie derivative relative to X of
functions and vector fields can be interpreted as their rate of change along the flow of
X. In fact, this property can be extended to all tensor fields on M, and therefore many
books choose to define the Lie derivative in terms of flows and then prove that it is indeed
a tensor derivation (e.g. [2] or [13]). We shall give a proof of this equivalence for (0, 2)
tensor fields in Chapter 4.

Let us end this chapter showing how the Lie derivative relative to the bracket [X, Y] of
two vector fields behaves. We will write [£X , £Y] := £X ◦ £Y − £Y ◦ £X .

Proposition 1.57. Let X, Y ∈ X(M) and f ∈ F (M). Then, £[X,Y] f = [£X , £Y] f .

Proof. £X(£Y f )− £Y(£X f ) = X(Y( f ))−Y(X( f )) = (XY)( f )− (YX)( f ) = [X, Y]( f ).

Proposition 1.58. Let X, Y, Z ∈ X(M). Then, £[X,Y]Z = [£X , £Y]Z.

Proof.

£X(£YZ)− £Y(£XZ) =
[

X, [Y, Z]
]
−
[
Y, [X, Z]

]
= [X, YZ− ZY]− [Y, XZ− ZX]

= XYZ−���XZY−���YZX + ZYX−YXZ +���YZX +���XZY− ZXY

= [X, Y]Z− Z[X, Y] =
[
[X, Y], Z

]
= £[X,Y]Z.

Following these two propositions, and using the product rule (Prop. 1.55), one can
prove similar results for the Lie derivative of any tensor field, finally proving the result
£[X,Y] = [£X , £Y] by induction over the tensor ranks.



Chapter 2

Lie Groups

Informally, a Lie group is a mathematical structure which is both a group and a smooth
manifold in which the group operation is smooth.

Lie groups are named after Sophus Lie, a Norwegian mathematician who laid the
foundations for studying continuous transformation groups during the late 1880s. This
application of Lie groups is described in section 4 of this chapter, and it is of utmost im-
portance in both mathematics and theoretical physics. Lie’s original goal was to build
an equivalent to Galois theory for differential equations, which he achieved: the first Lie
groups arose as symmetry groups of transformations of the variables involved in differ-
ential equations, that is, transformations that would send solutions to solutions. And the
first Lie algebras described as such where the infinitesimal versions of such transforma-
tions. Nowadays this has been generalized to Lie transformation groups describing how
a manifold can be transformed smoothly through a Lie group, thus providing a natural
model for the concept of continuous symmetry. Its other relations to physics lie on rep-
resentation theory (which we shall not consider), widely used in particle physics, and on
Emmy Noether’s theorem, which states that for every differentiable symmetry on a phys-
ical system, that is, for every differentiable transformation which leaves the Lagrangian of
the system invariant, there is a corresponding conservation law.

Simultaneously and independently, the German mathematician Wilhelm Killing had
also began to study Lie groups and Lie algebras. His works considered Lie groups re-
gardless of their possible action on manifolds, as it is done today. However, it was not
until the beginning of the XXth century that the great French mathematician Élie Cartan
set the grounds for modern Lie theory, extending the theory to global terms.

We begin this chapter defining both Lie groups and Lie algebras. We show that for
every Lie group G there is a Lie algebra g related to the set of left-invariant vector fields
on G. We then define the exponential map, which interprets the Lie algebra g as an
infinitesimal correspondent of the Lie group G. The sequence followed is standard to
almost all books on Lie Group Theory. Our main references are [2], [8] and [14]. The
interested reader will find more information in [15], which is the classical reference on Lie
Group Theory. We end this Chapter introducing Lie transformation groups and proving
the theorem by Palais mentioned in in the introduction on which we will build our proof
that the isometry group of a semi-Riemannian manifold is a Lie group.

13
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2.1 Basic Definitions: Lie Groups and Lie Algebras

Definition 2.1. A Lie group G is a differentiable manifold which is also endowed with a group
structure such that the map

G× G −→ G
(x, y) 7−→ xy−1

is smooth. The symbol e will usually denote the identity element of the Lie group.

Proposition 2.2. Let G be a Lie group. Then,

1. The map x 7→ x−1 of G → G is smooth.
2. The map (x, y) 7→ xy of G× G → G is smooth.

Proof.

1. The inverse map is the composition of smooth maps x 7→ (e, x) 7→ ex−1 = x−1, so it
is also smooth.

2. The multiplication map is the composition of smooth maps (x, y) 7→ (x, y−1) 7→
x(y−1)−1 = xy, so it is also smooth.

Example 2.3.

1. The real space Rn is a Lie group under vector addition.
2. The group Gl(n,R) of all n× n invertible real matrices is a n2-dimensional Lie group

under matrix multiplication. Its manifold structure comes from being a submanifold
of Rn2

. Many subgroups of Gl(n,R) are Lie groups, such as the example below.
3. The orthogonal group O(n,R) = {A ∈ Gl(n,R) | A−1 = At} is also a Lie group

under matrix multiplication. It is compact, and has two connected components. Its
identity component is O+(n) = SO(n,R) = {A ∈ O(n,R) | det A = +1}, the
special orthogonal group (which is also a Lie group by itself), and O−(n) = {A ∈
O(n,R) | det A = −1}. O(n,R) has dimension n(n− 1)/2.

Definition 2.4. Let G be a Lie group, and let a ∈ G. We define the left translation by a, µa :
G → G by x 7→ µa(x) = ax; and the right translation by a, µa : G → G by x 7→ µa(x) = xa.

Clearly such maps are diffeomorphisms of G onto G. Therefore their respective differential
maps, dµa : TxG → TaxG and dµa : TxG → TxaG, are linear isomorphisms. Be careful with
the notation: here the subscript a under dµ does not denote the point at which dµ acts, but
that dµa is the differential map of µa, the left translation by a. Throughout all this section,
we shall omit the subscripts of differential maps for the sake of clarity when using the
notation d. We shall introduce a different notation when subscripts are needed.

Definition 2.5. A smooth vector field X on G is called left-invariant (respectively right-invariant)
if for each a ∈ G, X is µa-related (respectively µa-related) to itself. Recalling definition 1.31, that
means that X is left-invariant if

dµa ◦ X = X ◦ µa.
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Informally, this translates to X being left-invariant if "its evaluation at µa(x) is the same
as its evaluation at x transported by dµa to µa(x)". Therefore left-invariant vector fields
can be represented by their evaluation at any point, as left-translation by dµa will define
them on the rest of G. In particular, we shall consider their evaluation at e.

Notice also that we have defined left-invariant vector fields as being smooth vector
fields. In fact, we need not have done so, as all µa-related vector fields on a Lie group
must necessarily be smooth. (See Warner [8] Proposition 3.7).

Proposition 2.6. Let G be a Lie group and g the set of left-invariant vector fields on G. Then g is
a real vector space (a subspace of X(G)), and it is isomorphic to the tangent space at the identity,
TeG, through its evaluation at the identity.

Proof. That g is a real vector space is immediate from the linearity of the tangent map dµa
and the definition of X(G) as a vector space. In order to see that g ∼= TeG we have to see
that the evaluation map X 7→ Xe from g to TeG is both injective and surjective. That it is a
vector space morphism is again immediate from the definition of X(G) as a vector space.

Now, if Xe = Ye, then for all z ∈ G we have Xz = dµz(Xe) = dµz(Ye) = Yz, therefore
X = Y as they coincide on every point z of G. So the map is injective. Finally, let
v ∈ TeG, and define a vector field X such that Xz = dµz(v) for each z ∈ G. Then
Xe = dµe(v) = id(v) = v, and since Xxy = dµxy(v) = dµxdµy(v) = dµx(Xy) for all
x, y ∈ G, X is left-invariant. Hence, the evaluation map is also surjective.

Definition 2.7. A Lie algebra over R is a real vector space g equipped with a bilinear operator,
the bracket operator [ , ] : g× g→ g, such that for all X, Y, Z ∈ g,

1. [X, Y] = −[Y, X].

2. [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

We will usually denote Lie algebras by their vector space g without specifying their
bracket operation. However, one must be careful, different bracket operations applied to
the same vector space can give rise to different Lie algebras.

Example 2.8.

1. The real line R is a Lie algebra taking all brackets to be identically 0.

2. In fact, any vector space becomes a Lie algebra if all brackets are set equal to 0. These
kind of Lie algebras are called abelian Lie algebras.

3. The set gl(n,R) of all n× n real matrices is a Lie algebra if we set [A, B] = AB− BA
for all A, B ∈ gl(n,R).

4. The set of all n× n skew-symmetric matrices o(n,R) = {A ∈ gl(n,R) | At = −A} is
a Lie algebra with the same bracket as gl(n,R). It has dimension n(n− 1)/2.

5. The vector space X(M) of all smooth vector fields on a manifold M forms a Lie
algebra under the Lie bracket operation defined in 1.40.

It is straightforward to check both properties of Def. 2.7 in all cases above. The last
example is immediate from Proposition 1.41.
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Proposition 2.9. The vector space g of all left-invariant vector fields of a Lie group G forms a Lie
algebra under the bracket operation on vector fields.

Proof. We first have to prove that the bracket of two left-invariant vector fields is also left-
invariant, that is, given X, Y ∈ g and for all x ∈ G, to see that dµx ◦ [X, Y] = [X, Y] ◦
µx. Then, to see that it forms a Lie algebra is immediate from the fact that the bracket
operation of vector fields anti-commutes and fulfills the Jacobi identity, as seen in Prop.
1.41. So, we must show that dµx([X, Y]y)( f ) = [X, Y]xy( f ), for all y ∈ G and f ∈ F (M):

dµx([X, Y]y)( f ) = [X, Y]y( f ◦ µx)

= Xy(Y( f ◦ µx))−Yy(X( f ◦ µx))

= Xy((dµx ◦Y)( f ))−Yy((dµx ◦ X)( f ))

= Xy(Y( f ) ◦ µx))−Yy(X( f ) ◦ µx))

= dµx(Xy)(Y( f ))− dµx(Yy)(X( f ))

= Xxy(Y( f ))−Yxy(X( f ))

= [X, Y]xy( f ).

Definition 2.10. The Lie algebra g of left-invariant vector fields of a Lie group G is called the Lie
algebra of the Lie group G.

As we have seen in Prop. 2.6 we can identify g with TeG, so TeG with the corresponding
bracket operation is also sometimes called the Lie algebra of the Lie group G. We will use
either meaning depending on the context.

Example 2.11.

1. The Lie algebra of the Lie group Gl(n,R) is gl(n,R).

2. The Lie algebra of the Lie groups O(n,R) and SO(n,R) is o(n,R).

2.2 Homomorphisms and Subgroups

Within this section on homomorphisms, we will use the notation Txφ to denote the
differential map dφx : TxG → Tφ(x)H of a smooth map φ : G → H. This is done in order
to avoid confusion between subindexes, as the tangent map of the left-multiplication map
µa : G → G will appear quite frequently in what follows, and the following proofs require
keeping track of the point at which the map is acting.

Definition 2.12. Let G, H be Lie groups. A map φ : G → H is a Lie group homomorphism if
φ is a group homomorphism of the abstract groups (i.e., φ(xy) = φ(x)φ(y) ∀x, y ∈ G), and is also
a smooth map between manifolds. A Lie group homomorphism is called an isomorphism if it is
injective and surjective. A Lie group homomorphism of G onto itself is called an automorphism.

Proposition 2.13. Let φ : G → H be a Lie group homomorphism. Let x ∈ G Then,

1. φ(eG) = eH .
2. φ(x−1) = (φ(x))−1.
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Proof.

1. φ(eG) = φ(eGeG) = φ(eG)φ(eG) ⇒ φ(eG) = eH .
2. eH = φ(eG) = φ(xx−1) = φ(x)φ(x−1) ⇒ φ(x−1) = (φ(x))−1.

Example 2.14. For a ∈ G, we define the adjoint map ada : G → G by x 7→ ada(x) = axa−1.
It is an inner automorphism of G, since for all x, y ∈ G

ada(xy) = axya−1 = axeya−1 = axa−1aya−1 = (ada(x))(ada(y)).

Definition 2.15. A map ψ : g→ h is a Lie algebra homomorphism if it is a linear map between
vector spaces, and it also preserves brackets: ψ([X, Y]) = [ψ(X), ψ(Y)] ∀X, Y ∈ g.

Remark 2.16. There is a natural relation between homomorphisms of Lie groups and ho-
momorphisms of their Lie algebras. As we have seen in 2.13, a Lie group homomorphism
φ : G → H maps the identity eG of G to the identity eH of H. Therefore the tangent map
TeG φ of φ linearly sends TeG G into TeH H. As we have seen in 2.6, g ∼= TeG G and h ∼= TeH H,
so the tangent map induces a linear transformation of the Lie algebra g of G into the Lie
algebra h of H. Therefore we can define φ′ : g→ h such that for all X ∈ g, φ′(X) ∈ h is the
unique left-invariant field on H that fulfills (φ′(X))eH = TeG φ(XeG ).

Theorem 2.17. Let φ : G → H be a homomorphism between Lie groups, and let g and h be their
respective Lie algebras. Then,

1. For all left-invariant vector field X ∈ g, X and φ′(X) are φ-related.

2. φ′ : g→ h is a Lie algebra homomorphism.

Proof. To prove (1.) we have to see that for all x ∈ G, Txφ(Xx) = (φ′(X))φ(x):

Txφ(Xx) = Txφ(TeG µx(Xe)) = TeG (φ ◦ µx)(XeG ) = TeG (µφ(x) ◦ φ)(XeG )

= TeH µφ(x)(TeG φ(XeG )) = TeH µφ(x)((φ
′(X))eH ) = (φ′(X))φ(x).

