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Abstract: 

 

 

Oxidized species of CoNi have been obtained by means of electrodeposition of CoNi films 

and posterior electro-oxidation, to obtain electrodes able to be catalysts of oxidative reactions 

in alkaline medium. The products of electro-oxidation formed, which depend on the 

composition and the crystal phase of CoNi deposits, have been identified; for this, Co-fcc, 

Co-hcp, Co7Ni3-fcc, Co7Ni3-hcp, Co5Ni5-fcc and Ni-fcc films have been electrodeposited 

and oxidized. The influence of the crystalline phase of the films in the nature of the superficial 

oxides formed has been demonstrated: the electrodes prepared from CoNi-fcc films contained  

_-CoxNi(1−x)(OH)2, while those prepared from Co7Ni3-hcp films contained Co2NiO4and _-

CoxNi(1−x)(OH)2. The catalytic behaviour of the electro-oxidized electrodes for urea electro-

oxidation was evaluated. Separate tests were performed to differentiate the influence of the 

composition and the crystalline structure of the initial films and, therefore, of the different 

oxidized species formed. The electrodes prepared by electro-oxidation of the Co7Ni3-hcp 

films show better electro-catalytic performance for urea’s oxidation than those obtained by 

oxidation of the Co7Ni3-fcc, because they induce higher intensity, lower onset potential and 

lesser simultaneous oxygen evolution, becoming a good anode for ureelectro-oxidation in 

urea electrolysis for hydrogen production or waste water treatment. 
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1. Introduction 

Oxidized species of cobalt (Co-Ox), nickel (Ni-Ox) and cobalt-nickel (CoNi-Ox) have been 

extensively investigated during many years because their importance as potential electrode 

materials to favour several electrochemical reactions in basic media [A20][CV1][CV2][R10]. 

In the last decade, different authors have demonstrated the excellent performance of these 

compounds for some electrochemical reactions, sometimes as an alternative to noble metals, 

proposing them for catalysis and sensing fields [A20][A26]. The oxidized species of Co, Ni 

and CoNi have been proposed as sensors of biomolecules as glucose [A3] or uric acid [A5], 

catalysts for methanol electro-oxidation [B1] and evolution of hydrogen [A4] and oxygen 

[A25]. Moreover, due to their pseudocapacitive properties, they have proposed as potential 

materials for supercapacitors [A1][A7][A12][A17][A19][ES5][R5][R6]. Recently, the CoNi-

Ox species have been also proposed as promising electrode materials for urea electro-

oxidation, due to the interest of this reaction in the fields of environmental electrochemistry or 

hydrogen production [A6][A8][A10][A11][A18][A25]. 

Therefore, the easy and controllable preparation of the CoNi-Ox species to be used as 

electrode materials and the knowledge of the relation between the nature of these species and 

their performance for electrochemical reactions is fundamental to apply them as electro-

catalysts. The CoNi-Ox species have been frequently directly synthesised by chemical or 

electrochemical methods. The interest of this work is the synthesis of different CoNi-Ox 

species by oxidation of easily prepared CoNi electrodeposited films, and the identification of 

the species obtained in each case, in order to correlate them with the electro-catalytic 

performance. The synthesis will be, therefore, in two steps: in the first step, the CoNi alloys 

are deposited and, in the second step, they are oxidized by electrochemical methods. The 

electrodeposition method will permit to obtain CoNi films adherent to the substrate, of 

different composition (CoxNi(1-x) ) and crystalline structure, as the manner that the posterior 

electro-oxidation will permit to obtain different adherent CoNi-Ox species. To attain these 

objectives, we will focus the study in 1) preparing and identifying the CoNi-Ox species 

obtained by electro-oxidation of CoNi electrodeposited films, 2) obtaining different 

crystalline phases of the CoNi alloys, taking advantage of the developed methods by 

ourselves [B2][B4], to investigate if the crystalline structure of the alloy has influence on the 



CoNi-Ox species obtained, and 3) testing of the performance of these species on the catalytic 

electro-oxidation of urea. 

Most of the previous works about the application of CoNi-Ox species in catalysis of 

electrochemical reactions analyse the performance of the catalyst as a function of the 

Ni/(Ni+Co) ratio in the oxides-hydroxides. Now we analyse the nature of the electro-oxidised 

CoNi-Ox species obtained from alloys with the same ratio of metals but different crystalline 

phase. The crystalline phases of the electrodeposited pure metals can be: face-centered cubic 

for nickel (Ni-fcc) and hexagonal compact (Co-hcp) or face-centered cubic (Co-fcc) for cobalt 

[B5]. The CoNi alloys can only be deposited in fcc phase when atomic percentage of cobalt is 

lower than 60%, whereas when is higher than 60%, the alloy can be deposited in fcc, hcp or 

mixed phases [B4][B3][B2]. According with that, we try to prepare Co7Ni3 films as Co7Ni3-

hcp and Co7Ni3-fcc, which will be posteriorly electro-oxidized. From our best knowledge, no 

similar investigation was previously developed. In order to facilitate the interpretation of the 

results, films of Ni-fcc, Co-fcc, Co-hcp and Co5Ni5 will be also electrodeposited for posterior 

electro-oxidation and characterization.  