Where the third equality is fulfilled due to φ being a homomorphism.
Now, to prove (2.) we only need to see that the Lie bracket operation is preserved,

as linearity has already been discussed in 2.16. That is, we need to see that φ′([X, Y]) =
[φ′(X), φ′(Y)] for all X, Y ∈ g. In order to do so, let’s see first that [X, Y] is φ-related to
[φ′(X), φ′(Y)]. We must show that for all x ∈ G and for all f ∈ F (G), Txφ([X, Y]x)( f ) =
[φ′(X), φ′(Y)]φ(x)( f ). Following a similar path as in 2.9, and using the result just derived
in (1.), we can write

φ′([X, Y])φ(x) = Txφ([X, Y]x)( f )

= [X, Y]x( f ◦ φ)

= Xx(Y( f ◦ φ))−Yx(X( f ◦ φ))

= Xx(φ
′(Y)( f ) ◦ φ))−Yx(φ

′(X)( f ) ◦ φ))

= Txφ(Xx)(φ
′(Y)( f ))− Txφ(Yx)(φ

′(X)( f ))

= φ′(X)φ(x)(φ
′(Y)( f ))− φ′(Y)φ(x)(φ

′(X)( f ))

= [φ′(X), φ′(Y)]φ(x)( f ).
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So we see that [X, Y] is φ-related to [φ′(X), φ′(Y)]. In particular, if we take the previous
equality at x = eG, we have that [φ′(X), φ′(Y)]eH = TeG φ([X, Y]eG ). But by the definition
of φ′ (Remark 2.16), φ′([X, Y]) is the unique left-invariant vector field on H whose value
at eH is TeG φ([X, Y]eG ), so φ′([X, Y]) = [φ′(X), φ′(Y)].

Example 2.18. Let a ∈ G. The automorphism ada : G → G defined on Example 2.14
induces a Lie algebra automorphism ad′a : g→ g. We have ada(x) = axa−1 = µaµa−1

(x) =
µa−1

µa(x). As X is left-invariant, Tx(µa−1
µa)(Xx) = (Taxµa−1

)(Txµa(Xx)) = Taxµa−1
(Xax),

so ad′a(X) is the unique left-invariant field on G that fulfills (ad′a(X))e = Taµa−1
(Xa).

Definition 2.19. Let G be a Lie group. (H, φ) is a Lie subgroup of the Lie group G if

1. H is a Lie group.

2. (H, φ) is a submanifold of G.

3. φ : H → G is a Lie group homomorphism.

Let g be a Lie algebra. A vector subspace h ⊆ g is a Lie subalgebra if the bracket induced from g

fulfills [X, Y] ∈ h for all X, Y ∈ h, guaranteeing that h is also a Lie algebra.

Proposition 2.20. Let (H, φ) be a Lie subgroup of G. Let h and g be their respective Lie algebras.
Then, φ′ : h→ φ′(h) ⊆ g is a Lie algebra isomorphism.

Proof. Immediate from 2.17.

Thus, for every Lie subgroup (H, φ) of a Lie group G there is a Lie subalgebra of its
Lie algebra g isomorphic to the Lie algebra h. The converse is also true for connected
Lie subgroups, and therefore there is a one-to-one correspondence between connected Lie
subgroups of a Lie group and subalgebras of its Lie algebra. We refer the reader to Warner
[8] 3.19 for a proof of this theorem, presented below.

Theorem 2.21. Let G be a Lie group with Lie algebra g. Let h̃ ⊆ g be a subalgebra. Then, there
is a unique (up to isomorphism) connected Lie subgroup (H, φ) of G with Lie algebra h such that
φ′(h) = h̃.

Definition 2.22. Let S be a set of vectors of a Lie algebra g. We say that the Lie algebra h is
generated by S if h ⊆ g is the smallest Lie algebra that contains S.

By the smallest Lie algebra that contains S, we mean that for all Lie algebra k such
that S ⊆ k, also h ⊆ k as a subalgebra. Notice that h must contain all linear combinations
of vectors of S, and all brackets of linear combinations of vectors of S (which are linear
combinations of brackets of vectors of S, by bilinearity of the bracket operation), where
the bracket defined on h is the one induced by g.

2.3 The Exponential Map
The exponential map is a fundamental tool in Lie Group Theory, which further char-

acterizes the strong existing relation between Lie groups and Lie algebras. From now on,
we shall go back to the d notation for the differential map, omitting subscripts whenever
their presence is understood from context.
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Definition 2.23. Let G be a Lie group with Lie algebra g. A 1-parameter subgroup of G is a Lie
group homomorphism φ : R→ G.

Visually, φ is a smooth curve in G that preserves the group structure, that is, φ(s+ t) =
φ(s)φ(t) and therefore φ(0) = e.

Lemma 2.24. Let G be a Lie group. Let α : R→ G be a smooth curve with α(0) = e. Let X ∈ g

be a left-invariant vector field on G. Then, the following are equivalent:

1. α is a 1-parameter subgroup with Xe =
dα(t)

dt

∣∣
0.

2. α(t) = FlX(t, e), for all t ∈ R.

3. xα(t) = FlX(t, x), (i.e. µα(t) = FlX
t ), for all t ∈ R and x ∈ G.

Informally, equivalence (1.) ⇐⇒ (2.) of this lemma states that the integral curves start-
ing at e generated by flows of left-invariant vector fields on G are always 1-parameter
subgroups of G, and vice versa.

Proof. (1.) ⇒ (3.) : Given x ∈ G, differentiation of the product xα(t) yields

d
dt

xα(t) =
d
ds

∣∣∣
0
xα(t + s) =

d
ds

∣∣∣
0
xα(t)α(s) =

d
ds

∣∣∣
0
µxα(t)α(s)

= dµxα(t)
dα(s)

ds

∣∣∣
0
= dµxα(t)(Xe) = Xxα(t),

where the second equality holds because α is a 1-parameter subgroup. The formula above
defines a differential equation, from which together with the initial condition Xe =

dα(t)
dt

∣∣
0

we obtain xα(t) = FlX(t, x), by existence and uniqueness of solutions (Theorem 1.36).

(3.) ⇒ (2.) : Obvious, substituting x = e in (3.).

(2.) ⇒ (1.) : α is an integral curve of X, so dα(s)
ds = Xα(s). Hence, Xe = dα(t)

dt

∣∣
0, since

α(0) = FlX(0, e) = e. Moreover,

d
ds

α(t)α(s) =
d
ds

µα(t)α(s) = dµα(t)
d
ds

α(s) = dµα(t)d(Xα(s)) = Xα(t)α(s),

which again defines a differential equation. We set α(t)α(0) = α(t) as its initial condition.
The solution is α(t)α(s) = FlX(s, α(t)) = FlX

s FlX
t (e) = FlX(t + s, e) = α(t + s), so α is a

homomorphism and therefore a 1-parameter subgroup.

Corollary 2.25. Left-invariant vector fields on a Lie group are always complete.

Proof. Any locally defined 1-parameter subgroup (hence a homomorphism R→ G) can be
extended to a globally defined one simply by multiplication: α(nt) = (α(t))n. This gives
us that the integral curve of a left-invariant vector field X going through e is defined for
all t ∈ R. For the integral curves FlX(t, x) starting at x 6= e, one need only use property
(3.) of the previous Lemma 2.24, which yields FlX

t (x) = xFlX
t (e) therefore proving that

this integral curve is also defined for all real t.

Remark 2.26. The previous lemma and corollary can be adapted and applied also to
right-invariant vector fields on G.
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Definition 2.27. Let G be a Lie group and g its Lie algebra. The exponential mapping of the Lie
group is a map exp : g→ G defined by

exp(X) = FlX(1, e) = αX(1)

for all X ∈ g, where αX is the 1-parameter subgroup of G with dα(t)
dt |0 = Xe.

Theorem 2.28.

1. exp : g→ G is smooth.

2. exp (tX) = FlX(t, e) for all t ∈ R.

3. FlX(t, x) = x · exp(tX).

4. exp is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of e in G.

Proof.

1. Let X ∈ g and let x ∈ G. Build the manifold g× G, and define a smooth vector
field X in g× G by X(X,x) = (0X , Xx). Then, this vector field defines a smooth flow
FlX : R× g× G → g× G, which projected onto G gives πG(FlX(t, (X, e)) = αX(t),
which is smooth as it is a composition of smooth maps.

2. exp (tX) = FltX(1, e) = FlX(t, e).

3. Directly from (3.) of the previous Lemma 2.24.

4. If we regard g as a vector space manifold, its tangent space at 0 can be identified as
g itself, T0g ∼= g. So the differential map dexp can be seen as acting on g rather than
T0g. And, since dexp(X) = d

dt |0 exp(0 + tX) = d
dt |0FlX(t, e) = X, therefore dexp

: g ∼= T0g→ TeG ∼= g is the identity and hence an isomorphism, so we can apply the
Inverse Function Theorem.

Example 2.29. For Gl(n,R) and all its classical subgroups, we have

exp(A) = eA := 1+ A +
A2

2
+ · · ·+ Ak

k!
+ · · · .

Proposition 2.30. Let G, H be Lie groups with Lie algebras g, h. Let φ : G → H be a Lie group
homomorphism. Then, for all X ∈ g,

φ(exp(X)) = exp(φ′(X)).

Proof. For each X ∈ g, let αX : R → G be the 1-parameter subgroup of G defined by
αX(t) = exp(tX). It is a Lie group homomorphism, and the corresponding Lie algebra
homomorphism is α′X : T0R ∼= R → g, defined by α′X(

d
dt ) = X. Therefore, the map

(φ ◦ αX) : R → H is a Lie group homomorphism with corresponding Lie algebra homo-
morphism (φ ◦ αX)

′ : R → h defined by (φ ◦ αX)
′( d

dt ) = φ′(X). Now, if βφ′(X) : R → H is
the 1-parameter subgroup of H defined by βφ′(X)(t) = exp(tφ′(X)), then also β′

φ′(X)(
d
dt ) =

φ′(X). Therefore β′
φ′(X) = (φ ◦ αX)

′, from which follows that βφ′(X) = φ ◦ αX by unique-
ness (Remark 2.16). Hence, exp(φ′(X)) = βφ′(X)(1) = (φ ◦ αX)(1) = φ(exp(X)).
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Example 2.31. Again, given a ∈ G, consider the Lie group automorphism ada : G → G
with Lie algebra automorphism ad′a : g → g described in previous examples. Then, the
previous proposition yields, for all X ∈ g,

exp(ad′a(X)) = ada(exp(X)) = a exp(X)a−1.

Proposition 2.32. Let G be a Lie group with Lie algebra g. Then, for all X, Y ∈ g,

[X, Y] = lim
t→0

1
t
[ad′exp(tX)(Y)−Y].

Proof. In this proof we shall omit the subscript indicating the point at which the differen-
tial map is acting for the sake of clarity. Recalling Prop. 4.7,

[X, Y]e = lim
t→0

1
t
[dFlX

−t(YFlX
t (e))−Ye] = lim

t→0

1
t
[dµexp(−tX)(Yexp(tX))−Ye]

= lim
t→0

1
t
[dµexp(−tX)dµexp(tX)(Ye) = lim

t→0

1
t
[d(adexp(tX))(Ye)−Ye].

Lemma 2.33. Let G be a connected Lie group and let U be an open neighborhood of e. Then,
G =

⋃∞
n=1 Un, where Un = { x1x2 · · · xn | xi ∈ U ∀i = 1, ..., n }. We say that U generates G.

Proof. Let V = U ∩U−1, where U−1 = { x−1 | x ∈ U }. V is an open subset of U which
contains e and fulfills V = V−1. Since V ⊆ U, H :=

⋃∞
n=1 Vn ⊆ ⋃∞

n=1 Un. Then H is an
abstract subgroup of G, as it also fulfills H = H−1. Moreover, it is an open subset of G,
since for every x ∈ H, xV ⊆ H. Therefore, each coset mod H is also open in G. Now, H
is the complement in G of the union of all the open cosets mod H different from H itself.
Hence, H is also closed, as it is the complement of an open set. As G is connected, the
only subsets of G which are both open and closed are the empty set and G itself. But H
is non-empty because e ∈ H. Therefore H = G, and since H =

⋃∞
n=1 Vn ⊆ ⋃∞

n=1 Un ⊆ G,
G =

⋃∞
n=1 Un.

Corollary 2.34. Let G be a connected Lie group with Lie algebra g. Let V be a neighborhood of 0
in g. Then the group generated by exp(V) equals G.

Proof. Immediate from Lemma 2.33 and (4.) of Theorem 2.28 above.

Remark 2.35. If G is not connected, then the subgroup generated by exp(V) is the con-
nected component of the identity in G.

Remark 2.36. One could mistakenly believe that Corollary 2.34 extends the diffeomor-
phisms described in Theorem 2.28(4.) from a neighborhood of e to all the connected
component of the identity, but that is not the case. For example, the matrix

A =

(
−1 0
0 −2

)
= exp

(
0 π

−π 0

)
exp

(
0 0
0 ln 2

)
∈ Gl0(2,R),

where Gl0(n,R) = {B ∈ Gl(n,R) | det B > 0} is connected component of the identity
of Gl(n,R). By Cor. 2.34, Gl0(2,R) =

⋃∞
n=1(exp(V))n for some neighborhood V of 0 in

gl(2,R), as indeed A suggests. However, there is no A ∈ gl(2,R) such that A = exp(A).
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We have seen that every Lie group G has a Lie algebra g associated, and that in fact g
generates G through the exponential map if G is connected, thus emphasizing the fact that
Lie algebras can be interpreted as the infinitesimal versions of Lie groups. Moreover, we
have seen a one-to-one correspondence between connected subgroups of a Lie group and
Lie subalgebras of its Lie algebra (Theorem 2.21). Is this correspondence true in general?
Obviously every connected Lie group G has its Lie algebra g, but is there also a connected
Lie group associated to every Lie algebra? The answer is affirmative, though not easy to
prove at all. Its first version was proved locally by Lie, and is known as Lie’s 3rd theorem.
The global version states that for every finite dimensional Lie algebra g̃ there is a Lie group
G whose Lie algebra g is isomorphic to g̃. It was not until 1924 that É. Cartan proved the
global case, thus it is also called the Cartan-Lie theorem. Several proofs exist, but all are
long and require deeper concepts.

Modern stronger versions of this theorem have been developed, such as Ado’s theo-
rem, which states that every finite dimensional Lie algebra has a faithful representation in
gl(n,C).

One of its useful consequences is the theorem stated below. For a discussion on the
pathway to such result, see Warner [8], although no proof is given either. For a short
proof, though not easy, of the result below, see Gorbatsevich [18].

Theorem 2.37. Let g be a Lie algebra. Then there exists a connected, simply connected Lie group
G with Lie algebra g.

2.4 Lie Transformation Groups

Throughout this section the elements of a Lie group G will be denoted by the letters
g, h; and the points of a manifold M by the letters p or x, y, z.

Definition 2.38. A Lie transformation group of a manifold M is a pair (G, M) where G is a
Lie group and where to each g ∈ G there is a given diffeomorphism of M, lg ∈ Diff(M), such that

l : G×M −→ M

(g, p) 7−→ l(g, p) = lg(p)

is smooth and fulfills lg ◦ lh = lgh and le = IdM. Such a map l is called a left action of the Lie
group G on M. The partial mappings of l are denoted by lg : M → M and lp : G → M, given
by l(g, p) = lg(p) = lp(g) = g · p for all g ∈ G and p ∈ M.

Remark 2.39. Again, as in the previous section, one can also define Lie transformation
groups through right actions rather than left actions.

We jump directly to the main result of this chapter. The following theorem, due to
Palais [1], is the main stone on which we will build the proof that the group of isome-
tries of a semi-Riemannian manifold is a Lie transformation group. It provides a neces-
sary condition for an abstract group of automorphisms of a smooth manifold M to be
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a Lie transformation group. The proof given is from Chu-Kobayashi [5], adapted from
Kobayashi [6].

Theorem 2.40. Let G be a group of diffeomorphisms of a manifold M onto itself. Let S be the set
of all vector fields X̃ on M which generate global 1-parameter groups φt = FlX̃

t of transformations
of M such that φt ∈ G. If the set S generates a finite-dimensional Lie algebra of vector fields on M,
then (G, M) is a Lie transformation group and S is the Lie algebra of G.

Proof. Let g∗ be the Lie algebra of vector fields on M generated by S. Let G̃ be the con-
nected, simply connected Lie group with Lie algebra g∗ (Theorem 2.37). It is an abstract
Lie group, not a transformation group yet. Now, for each X ∈ g∗, we denote by exp(tX)

the 1-parameter subgroup of G̃ generated by X (Def. 2.27); while we denote by FlX
t

the 1-parameter local group of local transformations of M generated by the flow of the
vector field X. Then, thanks to these identifications, there exist a neighborhood U of
{e} ×M in G̃ × M and a mapping f : U → M such that f (exp(tX), p) = FlX

t (p) for all
(exp(tX), p) ∈ U ⊆ G̃×M. We say that the group G̃ acts locally on M.

Lemma A. Given X, Y ∈ g∗, let Z ∈ g∗ be Z =ad′exp(X)(Y). If X, Y ∈ S then also Z ∈ S.

Proof of Lemma A. As in the example following Prop. 2.30, we have

exp(tZ) = exp(ad′exp(X)(tY)) = adexp(X)(exp(tY)) = (exp(X))(exp(tY))(exp(−X)).

Therefore, when we evaluate f at (exp(tZ), p) we obtain

f (exp(tZ), p) = FlZ
t (p) = FlX

1 FlY
t FlX
−1(p).

If X, Y ∈ S, then the right hand side of the equation is defined for all p ∈ M and for all
t ∈ R, as X and Y are complete vector fields by the definition of S. Then also the the flow
of Z is defined for all p and t, meaning that Z is complete, hence Z ∈ S.

Lemma B. S spans g∗ as a vector space.

Proof of Lemma B. Let V be the vector subspace of g∗ spanned by S. By Lemma A, we
have (ad′exp(S))S ⊆ S and therefore (ad′exp(S))V ⊆ V, as every element in V can be written
as a linear combination of elements in S and tangent maps are linear. Since S generates the
Lie algebra g∗, taking the exponential map, this translates to (exp S) generating G̃ (using
an adaptation of Corollary 2.34), as we have defined G̃ as the connected Lie group with
Lie algebra g∗. Hence (ad′G̃)V ⊆ V. In particular, as S ⊆ V ⊆ g∗ so exp(S) ⊆ exp(V) ⊆ G̃,
(ad′exp(V))V ⊆ V. In turn, this can be shown to imply [V, V] ⊆ V, using Prop. 2.32.
Therefore, V ⊆ g∗ as a subalgebra. Since V contains S, and g is the Lie algebra generated
by S, it follows that V generates g∗, thus V = g∗.

Lemma C. S = g∗.

Proof of Lemma C. Using the previous lemma, let X1, ...Xr ∈ S be a basis for g∗. Then
the mapping

∑ aiXi ∈ g∗ −→ (exp(a1X1)) · · · (exp(arXr)) ∈ G̃.

gives a diffeomorphism of a neighborhood N of 0 in g∗ onto a neighborhood U of the
identity element in G̃ (Theorem 2.28, 4.). Let Y ∈ g∗. Let δ > 0 such that exp(tY) ∈ U
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for |t| < δ. Therefore, for each t with |t| < δ, there exists a unique element ∑ ai(t)Xi ∈ N
such that

exp(tY) = exp(a1(t)X1) · · · exp(ar(t)Xr) ∈ G̃.

The action of exp tY on M is therefore given, for p ∈ M and |t| < δ, by the map f , yielding

f (exp(tY), p) = FlY
t (p) = FlX1

a1(t)
· · · FlXr

ar(t)
(p).

This shows that every element Y of g∗ generates a global 1-parameter group of transfor-
mations of M: as in the proof of Lemma A, the right hand side of the equality is well
defined globally because X1, ..., Xr ∈ S. Therefore also, Y ∈ S. So we see that every Y ∈ g∗
is also an element of S, so g∗ ⊆ S. But obviously S ⊆ g∗, as g∗ is the Lie algebra generated
by S. Hence, S = g∗ and Lemma C is proved.

Now, let G∗ be the connected Lie transformation group acting on M generated by g∗.
G∗ exists since every element of g∗ generates a global 1-parameter group of transforma-
tions of M, as we have seen through the previous Lemmas, concluding that g∗ = S. Since
G∗ is connected, the assumption on the statement of the theorem implies that G∗ ⊆ G.
Let φ ∈ G and let ψt be a 1-parameter subgroup of G∗. Then, φψtφ

−1 is a 1-parameter
group of transformations of M contained in G. From the construction of G∗, it follows
that this 1-parameter group is also a subgroup of G∗, since G∗ is the Lie group generated
by g∗ = S. This implies that G∗ is a normal subgroup of G and each φ ∈ G defines an
automorphism Aφ : G∗ → G∗ by Aφ(ψ) = φψφ−1. Since the automorphism Aφ sends
every global 1-parameter subgroup of G∗ to a global 1-parameter subgroup of G∗, Aφ is
continuous. (Chevalley [15] p. 128).

Lemma D. Let G be a group and G∗ a topological group contained in G as a normal
subgroup. If Aφ : G∗ → G∗ is continuous for each φ ∈ G, then there exists a unique
topology on G which makes G∗ open in G.

Proof of Lemma D. Let {W} be the system of open neighborhoods of the identity element
in G∗, that is, let {W} be the collection of all open neighborhoods in G∗ about e. Then, we
define {φ(W)} as the system of open neighborhoods of φ ∈ G in G. It is straightforward
to see that G∗ is open in G with respect to the topology thus defined in G, and that this
topology is also unique.

Applying Lemma D to our case, we see that G is a topological space in addition to its
group structure (given by the compact-open topology defined in G∗ (Def. A.13)), with now
the group operation (the composition of diffeomorphisms) being continuous. Moreover,
the identity component of G is G∗, as G∗ is connected and e ∈ G∗. And as G∗ is a Lie
group, its differentiable structure can be translated to the other connected components of
G. Therefore G is also a Lie group. This, combined with the differentiability of the left
action l∗ : G∗ ×M → M implies the differentiability of l : G×M → M. Hence, G is a Lie
transformation group of M.



Chapter 3

Semi-Riemannian Geometry

Semi-Riemannian Geometry is the branch of Differential Geometry devoted to the
study of manifolds equipped with a particular tensor field: the metric tensor. The metric
tensor is a bilinear non-degenerate symmetric (0,2) tensor field which provides a scalar
product to all tangent spaces of a manifold, allowing one to properly define notions of
angles between vectors and length of curves, generalizing these concepts from Rn to man-
ifolds.

Two special cases are worth mentioning: the Riemannian metric, the first one of such
metrics to be described, which is positive-definite; and the Lorentz metric, which has index
one and describes space-time in modern physics through Einstein’s theories of Relativity.

The study of both metrics was initially done in different styles. Riemannian Geom-
etry, as the name suggests, was first described by the German mathematician Bernhard
Riemann in mid-XIXth century, sparked by previous results of his doctoral thesis advisor,
Carl F. Gauss. It was developed using coordinate-free methods and mainly devoted to the
study of global problems. In contrast, Lorentz Geometry, although commented by Killing,
Poincaré and others at the end of the XIXth century, was greatly boosted by theoretical
physicists and mathematicians interested in Relativity after the publication of Einstein’s
theories (Special Relativity, 1905; General Relativity 1915). In 1907, it was again a German
mathematician, Hermann Minkowski, who noticed that space-time in Special Relativity
could be described as a 4-dimensional manifold. Unluckily for science, Minkowski died
from appendicitis on 1909 and could not work along his dear friend David Hilbert on
developing General Relativity, which he did independently of Einstein. From thereon the
subject was mainly developed in classical tensor notation. It was not until the 1960s, when
General Relativity finally entered mainstream physics, that leading theoretical physicists
and mathematicians such as S. Hawking, R. Penrose and many others turned their at-
tention to invariant methods for General Relativity in order to solve causality issues and
further understand singularities. We refer the interested reader to [22] for a beautiful
account on the historical development of General Relativity.

In this work we shall define concepts in a coordinate invariant manner, and then show
their coordinate expression. Some important proofs will need coordinates, so they are not
to be neglected.
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3.1 The Metric: Basic Definitions

Definition 3.1. A metric tensor g on a smooth manifold M is a symmetric non-degenerate (0,2)
smooth tensor field on M which has constant index ν.

That is, g assigns to each point p ∈ M a scalar product gp for its tangent space Tp M;
and the index of gp is νp = ν for all p ∈ M. (See Defs. A.17 - A.20). The metric tensor
is smooth in the following sense: for all X, Y smooth vector fields on M, the function
g(X, Y) : M→ R defined by g(X, Y)(p) = gp(Xp, Yp) is smooth.

Definition 3.2. A semi-Riemannian manifold is a pair (M, g) of a smooth manifold M and a
metric tensor g on M. We say that (M, g) is a

• Riemannian manifold if ν = 0, i.e., if gp is a positive-definite inner product for all p ∈ M.

• Lorentz manifold if ν = 1 and dim M ≥ 2.

Although we will prove that the isometry group of a semi-Riemannian manifold is a
Lie group regardless of the index of its metric tensor in the next chapter, it is useful some-
times to make this distinction in order to present more familiar examples or notions that
the reader may know. Moreover, there are some characteristic traits of Riemannian man-
ifolds that do not hold for other semi-Riemannian manifolds. For example, one can turn
Riemannian manifolds into metric spaces by defining a distance on them. Also, the exis-
tence of partitions of unity on smooth manifolds guarantees the existence of Riemannian
metrics on any manifold, but that is not true for Lorentz metrics. Let us first, however,
comment on the coordinate expression of g. Afterwards we will define some concepts
shared by all semi-Riemannian manifolds, paying special attention to the ones we shall
need in the next chapter on isometries. We will end this chapter showing the existence
theorems for the Riemannian and Lorentz case.

Remark 3.3. Let (U, ϕ) be a chart on a semi-Riemannian manifold (M, g). Let x1, ..., xn be
the coordinate functions for ϕ. Recall that the vector fields ∂1, ..., ∂n form a basis for each
Tp M when evaluated at p ∈ U. So for smooth vector fields defined on U, X = Xi∂i and
Y = Y j∂j, we have

g(X, Y) = g(Xi∂i, Y j∂j) = XiY jg(∂i, ∂j).

Thus, it is only natural to define g = gij dxi⊗ dxj with gij = g(∂i, ∂j). Also, g is symmetric,
hence gij = gji. Moreover, as g is non-degenerate, the components gij form a non-singular
matrix. Therefore we can define an inverse metric as g−1 := gij ∂i ⊗ ∂j, where (gij) =

(gij)
−1.

Example 3.4. 1. Rn with the usual Euclidean metric given by gij = δij in canonical
coordinates is a Riemannian manifold, identifying TpR

n ∼= Rn for all p ∈ Rn.

2. Rn with a metric tensor gij = diag(−1, ν. . .,−1, 1, n−ν. . . , 1) in canonical coordinates
is the easiest example of a semi-Riemannian manifold of index ν, which we shall
denote by Rn

ν , again identifying TpR
n
ν
∼= Rn

ν for all p ∈ Rn
ν . If n = 4 and ν = 1, it is

called the Minkowski space-time, and it is the space-time of Special Relativity. It is a
Lorentz manifold.
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Remark 3.5. These two examples are of utmost importance. It is a well know result from
Euclidean geometry that all vector spaces with an Euclidean inner product are isomorph
to Rn with an orthogonal basis for which gij = δij, through a Gram-Schmidt process.
Equivalently, any given vector space with an inner product with index ν 6= 0 is isomorph
to Rn

ν with gij = diag(−1, ν. . .,−1, 1, n−ν. . . , 1), by a process similar to Gram-Schmidt but
taking into account the negative signs that might appear. (See O’Neill p. 47-52).
What is not so obvious is that given a semi-Riemannian manifold (M, g), one can locally
find smooth vector fields E1, ..., En so that for all points p in some open subset U ⊆ M,
E1(p), ..., En(p) form an orthonormal basis of Tp M. We shall go back to this matter in a
few pages.

In order to distinguish between the metric tensor as a tensor field or as scalar product
at Tp M for some point p ∈ M, we have used g and gp respectively. From now on we shall
simply write g for both cases whenever its use is understood from the context.

Remark 3.6. A remarkable feature of semi-Riemannian geometry is the one-to-one corre-
spondence between vector fields and one-forms that arises through the metric. Let X be a
smooth vector field on a semi-Riemannian manifold (M, g). Then, X[ := g(X, ·) : X(M)→
F (M) is a one-form on M. On a chart with coordinate functions x1, ..., xn where X = Xi∂i,
X[ = X[

i dxi, with X[
i = gijX j. Similarly we can define the vector field ω] = ω]i∂i = gijωj∂i

for any one-form ω = ωidxi, where gij = (gij)
−1. The reason behind this notation is that

the metric tensor lowers and raises indices respectively for [ and ], similarly to their effect
in musical notation.

Definition 3.7. Let (N, g) be a semi-Riemannian manifold. Let φ : M→ N be a smooth mapping.
We define the pullback (φ∗g) of the metric tensor g by φ as

(φ∗g)p(u, v) = gφ(p)(dφ(u), dφ(v)),

for all u, v ∈ Tp M and all p ∈ M.

It is easy to check that indeed (φ∗g) is a (0,2) tensor field on M. However, it need not
be a metric tensor if the metric on N has index ν 6= 0.

Definition 3.8. Let (M, φ) be a submanifold of a semi-Riemannian (N, g). If the pullback (φ∗g)
is a metric tensor on M, then we say that (M, (φ ∗ g)) is a semi-Riemannian submanifold of N.