There is a general agreement that the catalytic Ni-Ox or Co-Ox species for the electro-

oxidation of some molecules as glucose or methanol are the M(III) oxy-hydroxides, of general 

formula MO(OH), accordingly to the reaction: 

MO(OH) + Red-A    M(OH)2 (or MO) + Ox-A  

being the MO(OH) species the electro-oxidized products, in basic media, of the corresponding 

M(II) oxides or hydroxides: 

M(OH)2 + OH-
 MO(OH) + e- 

MO + OH-
MO(OH) + e- 

However, different structures or phases of oxides and hydroxides of these metals can be 

formed. Oxidized products of nickel are described in a review of David S. Hall et al [ES6], in 

which Ni(II) species as α-Ni(OH)2, β-Ni(OH)2 and NiOcan be after electro-oxidized to form 

Ni(III) species as β-NiO(OH) or γ-NiO(OH). The Co-Ox species formed from cobalt electro-

oxidation have been described as α-Co(OH)2, β-Co(OH)2, Co3O4 or CoO(OH) 

[A15][R4][ES3]. The species present on CoNi films after electro-oxidation will be, at least, of 

the same complexity, with mixed oxides and hydroxides. Each one of these species will 

present a different catalytic effect for the electrochemical oxidation of molecules. In our study 

we analyse the influence of the crystalline phase of the electrodeposited CoNi films of the 



same composition (Co7Ni3-fcc and Co7Ni3-hcp) in the oxidized species formed, and the 

influence of the composition of the films for the same crystalline phase (Co7Ni3-fcc and 

Co5Ni5-fcc). The electrochemical synthesis of different types of CoNi films (phase and 

composition) from a single solution has been tested [B4][B2] and, if the electro-oxidation 

leads to different CoNi-Ox species, the electrodeposition + electro-oxidation procedure can be 

an easy method to obtain different CoNi-Ox species with different catalytic performance. The 

electrodes containing these different CoNi-Ox species will be tested for the catalytic electro-

oxidation of urea, for which the catalytic effect of the NiO(OH) has been detected [A10][A11]  

 

2. Experimental 

 

All the deposits were potentiostatically prepared from deoxygenated solutions prepared using 

pure Millipore Milli Q water. The deposits of CoNi of different composition and crystal 

phase(Co5Ni5-fcc and Co7Ni3-hcp) were obtained at 21 °Cin a CoCl2 0.2 M + NiCl2 0.9 M + 

H3BO3 0.5 M, pH 3, solution (“CoNi Solution”). By usingthe same electrolytic bath, but at 26 

ºC and 300rpm, Co7Ni3-fcc deposits wereprepared. The pure Ni-fccdeposits were obtained at 

21 ºC in a NiCl20.5 M+ H3BO3 0.5 M, pH 3, solution (“Ni Solution”). Co-hcp deposits were 

obtained at 21 ºC in a CoCl20.5 M +H3BO30.5 M, pH 3,solution(“Co1 Solution”), whereas the 

Co-fccdeposits were prepared at 21 ºC ina CoCl20.5M +C6H8O70.5 M solution, at pH= 1.5 

adjusted with HCl(“Co2 Solution”). 

 

The deposits were prepared on flat silicon pieces with a Ti(10 nm)/Au(100 nm) seed layer 

(supplied by IMB-CNM.CSIC (Centro Nacional de Microelectrónica)); the exposed area of 

the substrates in the solution was 0.25 cm2.A platinum spiral and an Ag/AgCl/KCl 3 M 

(Methrom) were used as auxiliary and reference electrodes, respectively. For the electro-

oxidation of the deposits and the urea, a Luggin capillary with NaOH 0.5 M was used to 

contact the reference electrode with the working solution. The electrochemical experiments 

(deposits preparation, deposits oxidation and urea oxidation) were carried out with a 

Potentiostat/GalvanostatAutolab PGSTAT30, controlled with the GPES software. 

 

The composition of the deposits was determined by an X-Ray Fluorescence (XRF) 

Fisherscope system XDALwith WinFTM XDAL Ver6.19 software. Both the electrodeposited 

materials and the corresponding oxidized species were observed by Field emission Scanning 

Electron Microscopy (FE-SEM) by using JSM-7100F Hitachi equipment. The thickness and 



roughness of the CoNi films were analyzed by a Leica DCM 3D interferometer and LeicaMap 

software. Raman Microspectroscopyanalysis was performed with a LabRam HR 

equipment?with a 532nm green LED. 

 

The electrodes for urea electro-oxidation were prepared by consecutive cyclic voltammetries 

of the prepared electrodeposits(Co, Ni and CoNi) in a 0.5 M NaOHsolution, in order to obtain 

the oxidized species. A 0.5M NaOH + 0.1M urea (of analytical grade reagents) were used for 

the test of urea oxidation over the oxidized deposits.   