Example 3.9. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. Given an atlas of polar charts on
S2, with coordinate functions (θ, φ), the induced metric tensor resulting from the pullback
of the usual Euclidean metric on R3 is given by gθθ = 1, gφφ = sin2 θ, and gθφ = gφθ = 0.

3.2 Levi-Civita Connection

Informally speaking, a connection is a map which tells us how to transport a tangent
vector from the tangent space of a point in M to the tangent space of another neighboring
point. There are many ways to do so, but only one is interesting from the point of view
of semi-Riemannian geometry: the Levi-Civita connection. It is the unique connection



28 Semi-Riemannian Geometry

which "behaves nicely" on a semi-Riemannian manifold, and in fact it can be derived
from the metric itself. We will focus exclusively on the Levi-Civita connection. For more
information on general connections see chapter II and III of Kobayashi and Nomizu [9].

Definition 3.10. Let M be a manifold. A connection ∇ is a map

∇ : X(M)×X(M) −→ X(M)

(X, Y) 7−→ ∇XY

such that

1. ∇X(aY1 + bY2) = a∇XY1 + b∇XY2, for all a, b ∈ R and for all X, Y1, Y2 ∈ X(M).

2. ∇ f X1+hX2Y = f∇X1Y + h∇X2Y, for all f , h ∈ F (M) and for all X1, X2, Y ∈ X(M).

3. ∇X( f Y) = (X f )Y + f∇XY, for all f ∈ F (M) and for all X, Y ∈ X(M).

We say that ∇XY is the covariant derivative of Y with respect to X for the connection ∇.

We can also define the covariant derivative of a vector field Y at a point p ∈ M with
respect to a tangent vector v ∈ Tp M. One need only find a vector field X ∈ X(M) such
that Xp = v and then set ∇vY = (∇XY)p ∈ Tp M.

Also, ∇ is called symmetric or torsion-free if, in addition,

4. ∇XY−∇YX = [X, Y] for all X, Y ∈ X(M).

And we say that ∇ is compatible with the semi-Riemannian metric tensor if

5. X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) for all X, Y, Z ∈ X(M).

Theorem 3.11. Let (M, g) be a semi-Riemannian manifold. Then, there exists a unique connection
∇ which is also torsion-free and compatible with the metric tensor g. It is called the Levi-Civita
connection.

Proof. We will first prove uniqueness and then existence. Let us write all cyclic permuta-
tions of property (5.) for X, Y, Z ∈ X(M):

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

Y(g(Z, X)) = g(∇YZ, X) + g(Z,∇YX).

Z(g(X, Y)) = g(∇ZX, Y) + g(X,∇ZY).

Adding the first two equalities and subtracting the last one, we obtain

X(g(Y, Z)) + Y(g(Z, X))− Z(g(X, Y))

= g(∇XY +∇YX, Z) + g(∇XZ−∇ZX, Y) + g(∇YZ−∇ZY, X)

= g(2∇XY− [X, Y], Z) + g([X, Z], Y) + g([Y, Z], X),

where we have used property (4.) on the last equality. Rearranging terms,

2g(∇XY, Z) = X(g(Y, Z)) + Y(g(Z, X))− Z(g(X, Y))

+ g([X, Y], Z)− g([X, Z], Y)− g([Y, Z], X), (3.1)
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which proves the uniqueness of the map (X, Y) 7→ ∇XY, as it defines it with an implicit
equation. Notice also that eq. (3.1) above depends solely on the choice of metric.

To prove the existence of ∇ one need only prove that the covariant derivative defined
through the equation above indeed fulfills conditions (1.), (2.), and (3.). It is easy to
check if one keeps in mind bilinearity of both the metric tensor and the bracket operation,
and the product rule for Lie brackets, [X, f Y] = X( f )Y + f [X, Y], although they are long
calculations so we will not include them here.

Definition 3.12. Let (U, ϕ) be a chart with coordinate functions x1, ..., xn on a semi-Riemannian
manifold (M, g). The functions Γi

jk : U → R defined by

∇∂j
∂k = Γi

jk∂i

are called the Christoffel symbols in the chart (U, ϕ).

Proposition 3.13. Let (M, g) be a Riemannian manifold, and let X, Y be two vector fields on M.
Let (U, ϕ) be a chart with coordinate functions x1, ..., xn. Then, given g = gijdxi ⊗ dxj, (gij) =

(gij)
−1, X = Xi∂i, and Y = Yi∂i, the coordinate expressions for Γ and ∇XY are

Γi
jk =

1
2

gil(∂jgkl + ∂kgl j − ∂l gjk). (3.2)

∇XY = (X j∂jYi + Γi
jkX jYk)∂i. (3.3)

Proof. We will only sketch the proof as it is again an easy but tedious calculation. The
coordinate expression of the Christoffel symbols can be obtained by subsituting their def-
inition into equation (3.1), with X = ∂j, Y = ∂k and Z = ∂l . Now, since [∂i, ∂j] = 0 for all
i, j = 1, ..., n, we obtain

2g(Γi
jk∂i, ∂l) = 2g(∇∂j

∂k, ∂l) = ∂jgkl + ∂kgl j − ∂l gjk, (3.4)

from which one can easily derive expression (3.2), since 2g(Γi
jk∂i, ∂l) = 2Γi

jkgil . Regarding
the coordinate expression of the covariant derivative of two vector fields ∇XY, again it is
a straightforward calculation after substituting each term for its coordinate expression on
property (3.) of the definition of ∇ (Def. 3.10).

Remark 3.14. From the formula (3.2) it can easily be noticed that the Christoffel symbols
are symmetric on the lower indices (Γi

jk = Γi
kj), because the metric tensor is also symmetric.

Remark 3.15. It may be sometimes useful to write down the partial derivatives of the
coordinates of the metric tensor in terms of the Christoffel symbols. Adding eq. (3.4) to
its equivalent expression switching the j and l indices, we obtain

∂kgl j = gijΓi
kl + gilΓ

i
kj. (3.5)

We have seen that the Levi-Civita connection ∇ can be understood as a map ∇ :
X(M)× X(M) → X(M) with (X, Y) 7→ ∇XY, but also that for a given X it can act as a
derivation ∇X : X(M) → X(M) with Y 7→ ∇XY. However, we could consider the map
(∇Y) : X(M)→ X(M) given by X 7→ ∇XY.
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Definition 3.16. Let Y ∈ X(M). We define the covariant differential ∇Y as the (1,1) tensor
field on M such that (∇Y)(X) = ∇XY for all X ∈ X(M).

Proposition 3.17. Given a chart with coordinate functions x1, ..., xn wherein Y = Yi∂i, the local
coordinate expression of ∇Y is

∇Y = (∇Y)i
j ∂i ⊗ dxj, (∇Y)i

j = ∂jYi + Γi
jkYk. (3.6)

Proof. Immediate from eq. (3.3) taking X = ∂j.

3.3 Parallel Transport and Geodesics

We shall now focus on a special kind of curves. Geodesics are the generalization of
straight lines from Euclidean spaces to semi-Riemannian manifolds. They are smooth
curves γ : [a, b] → M, with the defining property that their velocity vector γ′ is parallel
transported along them, that is, informally, γ′′ = ∇γ′γ

′ = 0. Let us first properly define
covariant derivatives on a curve and the concept of parallel transport.

Parallel Translation

Definition 3.18. A vector field V on a curve α : [a, b]→ M is a mapping [a, b]→ TM such that
π ◦V = α, where π is the projection TM→ M. The set of all smooth vector fields on a curve α is
denoted by X(α).

Proposition 3.19. Let α : [a, b] → M be a smooth curve on a semi-Riemannian manifold (M, g)
with Levi-Civita connection ∇. Then, there is a unique map

D
dt

: X(α) −→ X(α)

V 7−→ D
dt

V

such that for all c, d ∈ R, f ∈ F ([a, b]), t ∈ [a, b], and X ∈ X(M),

1. D
dt (cV1 + dV2) = c D

dt V1 + d D
dt V2,

2. D
dt ( f V) = d f

dt V + f D
dt V,

3. D
dt (X|α(t)) = ∇α′(t)X.

It is called the induced covariant derivative on α.

Proof. As in previous results from this section, we shall prove uniqueness assuming exis-
tence by finding a coordinate equation defining D

dt . Then, existence will follow by straight-
forwardly verifying that the defining properties above are fulfilled by the formula found.
Let there be an induced covariant derivative D

dt on a smooth curve α : [a, b]→ M. Without
loss of generality we can assume that α([a, b]) ⊆ U, where (U, ϕ) is a chart of M with
coordinate functions x1, ..., xn. Then, for any V ∈ X(α), V(t) = V|α(t) = Vi(t)∂i, where
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Vi(t) := V(xi(α(t))) ∈ F ([a, b]) are the coordinates of V. Now, by the properties defined
above,

D
dt

V =
D
dt
(Vi∂i) =

dVi

dt
∂i + Vi D

dt
∂i =

dVi

dt
∂i + Vi∇α′∂i , (3.7)

which proves uniqueness, as it defines D
dt uniquely from ∇.

Before introducing parallel translation, let us now see a useful result about the rate of
change of the scalar product of two vector fields on a curve. It is the analogue to property
(5.) of the definition of the Levi-Civita covariant derivative (Def. 3.10)

Proposition 3.20. Let (M, g) be a semi-Riemannian manifold. Let α : [a, b] → M be a smooth
curve on M, and let D

dt be the induced covariant derivative on α. Then, for all X,Y smooth vector
fields on α,

d
dt
(

g(X, Y)
)
= g(

D
dt

X, Y) + g(X,
D
dt

Y).

Proof. We can work locally in the domain of a chart (U, ϕ) without loss of generality. Let
x1, ..., xn be the coordinates functions of ϕ. Then, we can write

d
dt
(

g(X, Y)
)
=

d
dt
(

gijXiY j) = dgij

dt
XiY j + gij

dXi

dt
Y j + gijXi dY j

dt
. (3.8)

The first term of the right-hand side expression can be expanded by the chain rule of
dgij
dt = ∂kgij

d(xk◦α)
dt and using equation (3.5) for the partial derivatives of the metric:

dgij

dt
XiY j = ∂kgij

d(xk ◦ α)

dt
XiY j =

(
gl jΓ

l
ki + gliΓ

i
kj

) d(xk ◦ α)

dt
XiY j. (3.9)

Substituting eq. (3.9) to eq. (3.8) above, rearranging terms and relabelling dummy indices
whenever necessary, we can see that it matches the expression below, obtained by express-
ing the induced covariant derivative of X and Y in coordinates (eq. (3.10) derived in the
proof of the next Proposition):

g(
D
dt

X, Y)+ g(X,
D
dt

Y) = gij
dXi

dt
Y j + gijΓi

kl
d(xk ◦ α)

dt
XlY j + gijXi dY j

dt
+ gijΓi

kl
d(xk ◦ α)

dt
X jYl .

Definition 3.21. We say that a vector field V on a curve α is parallel if D
dt V = 0.

Proposition 3.22. Let α : [a, b]→ M be a smooth curve on a semi-Riemannian manifold (M, g).
Let c ∈ [a, b] and let v = vi∂i|p ∈ Tp M, where p = α(c). Then, there is a unique parallel vector
field V on α such that Vp = v. We say that V is the parallel transportation of v along α.

Proof. Again, we can assume without loss of generality that α([a, b]) ⊆ U, where (U, ϕ) is a
chart of M with coordinate functions x1, ..., xn. If we substitute ∇ by its coordinate expres-
sion as Christoffel symbols (eq. 3.3) in equation 3.7 for the induced covariant derivative,
we obtain

D
dt

V =

(
dVk

dt
+ Γk

ij
d(xi ◦ α)

dt
V j

)
∂k. (3.10)
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Then, the condition D
dt V = 0 for parallel vector fields can be seen as a system of linear

ordinary differential equations for Vi with initial condition Vi(c) = vi. Existence and
uniqueness of solutions of linear systems of ODE’s gives us the desired result.

Remark 3.23. In the notation of the previous proposition, let d ∈ [a, b] and q = α(d). We
will denote the parallel translation of v from Tp M to Tq M along α by

P = Pd
c (α) : Tp M −→ Tq M

v 7−→ P(v) = Vq.

Proposition 3.24. Parallel translation is a linear isometry of vector spaces.

Proof. Let v, w ∈ Tp M correspond to parallel vector fields V, W. Let k ∈ R. Obvi-
ously V + W and kV are also parallel vector fields: the (induced) covariant derivative
is R-linear. Therefore parallel translation is a linear morphism of vector spaces, since
P(v + w) = (V + W)q = Vq + Wq = P(v) + P(w) and P(kv) = (kV)q = kVq = kP(v).
Uniqueness of solutions of Prop. 3.22 and dim Tp M = dim Tq M yield bijectivity. Hence
P is a linear isomorphism. We only have to see that the scalar product is preserved. It
is straightforward from 3.20 and the fact that V, W have null covariant derivative along α

due to being parallel.

d
dt

g(V, W) = g(
D
dt

V, W) + g(V,
D
dt

W) = 0.

Therefore g(V, W) is constant along α, so

gq(P(v), P(w)) = gq(Vq, Vq) = gp(Vp, Vp) = gp(v, w).

Geodesics

Definition 3.25. A curve γ : [a, b] → M is called a geodesic if its velocity vector is parallel. In
other words, γ is a geodesic if it has null acceleration: γ′′ := D

dt γ′ = 0.

Corollary 3.26. Let γ : [a, b]→ M be a geodesic on a Riemannian manifold (M, g). Let D
dt be its

induced covariant derivative. Then, for all X ∈ X(γ),

d
dt
(

g(X, γ′)
)
= g(

D
dt

X, γ′) (3.11)

Proof. Immediate from Prop. 3.20 and the fact that D
dt γ′ = 0.

The following results present the existence and uniqueness of geodesics starting at a
point with a given initial velocity. They are an immediate consequence of the existence
and uniqueness of parallel translation.

Consider the particular case of V = α′ of Proposition 3.22:
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Corollary 3.27. A curve γ : [a, b] → M is a geodesic if and only if, for any given chart (U, ϕ),
ϕ = (x1, ..., xn), its local coordinate functions (xk ◦ γ), k = 1, ..., n , fulfill

d2(xk ◦ γ)

dt2 + Γk
ij

d(xi ◦ γ)

dt
d(xj ◦ γ)

dt
= 0. (3.12)

Now, existence and uniqueness of solutions of systems of linear ODE’s can be used to
easily prove the following six results, starting from the Corollary above. For the detailed
proofs, see O’Neill [11] p. 68-72.

Lemma 3.28. For any p ∈ M and any v ∈ Tp M there is an interval 0 ∈ [a, b] and a unique
geodesic γ : [a, b]→ M such that γ(0) = p and γ′(0) = v.

Lemma 3.29. Let γ, τ : [a, b]→ M be geodesics. If γ(c) = τ(c) for some c ∈ [a, b], then γ = τ.

Proposition 3.30. For any p ∈ M and any v ∈ Tp M there is a unique geodesic γv : Iv → M
such that γv(0) = p, γ′v(0) = v, and Iv is maximal. We say that γv is a maximal geodesic.

In a similar fashion as we did for left-invariant flows on Lie groups, we can define a
map which collects all geodesics starting at a point in M. We will also call it the expo-
nential map. As opposed to the exponential map on Lie groups, which is defined on the
identity (although then it can be left-transported), we can define the geodesic exponen-
tial map on any point p ∈ M. This map will too give us a diffeomorphism between a
neighborhood of 0 ∈ Tp M and a neighborhood of p.

Definition 3.31. Let p be a point on a semi-Riemannian manifold (M, g). Let Dp be the set of
vectors v in Tp M such that their maximal geodesic γv is defined at least on [0, 1]. The exponential
map of M at p is defined as

expp : Dp −→ M

v 7−→ expp(v) = γv(1).

As we did with Lie groups, the identification of a vector space with its own tangent
vector space, Tp M ∼= T0(Tp M) allows us to easily see that d expp = IdTp M. Therefore, by
the Inverse Function Theorem we obtain the following corollary.

Corollary 3.32. For each point p ∈ M there exists a neighborhood V of 0 in Tp M on which the
exponential map expp is a diffeomorphism onto a neighborhood U of p in M.

We say that such a neighborhood U ⊆ M is normal if its corresponding V ⊆ Tp M is
starshaped, i.e., if for all v ∈ V also ρ(t) := tv ∈ V, with 0 ≥ t ≥ 1.

Proposition 3.33. If U is a normal neighborhood of p ∈ M, then for each q ∈ U there is a unique
geodesic τ = expp ◦ ρ : [0, 1]→ U such that τ(0) = p, τ(1) = q and τ′(0) = exp−1

p (q) ∈ V.

Such a geodesic is called a radial geodesic.
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Remark 3.34. We are now in position to retake the local existence of orthonormal vec-
tor fields presented in Remark 3.5. We saw that on any tangent space Tp M of a semi-
Riemannian manifold (M, g), we can find a basis e1, ..., en through a Gram-Schmidt pro-
cess so that the metric tensor on p has coordinates gij = diag(−1, ν. . .,−1, 1, n−ν. . . , 1). Let α

be a curve on M going through p. By Proposition 3.22, there exist parallel vector fields
E1, ..., En along α so that their evaluation at p is e1, ..., en. And since parallel translation is a
linear isometry of vector spaces (Prop. 3.24), we have that E1, ..., En become orthonormal
basis when evaluated at all points along the curve α. Finally, to see that this also can be
applied to small subsets of M, one need only extend this process to all radial geodesics on
a normal neighborhood U of p. (See O’Neill [11], p.84-85 for a complete proof).

Riemannian Metric Spaces

We end this section presenting the well-known metrization of Riemannian manifolds.

Definition 3.35. Let α : [a, b] → M be a smooth curve on a Riemann manifold (M, gR). We
define the arc-length of α as

L[α] :=
∫ b

a

√
gα(t)

(
α′(t), α′(t)

)
dt

This definition can be straightforwardly generalized to piecewise smooth curves.

Definition 3.36. Let (M, gR) be a connected Riemannian manifold. Then, we define the distance
d : M×M→ R as

d(p, q) := inf {L[α] | α : [0, 1]→ M piecewise smooth, α(0) = p, α(1) = q}.

The previous definition indeed defines a distance in the topological sense (see Gallot,
Hulin and Lafontaine, Section 2.C.3 (p.89-94)). If M is not connected it also holds if we
define the distance of two points in different connected components to be ∞. Therefore,

Theorem 3.37. All Riemannian manifolds (M, gR) are metrizable.

3.4 Curvature

Definition 3.38. Let (M, g) be a semi-Riemannian manifold with Levi-Civita connection ∇. The
Riemann curvature tensor R is the (1,3) tensor field on M defined by

R : (X(M))3 −→ X(M)

(X, Y, Z) 7−→ R(X, Y)(Z) = RXYZ := ∇[X,Y]Z− [∇X ,∇Y]Z

where [∇X ,∇Y] = ∇X∇Y −∇Y∇X , even though these terms are not vector fields.

Remark 3.39. The fact that the definition above gives indeed a tensor field is not obvious.
Recall that neither the bracket operation nor the covariant derivative are tensor fields.
However, due to some beautiful cancellations from both terms on the definition, the re-
sulting R is indeed a tensor field. It is again an easy but tedious exercise to prove the
F (M)-linearity for X, Y, and Z.
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Informally, the Riemann curvature tensor describes the difference between a tangent
vector at a point Zp and the tangent vector R(X, Y)(Z)p resulting of parallel transporting
the initial vector Zp around an infinitesimal loop following the flow lines of X and Y.

Proposition 3.40. Let X, Y, Z, V, W ∈ X(M). Then,

1. RXYZ = −RYXZ.

2. g(RXYV, W) = g(RVW X, Y).

Proof. Property (1.) is immediate from the definition of the curvature tensor and the fact
that the bracket is antisymmetric. The proof of (2.) is rather long, as it involves summing
over all cyclic permutations of X, Y, V and W, so we leave it out for conciseness. The
interested reader can find a proof in O’Neill ([11], p.75).

Proposition 3.41. Let (U, ϕ) be a chart on M with coordinate functions x1, ...xn. Then, the local
coordinate expression of R on U is given by R∂k∂l

∂j = Ri
jkl∂i, where

Ri
jkl =

∂Γi
kj

∂xl −
∂Γi

l j

∂xk + Γi
lrΓr

kj − Γi
krΓr

lj. (3.13)

Proof. For coordinate vector fields, R∂k∂l
∂j = ∇[∂k ,∂l ]

∂j − [∇∂k
,∇∂l

]∂j = ∇∂l
(∇∂k

∂j) −
∇∂k

(∇∂l
∂j), as the commutator [∂k, ∂l ] = 0. Now, substituting the coordinate expres-

sion for the covariant derivative (eq. (3.3)) into the first term, and using property 3. of the
covariant derivative (Def. 3.11),

∇∂l
(∇∂k

∂j) = ∇∂l
(Γr

kj∂r) =
∂Γr

kj

∂xl ∂r + Γr
kj∇∂l

∂r =
∂Γr

kj

∂xl ∂r + Γr
kjΓ

s
lr∂s =

(
∂Γi

kj

∂xl + Γr
kjΓ

i
lr

)
∂i,

where we have relabeled the dummy indices in the last step. Finally, subtracting the
equivalent expression for the second term yields the desired result.

3.5 Variations and Jacobi Fields

Informally speaking, Jacobi fields are vector fields on a geodesic which describe the
difference between the geodesic and neighboring geodesics, controlled by the Riemann
curvature tensor of the manifold. Therefore we must first define the concept of variation,
a 1-parameter family of smooth curves around a given smooth curve on M.

Definition 3.42. Let α : [a, b] → M be a smooth curve on a semi-Riemannian manifold (M, g).
A variation of the curve α is a smooth map θ : [a, b]× (−δ, δ) → M with (t, s) 7→ θ(t, s) such
that α(t) = θ(t, 0) for all t ∈ [a, b].

Notice that for a fixed s0 ∈ (−δ, δ) the maps θ(·, s0) : [a, b]→ M are also smooth curves
on M, called the longitudinal curves of θ. Therefore we can also see the variation θ as a
1-parameter family of curves on M parametrized by s. We say that θ is a geodesic variation
if θ(t, s0) is a geodesic for all s0 ∈ (−δ, δ).
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However, we could also consider the curves θ(t0, ·) : (−δ, δ)→ M for a fixed t0 ∈ [a, b].
We will call them the transverse curves of the variation. The vector fields defined as

θt = dθ

(
∂

∂t

)
θs = dθ

(
∂

∂s

)
are called the partial velocities of longitudinal and transverse curves, respectively. For a
given chart (U, ϕ) with coordinate functions x1, ..., xn, their coordinate expressions are

θt =
∂(xi ◦ θ)

∂t
∂i =

∂θi

∂t
∂i θs =

∂(xi ◦ θ)

∂s
∂i =

∂θi

∂s
∂i, (3.14)

where we have defined the coordinates of θ as θi := xi ◦ θ for simplicity.

We can now define a vector field V on α by restricting θs on it: V(t) = Vα(t) = θs(t, 0).
This vector field can be regarded as the infinitesimal model of the variation θ of α, and
therefore it is called the variation vector field of θ.

We will want to know how this vector field behaves, so first we have to properly define
the derivatives on θ. If X is a smooth vector field on θ, we define its partial covariant deriva-
tives the following way: the longitudinal partial covariant derivative DX/∂t is given by
DX
∂t |(t0,s0)

being the induced covariant derivative at t0 of the vector field X̃(t) = X(θ(t, s0))

on the longitudinal curve θ(t, s0); equivalently the transverse partial covariant derivative
DX/∂s is defined by DX

∂s |(t0,s0)
being the induced covariant derivative at s0 of the vector

field X̄(s) = X(θ(t0, s)) on the transverse curve θ(t0, s). Their coordinate expressions,
given X = Xi∂i where Xi = X(∂i), can be found using equation (3.10) deduced along the
proof of Proposition 3.22:

D
∂t

X =

(
∂Xk

∂t
+ Γk

ij
∂θi

∂t
X j

)
∂k ,

D
∂s

X =

(
∂Xk

∂s
+ Γk

ij
∂θi

∂s
X j

)
∂k. (3.15)

Remark 3.43. Notice that D
∂t θt is the acceleration of the longitudinal curves, and D

∂s θs is the
acceleration of the transverse curves. As for the cross terms, they actually fulfill D

∂t θs =(
∂2θk

∂t ∂s + Γk
ij

∂θi

∂t
∂θ j

∂s

)
∂k = D

∂s θt. The proof is trivial using coordinates, because Γk
ij = Γk

ji
(eq. (3.2)), and second partial derivatives of smooth functions on Rn commute (Schwarz’s
theorem).

Before properly defining Jacobi fields, let us prove a useful property of the partial
covariant derivatives on a variation.

Lemma 3.44. Let θ be a variation on a semi-Riemannian manifold (M, g), and let X be a vector
field on θ. Then,

D
∂t

D
∂s

X− D
∂s

D
∂t

X = R(θt, θs)X.
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Proof. Again, we shall use coordinates to prove this Lemma. Using eq. (3.15) and Prop.
3.7, and relabelling the dummy indices whenever necessary,

D
∂t

D
∂s

X =

(
∂2Xk

∂t ∂s
+

∂

∂t

[
Γk

ij
∂θi

∂s
X j
])

∂k +

(
∂Xk

∂s
+ Γk

ij
∂θi

∂s
X j

)
D
∂t

∂k

=

(
∂2Xr

∂t ∂s
+

∂Γr
ij

∂t
∂θi

∂s
X j + Γr

ij
∂2θi

∂t ∂s
X j + Γr

ij
∂θi

∂s
∂X j

∂t
+ Γr

lk
∂θl

∂t
∂Xk

∂s
+ Γk

ijΓ
r
lk

∂θi

∂s
∂θl

∂t
X j

)
∂r

Therefore, by eq. (3.14) and Prop. 3.41,

D
∂t

D
∂s

X− D
∂s

D
∂t

X =

(
∂Γr

ij

∂t
∂θi

∂s
X j + Γk

ijΓ
r
lk

∂θi

∂s
∂θl

∂t
X j −

∂Γr
ij

∂s
∂θi

∂t
X j − Γk

ijΓ
r
lk

∂θi

∂t
∂θl

∂s
X j

)
∂r

=
∂θi

∂t
∂θl

∂s
X j

(
∂Γr

ij

∂xl −
∂Γr

lj

∂xi + Γk
ljΓ

r
ik − Γk

ijΓ
r
lk

)
∂r

=
∂θi

∂t
∂θl

∂s
X jR(∂i, ∂l)∂j = R(θt, θs)X.

So we see that the behaviour of a vector field on a variation is related to the Rie-
mann curvature tensor, which is again expressing the non-commutativity of the covariant
derivative.

Definition 3.45. Let γ be a geodesic on a semi-Riemannian manifold (M, g). A vector field Y
on γ which satisfies the Jacobi differential equation D2Y

dt2 + R(γ′, Y)γ′ = 0 is called a Jacobi
vector field.

The Jacobi equation is a linear second order ordinary differential equation, so a solu-
tion is uniquely determined by the values of Y and DY

dt at a point of the geodesic.

Theorem 3.46. Let θ : [a, b]× (−δ, δ)→ M be a geodesic variation of a geodesic γ : [a, b]→ M
on a semi-Riemannian manifold (M, g). Then, the variation vector field V(t) = θs(t, 0) of θ is a
Jacobi vector field.

Proof. Since t → θ(t, s0) is a geodesic for all s0 ∈ (−δ, δ), we have (Def. 3.25) that
D
∂t (θt(t, s0)) = 0 for all s0 ∈ (−δ, δ) . Now, by Lemma 3.44,

D2V(t)
∂t2 =

D
∂t

D
∂t

θs(t, 0) =
D
∂t

D
∂s

θt(t, 0) =
D
∂s��

���D
∂t

θt(t, 0) + R(θs, θt)θt = R(θs, θt)θt .

Hence, V = θs satisfies the Jacobi equation, as R(θs, θt)θt = −R(θt, θs)θt (Prop. 3.40).

For a more complete description of Jacobi fields see Michor [2] Chapter 26, or Gallot
[13] Chapter 3.C. Their applications in General Relativity are a fundamental tool to de-
scribe the gravitational tidal force associated to the curvature of space-time, as they describe
the relative kinematics of neighboring freely falling particles (See O’Neill [11] chapter 12
for a more detailed account of such applications). It is useful in this case to decompose
vector fields as a sum of a tangent and a perpendicular vector field, as the relative accel-
eration of such neighboring falling particles produced by tidal force depends only on the
perpendicular component of this force.
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Definition 3.47. Let (M, g) be a semi-Riemannian manifold. A smooth vector field X on a curve
α : [a, b]→ M is called

• tangent to α if X = f α′ for some smooth real function f . We denote this by X ‖ α.

• perpendicular to α if g(X, α′)|t = 0 for all t ∈ [a, b]. We denote this by X ⊥ α.

Remark 3.48. It is straightforward to see that if α′(t) 6= 0 for all t ∈ [a, b] then X has a
unique expression X = X‖ + X⊥, where X‖ and X⊥ are respectively tangent and perpen-
dicular to α.

Proposition 3.49. Let X be a vector field on a geodesic γ : [a, b]→ M. Then,

1. X ‖ γ⇒ D
dt X ‖ γ.

2. X⊥γ⇒ D
dt X⊥γ.

Proof.

1. If X ‖ γ, then X = f γ′ for some smooth real function f , so D
dt X = D

dt ( f γ′) =
d f
dt γ′ + f�

��D
dt γ′, where the last term is 0 because γ is a geodesic. Hence also D

dt X ‖ γ.

2. By Corollary 3.26, d
dt
(

g(X, γ′)
)
= g(D

dt X, γ′). So if g(X, γ′) = 0 obviously its deriva-
tive is null too. Therefore g(D

dt X, γ′) = 0 and X ⊥ γ.

Let us now see how these concepts relate to Jacobi fields.

Proposition 3.50. Let X be a vector field on a geodesic γ : [a, b]→ M. Then,

1. If X ‖ γ, then X is a Jacobi field ⇐⇒ D2

dt2 X = 0 ⇐⇒ X(t) = (mt + n)γ′(t) for all
t ∈ [a, b], for some m, n ∈ R.

2. If X is a Jacobi field, then X ⊥ γ ⇐⇒ there exist t0 6= t1 such that g(X, γ′)|t0 =

g(X, γ′)|t1 = 0 ⇐⇒ there exists t0 such that g(X, γ′)|t0 = g(D
dt X, γ′)|t0 = 0.

Proof.

1. If X = f γ′, since R(X, γ′) = f R(γ′, γ′) = 0 by antisymmetry, the Jacobi equation is
D2

dt2 X = 0. Solving the second order ODE yields the second equivalence.

2. Since γ is a geodesic, d2

dt2

(
g(X, γ′)

)
= d

dt
(

g(D
dt X, γ′)

)
= g(D2

dt2 X, γ′). Also, X fulfills

the Jacobi equation: D2

dt2 X = R(X, γ′)γ′. Therefore, recalling Prop 3.40, d2

dt2

(
g(X, γ′)

)
=

g
(

R(X, γ′)γ′, γ′
)
= g

(
R(γ′, γ′)X, γ′

)
= 0 again by antisymmetry. Solving the sec-

ond order differential equation we obtain g(X, γ′) = As + B. The rest of the proof is
straightforward.
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3.6 Existence theorems

We end this chapter with the aforementioned existence theorems of Riemannian and
Lorentz metrics on a smooth manifold.

Theorem 3.51. Every smooth manifold M admits a Riemannian metric tensor.

Proof. Let {(Ua, ϕa)} be an atlas on M. Let { fa} be a partition of unity subordinate to
the covering {Ua}. Then, for each α the coordinate functions for ϕα are x1

α, ..., xn
α , and we

define gα = dxi
α ⊗ dxi

α on Uα. A linear combination of positive-definite inner products
with positive coefficients is again a positive-definite inner product. Therefore g := ∑ fαgα

is a Riemannian metric on M.

Theorem 3.52. Let M be a smooth manifold. Then, the following are equivalent:

1. The manifold M admits a Lorentz metric tensor.

2. There exists a non-vanishing smooth vector field on M.

3. Either M is not compact; or M is compact and has Euler number χ(M) = 0.

Proof. (2.)⇒ (1.) : By the previous Theorem 3.51, there is a Riemannian metric tensor gR

on M. Let X̃ ∈ X(M) be a non-vanishing smooth vector field on M. Then, if we define
X = X̃/gR(X̃, X̃), it fulfills gR(Xp, Xp) = 1 for all p ∈ M. We can now define a Lorentz
metric tensor gL setting, for all p ∈ M and for all Y, Z ∈ X(M),

gL(Yp, Zp) = gR(Yp, Zp)− 2gR(Xp, Yp) · gR(Xp, Zp). (3.16)

To see that this is indeed a Lorentz metric, choose a basis Xp, e2, ..., en at each Tp M such that
gR(ei, ej) = δij and gR(Xp, ei) = 0. (In fact, we can locally choose vector fields E2, ..., En in U
such that together with X they form a basis for each Tp M with p ∈ U, with g(Ei, Ej) = δij
and gR(X, X) = −1, as seen in Remark 3.34). Therefore, by eq. (3.16),

gL(Xp, Xp) = −gR(Xp, Xp) gL(Xp, ei) = 0 gL(ei, ej) = gR(ei, ej) = δij.

(1.) =⇒ (2.) : (Sketch. See Curtis and Miller [12] p. 88-89). Let gL be the Lorentz metric
on M, and let gR be a Riemannian metric on M by Theorem 3.51. Let ]R : Tp M∗ → Tp M
and [L : Tp M → Tp M∗ be the lowering and raising isomorphisms defined on Remark 3.6,
for gR and gL respectively. It is clear that [L ◦ ]R : Tp M → Tp M is a linear isomorphism
for all p ∈ M, on which it depends smoothly. The sought non-vanishing vector field will
be given by the unique eigenvector with negative eigenvalue of [L ◦ ]R.

(2.) ⇐⇒ (3.) : See Milnor [17] p. 33-41.

A particular case of the equivalence between (2.) and (3.) is the well known Hairy ball
Theorem, which informally states that you cannot comb a hairy ball without leaving one
hair up. It was first proven by Brower in 1912.

However, theoretical physicists should not be worried about the non-existence of Lorentz
metrics on compact manifolds with χ(M) 6= 0, as they will not usually work with compact
manifolds. This is due to the following result. (See Hawking and Ellis [16] p. 189-190).
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Definition 3.53. Let (M, g) be a semi-Riemannian manifold, and let p ∈ M. A tangent vector
v ∈ Tp M is called

1. spacelike if gp(v, v) > 0 or v = 0.

2. lightlike if gp(v, v) = 0 and v = 0.

3. timelike if gp(v, v) < 0.

The set of all lightlike vectors of Tp M is called the lightcone at p.

We also can extend the previous classification to curves: we say that a smooth curve
α : [a, b] → M is spacelike, lightlike, or timelike if respectively, their tangent vector α′ has
positive, null, or negative norm for all t ∈ [a, b].

Theorem 3.54. Let (M, gL) be a Lorentz manifold. If M is compact, then there exists a closed
time-like curve on M.

The result above tells us that on a Lorentz compact manifold you can have regions of
space-time whose evolution does not depend on its past, thus violating causality.



Chapter 4

Isometry

In this final chapter all previous results are combined to reach our main goal: to prove
that the isometry group of a semi-Riemannian manifold is a Lie group. First, we will
have a look at the linear isometries of the scalar product vector space Rn

ν . Then, we will
formally define the concepts of isometry and Killing vector field, and we will show some of
their properties, giving the necessary tools to show that Palais’ Theorem (Theorem 2.40)
can be applied to the group of isometries of a semi-Riemannian manifold, proving that
they form a Lie transformation group. We end this work presenting some further results
and open questions on isometry groups.

4.1 Linear isometries of Rn
ν

Since each tangent space Tp M of a semi-Riemannian manifold (M, g) is linearly iso-
metric to Rn

ν through a choice of an orthonormal basis, we shall first study the linear
isometry group of this scalar product vector space before tackling the general case.

Recall that a linear isometry between two scalar product vector spaces (V, gV) and
(W, gW) is a linear isomorphism A : V →W such that for all u, v ∈ V,

gW(A(u), A(u)) = gV(u, v).

In column vector convention, u = (ui), G = (gij) and v = (vi), the scalar product is
expressed as g(u, v) = utGv. Hence, if we impose that A = (Aij) is a linear isometry,

g(Au, Av) = g(u, v) ⇐⇒ (Au)tGAv = utGv ⇐⇒ ut(AtGA)v = utGv ⇐⇒ AtGA = G.

Now, choosing orthonormal coordinates, G = η := diag(−1, ν. . .,−1, 1, n−ν. . . , 1) = ηt =

η−1, so A is a linear isometry if and only if AtηA = η ⇐⇒ At = ηA−1η.
Hence, we recover the well-known result from Euclidean geometry that the linear

isometry group of Rn seen as a vector field with an inner product is isomorph to the
orthogonal group O(n) = O(n,R) = {A ∈ Gl(n,R) | At = A−1}, since η = Id if ν = 0.

Let us now state some properties of the orthogonal group. The corresponding proofs
and discussions can be found in Sepanski [14]. The orthogonal group O(n) = O(n,R) =

41
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{A ∈ Gl(n,R) | At = A−1} is a closed Lie subgroup of the Lie group Gl(n,R). Moreover,
it is compact. It has two connected components: those matrices with determinant +1 and
those with determinant -1. Its Lie algebra is o(n) = {S ∈ gl(n,R) | St = −S}. It has
dimension n(n− 1)/2, since all S ∈ o(n) have Sii = 0 and Sij = −Sji for all i, j = 1, ..., n.

Going back to the general result we found for Rn
ν ,

Proposition 4.1. The linear isometry group of Rn
ν is the semi-orthogonal group, O(n, n− ν) =

Oν(n) = {A ∈ Gl(n,R) | At = ηA−1η}.

The semi-orthogonal group is also a closed group of the Lie group Gl(n,R), and
hence it is also a Lie group under matrix multiplication. If ν 6= 0, n, then Oν(n) is
not compact. Another difference with O(n) if ν 6= 0, n is that Oν(n) has four con-
nected components instead of two. Its Lie algebra is the set of all skew-adjoint matrices
oν(n) = {S ∈ gl(n,R) | St = −ηSη}.

Lemma 4.2. The Lie algebra oν(n) = {S ∈ gl(n,R) | St = −ηSη} as dimension n(n− 1)/2
regardless of ν.

Proof. Let S =

(
a b
c d

)
, with a a ν × ν matrix and d a (n − ν)× (n − ν) matrix. Since

η = diag(−1, ν. . .,−1, 1, n−ν. . . , 1) = ηt = η−1, we have

St =

(
at ct

bt dt

)
, and − ηSη =

(
−a b
c −d

)
.

Hence, at = −a, so a ∈ o(ν); dt = −d, so d ∈ o(n− ν); and ct = b. Therefore S ∈ oν(n)

if and only if S =

(
a b
bt d

)
, with a ∈ o(ν), d ∈ o(n− ν), and b an arbitrary ν× (n− ν)

matrix. Thus,

dim oν(n) = dim o(ν) + dim o(n− ν) + ν(n− ν)

= ν(ν− 1)/2 + (n− ν)(n− ν− 1)/2 + ν(n− ν) = n(n− 1)/2.

4.2 Isometry and Killing vector fields

Definition 4.3. Let (M, gM) and (N, gN) be semi-Riemannian manifolds. An isometry from M
to N is a diffeomorphism φ : M → N such that it preserves the metric tensor, that is, φ∗(gN) =

gM. We then say that M and N are isometric.

Explicitly, for an isometry φ : M → N, we have gN
φ(p)(dφp(u), dφp(v)) = gM

p (u, v) for
all p ∈ M and u, v ∈ Tp M. Also, as φ is a diffeomorphism, each differential map dφp
is a linear isomorphism; therefore the metric condition means that each differential map
dφp : Tp M→ Tφ(p)N is a linear isometry between vector spaces ∼= Rn

ν .
So isometric manifolds are diffeomorphic and preserve the metric structure. Therefore,

besides all concepts preserved through diffeomorphisms, all notions derived from the
metric tensor are also preserved, such as the covariant derivative, geodesics, curvature,...
Hence, from the point of view of semi-Riemannian geometry, isometric manifolds are the
same, much as in the same way as homeomorphic spaces are topologically the same or
diffeomorphic manifolds are the same from the point of view of manifold theory.
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Proposition 4.4. The set of all isometries of a semi-Riemannian manifold (M, g) onto itself form
a group.

Proof. The identity map is obviously an isometry. We need to prove that a composition
of isometries is an isometry and that the inverse map of an isometry is an isometry. Let
φ, ψ : M→ M be isometries. Then, φ ◦ψ is also an isometry, as (φ ◦ψ)∗(g) = φ∗(ψ∗(g)) =
φ∗(g) = g. More explicitly, for all p ∈ M and for all u, v ∈ Tp M,

g(φ◦ψ)(p)

(
d(φ ◦ ψ)ψ(p)(u), d(φ ◦ ψ)ψ(p)(v)

)
= g

φ
(

ψ(p)
)(dφψ(p)

(
dψp(u)

)
, dφψ(p)

(
dψp(v)

))
= gψ(p)

(
dψp(u), dψp(v)

)
= gp(u, v).

Similarly, φ−1 is also an isometry, as g = (φ−1 ◦ φ)∗(g) = (φ−1)∗(φ∗(g)) = (φ−1)∗(g).

Definition 4.5. The group of all isometries of a semi-Riemannian manifold (M, g) onto itself is
denoted I(M, g) and called the isometry group of M.

We can also define a softer version of isometry, its local counterpart. Many concepts
preserved through isometries are also preserved through local isometries, such as the
covariant derivative, as they are local concepts.

Definition 4.6. Let M, N be semi-Riemannian manifolds. A local isometry is a smooth map
φ : M → N such that for all p ∈ M, the differential map dφp : Tp M → Tφ(p)N is a linear
isometry of vector spaces.

Due to the Inverse Function Theorem, and the fact that linear isometries are vector
space isomorphisms, the definition above is equivalent to the following: φ is a local isom-
etry if for all p ∈ M there exist a neighborhood U of p and a neighborhood V of φ(p) ∈ N
such that φ|U : U → V is an isometry. Notice that all isometries are obviously local isome-
tries, but only local isometries which are also diffeomorphisms are global isometries.

Proposition 4.7. Let X ∈ X(M). Then £Xg = limt→0
1
t [(FlX

t )
∗(g)− g].

Proof. Since £X is a tensor derivation, and recalling that it is defined by £XY = [X, Y] and
£X f = X( f ), by Prop. 1.55 we have that

(£Xg)(Y, Z) = X
(
g(Y, Z)

)
− g([X, Y], Z)− g(Y, [X, Z]), (4.1)

for all Y, Z ∈ X(M).
We will work the second half of the equation we want to prove to see that it matches (4.1)
above. As ((FlX

t )
∗g)p(Yp, Zp) = gFlX

t (p)(dFlX
t Yp, dFlX

t Zp) for a fixed point p ∈ M,

lim
t→0

1
t

[
(FlX

t )
∗g− g

]
p
(Yp, Zp) = lim

t→0

1
t

[
gFlX

t (p)(dFlX
t (Yp), dFlX

t (Zp))− gp(Yp, Zp)
]

= lim
t→0

1
t

[
gFlX

t (p)(dFlX
t (Yp), dFlX

t (Zp))− gFlX
t (p)(YFlX

t (p), ZFlX
t (p))

]
+ lim

t→0

1
t

[
gFlX

t (p)(YFlX
t (p), ZFlX

t (p))− gp(Yp, Zp)
]
= L1 + L2. (4.2)
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For the second limit of (4.2) above, L2, let us call α(t) = FlX(t, p) the integral curve of X
with α(0) = p. We have

L2 = lim
t→0

1
t

[
gFlX

t (p)(YFlX
t (p), ZFlX

t (p) − gp(Yp, Zp)
]
= lim

t→0

1
t

[
gα(t)(Yα(t), Zα(t) − gp(Yp, Zp)

]
=

d
dt

gα(t)(Yα(t), Zα(t))|0 = α′(0)
(

gp(Yp, Zp)
)
= Xp

(
gp(Yp, Zp)

)
. (4.3)

Now, since g is bilinear,

g(u, v)− g(u′, v′) = g(u, v)− g(u′, v) + g(u′, v)− g(u′, v′) = g(u− u′, v)− g(u′, v− v′),

so for the first limit L1 of (4.2) we can write

L1 = lim
t→0

1
t

[
gFlX

t (p)
(
dFlX

t (Yp), dFlX
t (Zp)

)
− gFlX

t (p)
(
YFlX

t (p), ZFlX
t (p)

)]
= lim

t→0

1
t

[
gFlX

t (p)
(
dFlX

t (Yp)−YFlX
t (p), dFlX

t (Zp)
)]

+ lim
t→0

1
t

[
gFlX

t (p)
(
YFlX

t (p), dFlX
t (Zp)− ZFlX

t (p)
)]

= L1.1 + L1.2. (4.4)

Again, this expression can be split into two terms. On both of them we will again use
that g is bilinear, and that if t small enough so that the flow is well defined we have
id = FlX

0 = (FlX
t ◦ FlX

−t). Then, the first term of (4.4) can be rewritten as

L1.1 = lim
t→0

1
t

[
gFlX

t (p)
(
dFlX

t (Yp)−YFlX
t (p), dFlX

t (Zp)
)]

= lim
t→0

1
t

[
gFlX

t (p)

(
dFlX

t
(
Yp − dFlX

−t(YFlX
t (p))

)
, dFlX

t (Zp)
)]

= −gp

(
lim
t→0

dFlX
t
(1

t
[dFlX

−t(YFlX
t (p))−Yp]

)
, lim

t→0
dFlX

t (Zp)
)
= −gp

(
[X, Y]p, Zp

)
,

where in the last equality we have used Proposition 1.45, which allows one to write the
Lie bracket of vector fields in terms of flows, limt→0

1
t
[
dFlX
−t(YFlX

t (p))−Yp
]
. Similarly,

L1.2 = lim
t→0

1
t

[
gFlX

t (p)
(
YFlX

t (p), dFlX
t (Zp)− ZFlX

t (p)
)]

= lim
t→0

1
t

[
gFlX

t (p)

(
YFlX

t (p), dFlX
t
(
(Zp)− dFlX

−t(ZFlX
t (p))

))]
= −gp

(
lim
t→0

YFlX
t (p), lim

t→0
dFlX

t
(1

t
[dFlX

−t(ZFlX
t (p))− Zp]

))
= −gp

(
Yp, [X, Z]p

)
.

Wrapping up,

lim
t→0

1
t

[
(FlX

t )
∗g− g

]
p
(Yp, Zp) = L1 + L2 = L2 + L1.1 + L1.2

= Xp
(

gp(Yp, Zp)
)
− gp

(
[X, Y]p, Zp

)
− gp

(
Yp, [X, Z]p

)
= (£X g)p(Yp, Zp),

where the last equality is precisely what we wanted to prove, as it is (4.1) evaluated at
p ∈ M, thus concluding the proof.
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Definition 4.8. A Killing vector field on a semi-Riemannian manifold M is a vector field ξ ∈
X(M) relative to which the Lie derivative of the metric tensor field vanishes:

£ξg = lim
t→0

1
t
[(Flξ

t )
∗(g)− g] = 0

Therefore, the metric tensor g remains invariant along the flow of ξ. This is why Killing
vector fields are sometimes also called infinitesimal isometries. In fact:

Proposition 4.9. A vector field ξ is Killing if and only if for all t in which the local flow Flξ of ξ

is properly defined, the transformation Flξ
t : M→ M is an isometry.

Proof. (⇐) : If Flξ
t is an isometry, then (Flξ

t )
∗(g) = g. Therefore £ξg = limt→0

1
t [(Flξ

t )
∗(g)−

g] = limt→0
1
t [g− g] = 0.

(⇒) : Now, let ξ be a Killing vector field, £ξg = 0, and let Flξ be the local flow of ξ.
Let p ∈ M and v ∈ Tp M. For s tending to 0, u = dFlξ

s (v) can also be considered a vector
of Tp M. Hence, using Proposition 4.7, and bearing in mind that Flξ

s ◦ Flξ
t = Flξ

s+t,

0 = (£ξ g)(u, u) = lim
t→0

1
t

[
g
(
dFlξ

t (u), dFlξ
t (u)

)
− g
(
u, u
)]

= lim
t→0

1
t

[
g
(
dFlξ

t+s(v), dFlξ
t+s(u)

)
− g
(
dFlξ

s (v), dFlξ
s (v)

)]
=

d
ds

[
g
(
dFlξ

s (v), dFlξ
s (v)

)]
So the function s 7→ g

(
dFlξ

s (v), dFlξ
s (v)

)
has derivative 0 for all s. Hence it is constant,

so g
(
dFlξ

s (v), dFlξ
s (v)

)
= g

(
v, v
)

for all s, and also for all p ∈ M and for all v ∈ Tp M.
Therefore we can conclude that (Flξ

s )
∗(g) = g so Flξ

s is an isometry for all s where the
flow of ξ is properly defined.

Thus, given a Killing vector field ξ, its flow Flξ defines a 1-parameter group of isome-
tries. And vice versa, every 1-parameter group of isometries is the flow of some Killing
vector field on M. Therefore a practical way of finding isometries of a semi-Riemannian
manifold would be finding Killing vector fields. This is usually done by solving the equa-
tion below.

Remark 4.10. Let (U, ϕ) be a chart on a semi-Riemannian manifold (M, g), with coordi-
nate functions x1, ..., xn. Since g is a (0,2) tensor field on M, then also £Xg must be a (0,2)
tensor field on M for any smooth tensor field X ∈ X(M). Its coordinate expression can be
found subsituting Y = ∂i and Z = ∂j on eq. (4.1) within the proof of Prop 4.7. One obtains

(£Xg)ij = (£Xg)(∂i, ∂j) = Xk ∂gij

∂xk + gik
∂Xk

∂xj + gkj
∂Xk

∂xi .

Therefore the following proposition is immediate.

Proposition 4.11. Let (M, g) be a semi-Riemannian manifold. A smooth vector field ξ ∈ X(M)

on M is a Killing vector field is and only if its coordinate expression ξ = ξk∂k for any chart (U, ϕ)

fulfills

ξk ∂gij

∂xk + gik
∂ξk

∂xj + gkj
∂ξk

∂xi = 0.
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The proposition above defines a system of partial first order differential equations for
the coordinates of ξ. Usually, it has no solutions, since is is an overdetermined system:
there are n coordinates of ξ to solve for (k = 1, ..., n), but there are n(n + 1)/2 independent
equations (i, j = 1, ..., n but the equations are symmetric under i ↔ j). Hence, generic
manifolds in general are not symmetric enough to have Killing vector fields. However,
when the manifold considered does have Killing vector fields, Proposition 4.11 is a useful
way to find them.

Proposition 4.12. Let ξ ∈ X(M). Then, the following are equivalent:

1. ξ is a Killing vector field.

2. ξ
(

g(Y, Z)
)
= g

(
[ξ, Y], Z

)
+ g
(
Y, [ξ, Z]

)
for all Y, Z ∈ X(M).

3. g(∇Yξ, Z) + g(∇Zξ, Y) = 0 for all Y, Z ∈ X(M).

Proof.

1. ⇐⇒ 2. : Immediate from £ξ being tensor derivation, so (£ξ g)(Y, Z) = ξ(g(Y, Z))−
g([ξ, Y], Z)− g(Y, [ξ, Z]) for all Y, Z ∈ X(M), and ξ is Killing iff £ξ g = 0.

2. ⇐⇒ 3. : Recall that the Levi-Civita covariant derivative is torsion-free, so ∇ξY −
∇Yξ = [ξ, Y] for all ξ, Y ∈ X(M); and also compatible with the metric, so ξ

(
g(Y, Z)

)
=

g(∇ξY, Z) + g(∇ξ Z, Y) for all ξ, Y, Z ∈ X(M). Therefore, we have

g
(
∇Yξ, Z

)
+ g
(
∇Zξ, Y

)
= g

(
∇ξY, Z

)
− g
(
[ξ, Y], Z

)
+ g
(
∇ξ Z, Y

)
− g
(
[ξ, Z], Y

)
= ξ

(
g(Y, Z)

)
− g
(
[ξ, Y], Z

)
− g
(
Y, [ξ, Z]

)
.

Proposition 4.13. Let ξ be a Killing vector field, and let γ be a geodesic. Then ξ|γ is a Jacobi field
on γ and g(γ′, ξ) is constant along γ.

The second part of the proposition is a result known by physicists as the conservation
lemma. It translates to the fact that for each Killing vector field there is a physical quantity
which is conserved along geodesics. And as geodesics are the trajectories followed by
free particles, and more importantly, by inertial reference frames, this result is of great
convenience when studying physical systems in General Relativity.

Proof. Let Flξ
s be the local flow of ξ near a point γ(t) on the geodesic. Now, the two-

parameter map (t, s) → θ(t, s) := Flξ
s (γ(t)) is a geodesic variation of γ. For a fixed t0,

the curve s → θ(t0, s) = Flξ
s (γ(t0)) is an integral curve of ξ, starting at γ(t0) with initial

velocity ξγ(t0)
. Therefore the variation vector field of the geodesic variation is θs(t, 0) =

ξ|γ. Hence, by Theorem 3.46, ξ|γ is a Jacobi vector field on γ.
Now, as ξ is Killing, by (3.) from the previous Proposition 4.12, we have g(∇γ′ξ, γ′) = 0.
But also, γ is a geodesic, so by Corollary 3.26,

d
dt

g(ξ|γ, γ′) = g(
D
dt

ξ|γ, γ′) = g(∇γ′ξ, γ′) = 0.

Thus, g(γ′, ξ) is constant along γ as it has null derivative.
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Lemma 4.14. Let ξ be a Killing vector field on a connected semi-Riemannian manifold (M, g). If
there exists a point p ∈ M such that ξp = 0 and (∇ξ)p = 0, then ξ is identically 0.

Proof. Let A ⊆ M be the set of points at which both ξ and ∇ξ are null. A is the inter-
section of two sets which are the preimage of a closed set ({0}) by a continuous map (the
evaluation map), therefore A is closed. Obviously A is nonempty, as p ∈ A. Thus, if we
prove that A is also open, we will have that A = M and therefore that ξ is identically 0
on all of M. Let U be a normal neighborhood of p, and let τ be a radial geodesic starting
from p. The previous Proposition tells us that the restriction ξ|τ of ξ on τ is a Jacobi field.
Moreover, ξτ(0) = ξp = 0 and D

dt (ξ|τ)(0) = ∇τ′(0)ξ = (∇ξ)p(τ′(0)) = 0, so again by the
previous Proposition both g(ξ|τ , τ′) and g(D

dt ξ|τ , τ′) are identically zero. Using Proposi-
tion 3.50(2.) we can now see that ξ|τ is zero on all of the geodesic, and therefore ξ is
identically 0 on U and so ∇ξ is null too.

4.3 The Lie Algebra i(M, g)

Proposition 4.15. Let X, Y be Killing vector fields on a semi-Riemannian manifold (M, g). Then,

1. aX + bY is also a Killing vector field, for all a, b ∈ R.

2. [X, Y] is also a Killing vector field.

Therefore the set of all Killing vector fields on a semi-Riemannian manifold (M, g) is a Lie algebra.

Proof. Immediate from R-linearity of tensor derivations and the remark following 1.58. If
X and Y are Killing vector fields, £X g = 0 and £Yg = 0, so

1. £aX+bYg = a£X g + b£Yg = 0.

2. £[X,Y]g = [£X , £Y]g = £X(£Yg)− £Y(£X g) = 0.

Definition 4.16. The set of all Killing vector fields on a semi-Riemannian manifold (M, g) is a
Lie algebra, called the Lie algebra of Killing vector fields and denoted by i(M, g).

Corollary 4.17. Let X and Y be Killing vector fields on a semi-Riemannian manifold (M, g). If
there exists a point p ∈ M such that Xp = Yp and (∇X)p = (∇Y)p, then X = Y.

Proof. As a linear combination of Killing vector fields is a Killing vector field, the proof is
immediate from applying Lemma 4.14 to ξ = X−Y.

Lemma 4.18. Let (M, g) be a connected semi-Riemannian manifold of dimension n. Then, its Lie
algebra of killing vector fields i(M, g) has dimension dim i(M, g) ≤ n(n + 1)/2.
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Proof. Fix a point p ∈ M. The set of all linear operators A on Tp M which fulfill gp(Au, v) =
−gp(u, Av) form a Lie algebra, which we denote by o(Tp M). The fact that a linear com-
bination of operators in o(Tp M) is still in o(Tp M) is immediate from the linearity of such
operators, and o(Tp M) is also closed under bracket operation, since

gp([A, B]u, v) = gp(ABu, v)− gp(BAu, v) = −gp(u, ABv) + gp(u, BAv) = −gp(u, [A, B]v).

Therefore o(Tp M) is a Lie algebra, which we call the Lie algebra of skew-adjoint operators
on Tp M. Using an orthonormal basis and the column vector convention, these operators
become matrices in oν(n), since then gp = η = diag(−1, ν. . .,−1, 1, n−ν. . . , 1):

gp(Au, v) = −gp(u, Av) ⇐⇒ (Au)tηv = −utηAv ⇐⇒ ut Atηv = −utηAv

⇐⇒ Atη = −ηA ⇐⇒ At = −ηAη ⇐⇒ A ∈ oν(n)

so we could have also seen that o(Tp M) is a Lie algebra because it is isomorphic to the
Lie albegra ov(n). Now, let the map E : i(M, g) → Tp M × o(Tp M) be defined by ξ 7→
(ξp, (∇ξ)p). The fact that (∇ξ)p is indeed a skew-adjoint operator on Tp M is immediate
by Prop. 4.12, (3.). By Corollary 4.17 E is one-to-one. Therefore,

dim i(M, g) = dim E(i(M, g)) ≤ dim Tp M + dim ov(n) = n + n(n− 1)/2 = n(n + 1)/2.

4.4 The Lie Group I(M, g)

We are very close to our main goal. Let us recall Theorem 2.40: Let G be a group of
diffeomorphisms of a manifold M onto itself. Let S be the set of all vector fields X̃ on M which
generate global 1-parameter groups φt = FlX̃

t of transformations of M such that φt ∈ G. If the set S
generates a finite-dimensional Lie algebra of vector fields on M, then (G, M) is a Lie transformation
group and S is the Lie algebra of G.

We have already proved that the set of all isometries of a manifold onto itself is a
group, so we set G = I(M, g). Let ci(M, g) = {ξ ∈ i(M, g) | ξ is complete} be the set
of all complete Killing vector fields on M. We want to see that ci(M, g) is also the set of
all vector fields on M which generate global 1-parameter groups of isometries, that is, we
want to see S = ci(M, g).

Lemma 4.19. Let (M, g) be a semi-Riemannian manifold. The set of all complete Killing vector
fields on M, ci(M, g), is the set of all vector fields on M which generate global 1-parameter groups
φt of isometries of M.

Proof. First, let ξ be a complete Killing vector field. As it is complete, its flow Flξ is
globally defined. So, by Proposition 4.9, φt = FlX

t is an isometry for all t ∈ R. Therefore ξ

generates a global 1-parameter group which is a subgroup of I(M, g), as Flξ
s ◦ Flξ

t = Flξ
s+t

and Id = Flξ
0 = Flξ

t ◦ Flξ
−t, for all s, t ∈ R.

Conversely, let ξ be a vector field on M which generates a global 1-parameter group
φt = Flξ

t of isometries of M. Again, by Proposition 4.9, ξ is a Killing vector field. And it is
obviously complete because its flow is a global 1-parameter group.
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So, if we prove that ci(M, g) generates a finite-dimensional Lie algebra, we will have
all hypothesis for Theorem 2.40, thus proving that I(M, g) is a Lie group.

Lemma 4.20. ci(M, g) generates a finite-dimensional Lie algebra.

Proof. It is a direct consequence of Proposition 4.18, which says that the Lie algebra i(M, g)
of all Killing vector fields (not necessarily complete) has dimension at most 1

2 n(n+ 1). One
easy case would be if M were compact, then Proposition 1.39 would imply that i(M, g) =
ci(M, g). But the general case is also straightforward. Let g be the Lie algebra generated
by ci(M, g). As ci(M, g) ⊆ i(M, g), we have that aX + bY ∈ i(M, g) and [X, Y] ∈ i(M, g)
for all X, Y ∈ ci(M, g) (Prop. 4.15). So the Lie algebra g generated by ci(M, g) is a Lie
subalgebra of i(M, g), and therefore it is also finite-dimensional, as it has dim g ≤ dim
i(M, g) ≤ n(n + 1)/2.

Hence, all hypothesis of Theorem 2.40 are fulfilled:

Theorem 4.21. Let (M, g) be a semi-Riemannian manifold. Let I(M, g) be the set of all isometries
of M onto itself, and let ci(M, g) be the set of all complete Killing vector fields on M. Then, the
pair

(
I(M, g), M

)
is a Lie transformation group, and ci(M, g) is the Lie algebra of the Lie group

I(M, g).

More explicitly, we have

1. I(M, g) is a Lie group.

2. The map I(M, g)×M→ M naturally defined by (φ, p) 7→ φ(p) is smooth.

3. A homomorphism α : R → I(M, g) is smooth if the map R×M → M which sends
(t, p) to α(t)(p) is smooth.

Remark 4.22. One could get from the construction above the wrong idea that all isometries
are generated as flows of Killing vector fields. That is not true. What we have proven is
that all "smooth" isometries, that is, those which generate global 1-parameter subgroups of
I(M, g), are indeed generated by Killing vector fields. However, we could have "discrete"
isometries in I(M, g), such as reflections. These kind of isometries do not have a Killing
vector field related to them. Informally speaking, these are the ones that allow you to
"jump from one connected component of I(M, g) to another".

Example 4.23. Let Sn = {x ∈ Rn+1 | ||x|| = 1} be the n-dimensional sphere, where
|| · || denotes the Euclidean norm, endowed with the usual Riemannian metric g it gets
as a submanifold of Rn+1. Then its isometry group is I(Sn, g) = O(n + 1) = {x ∈
Gl(n + 1,R) | AAt = At A = 1}, the orthogonal group, as the linear isometries of Rn+1

carry Sn into itself. The Killing vector fields on Sn generate the group of rotations of the
sphere SO(n + 1,R) which is the group of matrices with det = +1. Is that all there is? No!
There are also reflections with respect to a hyperplane, which are not generated as the
flow of any Killing vector field. The group of rotations is only one of the two connected
components of O(n + 1,R), the other one being the isometries formed as a composition
of a rotation and a reflection which are the matrices with det = −1.
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Example 4.24. Let E = {(x, y, z) ∈ R3 | x2

a2 + y2

b2 + z2

c2 = 1} be a triaxial ellipsoid with the
usual Riemannian metric it gets as a submanifold of R3. Its isometry group is discrete, so
it is a 0-dimensional Lie group. It only has 8 elements: the identity, the three reflections
along the planes perpendicular to the axes, and the compositions of such reflections.

Let us end presenting some further results:

Theorem 4.25. Let (M, g) be a Riemannian manifold. If M is compact then I(M, g) is compact.

Proof. See Kobayashi and Nomizu [9]. For the general results on metric spaces, see The-
orems 4.6-4.10 in Chapter 1 (p. 45-50). Their application to Riemannian manifolds is
Theorem 3.4 in Chapter 6 (p. 239).

This result is proved thanks to the fact that Riemannian manifolds are also metric
spaces (Theorem 3.37), and does not hold for other kinds of metrics.

See Gallot, Hulin and Lafontaine [13] sections 2.22 and 2.135 for an example of a
Lorentzian flat torus with non-compact isometry group.

However, there are also some beautiful results on the positive. For example, this theo-
rem by G. d’Ambra:

Theorem 4.26. ([19]). The isometry group of a compact simply connected analytic Lorentzian
manifold is compact.

By an analytic manifold we mean that the charts on the manifold are related analyti-
cally instead of smoothly. The interested reader will find many more results on isometry

groups of compact Lorentz manifolds in this article by Adams and Stuck [20].

We conclude this work with an open question. We have proven that the isometry group
of any semi-Riemannian manifold is a Lie group. But, what about the inverse question?
Is every Lie group the isometry group of some semi-Riemannian manifold?

Theorem 4.27. ([21]). Every compact Lie group can be realized as the isometry group of a compact
Riemannian manifold.

The theorem above was proved by R. Saerens and W. R. Zame in 1987. Up to this date,
however, the question remains unanswered for non-compact Lie groups.
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Appendix: Basic Notions

This appendix contains some basic notions on Topology, Algebra, Multivariable Cal-
culus and Geometry needed to understand the previous chapters. Most of the definitions
and results should already be known to the average senior undergraduate, so we will skip
most proofs. For the proofs related to Topology and Geometry, we refer the reader to
Singer and Thorpe [7], except the ones explicitly stated on the text. For the results on
Calculus, we recommend Fleming [23]. For the ones related to Algebra, the interested
reader should find more information on Lang [24].

Topology

Definition A.1. Given a set X and a collection of subsets of X, τ ⊆ P(X), we say that the
pair (X, τ) is a topological space if:

• Both ∅ ∈ τ and X ∈ τ

• {Ui}i∈I ⊆ τ ⇒ ⋃
i∈I

Ui ∈ τ

• U1, ..., Ur ∈ τ ⇒ U1 ∩ · · · ∩Ur ∈ τ

We call the elements in τ the open sets of X. Therefore, the definition above says that both
the empty set and the whole X are open, that any arbitrary union of open sets is an open
set, and that any finite intersection of open sets is also an open set.

Definition A.2. We say that a subset T ⊆ X is closed if its complement X r T is open.

Definition A.3. A basis β for a topological space X with topology τ is a subcollection β ⊆ τ such
that for all U ∈ τ, U is the union of elements in β. We say that a space X is a second countable
space if its topology τ allows a countable basis β.

Definition A.4. Let (X, τX), (Y, τY) be topological spaces. We say that a map f : X → Y is
continuous if for all U ∈ τY, f−1(U) ∈ τX . We say that a map f : X → Y is an homeomor-
phism if it is continuous, bijective, and has inverse map f−1 : Y → X continuous. We say that
two topological spaces are homeomorphic if there exists a homeomorphism between them, and we
denote it by X ∼= Y.

From the topological point of view two homeomorphic spaces are equivalent, as there
is a one-to-one correspondence between their open sets, and hence their topology. There-
fore all topological concepts defined in this section are preserved through homeomor-
phisms.

I
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Definition A.5. Let X be a topological space. A cover of X is a collection of subsets of X,
{Ai}i∈I , Ai ⊆ X, such that

⋃
i∈I

Ai = X. We say that it is an open cover if Ai is open for all

i ∈ I. A subcover is a subcollection of a cover which still covers X. A refinement of the cover
{Ai}i∈I is a collection {Bj}j∈J such that for all j ∈ J there exists an i ∈ I such that Bj ⊆ Ai.

Definition A.6. A topological space X is compact if for any open cover {Ui}i∈I there exists
a finite subset J ⊆ I such that

⋃
i∈J

Ui = X.

A topological space X is locally compact if every point x ∈ X has a compact neighborhood.

Proposition A.7. Let X be a compact topological space. Let T ⊆ X be closed. Then T is also
compact.

Proposition A.8. Let X, Y be topological spaces, X compact. Let f : X → Y be a continu-
ous and surjective function. Then, Y is compact.

Notice that Proposition A.8 tells us that for any continuous function f : X → Y, if X is
compact, then f (X) ⊆ Y is compact.

Definition A.9. A collection {Ai}i∈I of subsets of X is called locally finite if every x ∈ X has a
neighborhood Ux such that there is only a finite number of i ∈ I such that Ux

⋂
Ai 6= ∅.

Definition A.10. A topological space X is said to be paracompact if every open cover has a locally
finite subcover.

Definition A.11. A topological space X is a Hausdorff space if for all x, y ∈ X such that x 6= y
there exist U, V disjoint open sets in X such that x ∈ U and y ∈ V.

Lemma A.12. Let X be a locally compact, Hausdorff and second countable topological space. Then
X is also paracompact.

Proof. See Warner [8] Lemma 1.9, p.9.

Definition A.13. Let G be a group of homeomorphisms of a topological space X onto itself. The
compact-open topology for G is the topology having as a basis all sets of the form

W(K1, ...Kn; U1, ..., Un) = g ∈ G | g(Ki) ⊆ Ui i = 1, ..., n

where all Ki ⊆ X are compact and all Ui ⊆ X are open.

Proposition A.14. If X is locally compact (which is the case for manifolds), then the compact-open
topology is the weakest topology for making the map G×X → X of G acting on X, (g, p) 7→ g(p),
continuous.

Proposition A.15. If X is locally compact and locally connected (which again is the case for
manifolds), then G becomes a topological group with the compact-open topology.

Definition A.16. A topological group G is a topological space endowed with a continuous group
operation.
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Euclidean Geometry

Definition A.17. Let V be a real vector space. A symmetric bilinear form on V is an R-bilinear
function g : V ×V → R such that for all v, w ∈ V we have g(v, w) = g(w, v).
We say that g is

• positive-definite if for all v 6= 0, g(v, v) > 0.

• negative-definite if for all v 6= 0, g(v, v) < 0.

• non-degenerate if g(v, w) = 0 for all w ∈ V implies that v = 0.

Let W be a vector subspace of V. It is trivial to prove that the restriction of g on
W ×W, denoted by g|W , is also a symmetric bilinear form on W. With that in mind, we
can define the index of a symmetric bilinear form on a vector space (sometimes also called
the signature).

Definition A.18. Let V be a real vector space and let g be a symmetric bilinear form on V. The
index ν of g is the largest dimension of a subspace W ⊆ V on which g|W is negative-definite. Thus
0 ≤ ν ≤ dimV.

Definition A.19. A scalar product g on a vector space V is a non-degenerate symmetric bilinear
form on V. We say that a vector space V equipped with a scalar product g is an scalar product
space (V, g).

The most well-known scalar product on a real vector space is the Euclidean one, which
is positive-definite. Such a scalar product allows one to define a distance on the vector field
V by setting d(v, w) =

√
||v− w||, where ||.|| denotes the module defined by ||u|| = g(u, u)

for all u ∈ V.

Definition A.20. A linear isometry between to scalar product vector spaces (V, gV) and (W, gW)

is a linear isomorphism φ : V →W such that for all u, v ∈ V,

gW(φ(u), φ(v)) = gV(u, v).

We say that such V and W are linearly isometric.

Calculus

Theorem A.21. The Inverse Function Theorem. Let U ⊆ Rn be open, and let f : U → Rn be

a smooth map, with f = ( f1, ..., fn), i.e. fi = ri ◦ f . Let r ∈ U. If the Jacobian matrix
{

∂ fi
∂rj

∣∣∣
r

}
i, j = 1, ..., n is non-singular, then there exists an open set V ⊆ U about r and an open set W ⊂ Rn

about f (r) such that f |V : V →W is a diffeomorphism.

Algebra

Definition A.22. A group is a set G together with an operation · such that, for all x, y, z ∈ G,



IV Appendix: Basic Notions

1. (x · y) · z = x · (y · z).

2. there exists e ∈ G such that e · x = x · e = x.

3. there exists x−1 ∈ G such that x−1 · x = x · x−1 = e.

Definition A.23. A homomorphism between groups is a map φ : G1 → G2 such that φ(x · y) =
φ(x) · φ(y) for all x, y ∈ G1.
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