 

The electrodeposits prepared were also introduced in 0.5 M NaOH solution for both the 

corrosion test and the accumulation of oxidized species (Co-Ox, Ni-Ox, CoNi-Ox) in order to 

identify them by Raman. For the corrosion test, after the stabilization of the potential (Ess) in 

open circuit conditions, potentiodynamic curves at 0.1 mV s-1 were recorded from Ess-300 mV 

to around Ess+400 mV. 

 

3. Results and discussion 

 

3.1. Synthesis and characterization of the electrodeposits 

Electrodeposition of the films was performed by using the electrolytic solutions described in 

the Experimental section and the conditions detailed in Table 1.The charge deposited was Q= 

4 Ccm-2 in all cases. The thickness of the deposited films was around 1.5-2 µm,depending on 

the morphology and grain size of each deposit. The conditions to prepare the pure metals have 

been selected according to the bibliography, in order to obtain the desired crystalline phase 

[26].  

 

Deposit 

 
Electrolytic 

solution 

Temperature 

(ºC) 

E / mV Stirring speed 

(rpm) 

Co-fcc Co2 21 - 800 - 

Co-hcp Co1 21 - 1000 - 

Ni-fcc Ni 21 - 1000 - 

Co5Ni5-fcc CoNi 21 - 1000 - 

Co7Ni3-fcc CoNi 26 - 800 300 

Co7Ni3-hcp CoNi 21 - 800 - 

      



Table 1.Electrolytic bath and conditions for the preparation of the metals and alloy films  

 

The SEM images of the different deposits prepared are shown in Figure 1. The films of pure 

metals present the expected morphology, according to the preparation conditions: nickel 

deposit show a nodular morphology characteristic of the Ni-fcc crystalline phase, whereas 

cobalt deposits show very different morphologies as corresponds to their different crystalline 

phase: fine grained deposits for the Co-fcc and acicular rough morphology characteristic of 

the Co-hcp deposits []. The morphology of the CoNi deposits seems already corroborate the 

crystalline phase desired in each case: the hcp phase for one of the Co7Ni3 deposits (acicular 

rough one) and the fcc phase for the flat fine-grained Co7Ni3and Co5Ni5 deposits.  Really, 

when X-Ray diffraction was used to characterize these deposits, the crystalline phase was 

corroborated, as the manner that we can affirm that Co5Ni5-fcc, Co7Ni3-fcc Co7Ni3-hcp have 

been obtained (Figure 2).  

 

 

Figure 1:FE-SEM images of electrodeposited metals and alloys. Scale bar: 1 µm 

 



 

Figure 2:XRD of electrodeposited CoNi films of Figure 1 

3.2. Electro-oxidation of the electrodeposits 

The synthesised electrodeposits were introduced during 5 minutes in NaOH 0.5 M to oxidize 

the metals to metal (II) hydroxides. After that, and in order to induce the formation of 

MO(OH) species, the substrates were subjected to successive cyclic voltammetry (CV) in the 

same solution, in the -0.1 to 0.6 V range, achieving a constant voltammetric profile (50 cycles 

for Co samples and 100 cycles for Ni and CoNi samples). Figure 3 shows the evolution of the 

voltammetric profile from the first scan (dotted line) to the successive ones (grey lines) and 

the final stationary scan (black line).The voltammetry profile is in each case different and we 

try to interpret of the profiles of the CoNi deposits taking into account those corresponding to 

the pure metals and the bibliographic information. 

In the case of nickel deposits, the oxidation of the Ni(OH)2 to Ni(III) species has been 

analysed (Figure 3, Ni-fcc). In the first voltammetric scan, a non-well defined couple of peaks 

is detected. The stationary scan show a more clear profile where the oxidation peak has been 

shifted to positive potentials,appearing at around 440 mV. The main reduction current appears 

as a peak centred at 370 mV. There is a general agreement to assign this coupleto the 

reaction:(doblefletxa) 

2 2Ni(OH)  OH   NiO(OH) + H O + e     

although some authors propose the existence of two forms of nickel hydroxides, which can be 

oxidized to two forms of nickel oxo-hydroxides[3][2][28][29]: 

2 2

2 2

-Ni(OH)  + OH   -NiO(OH) + H O + e

-Ni(OH)  + OH   -NiO(OH) + H O + e

 

 

 

 




 



The β-Ni(OH)2 is the more crystalline phase and thermodynamically more stable.The α-

Ni(OH)2evolves, in alkaline media,toβ-Ni(OH)2; this change can be done by ageing or it can 

be observed in the cyclic voltammetries by a shift of the anodic and cathodic peaks to more 

positive potentials,as described by Kim et al.[3]. This was also observed in films of NiPt by 

Huang et al. [30]. Therefore, we can assignthe main peaks (442/370 mV) in the stationary 

cyclic voltammetry of the initially Ni-fccoxidized deposit to the β-Ni(OH)2/β-NiO(OH) redox 

couple, whereas the reduction shoulder at 300 mV agree with the reduction of the NiO(OH) 

species to α-Ni(OH)2. This assignment agrees with the results of other authors 

[3][29][30][31], although the exact position of the peaks is depending on the OH- 

concentration and the nature of the alkaline cation [31]. 



 

Figure 3:Cyclic voltammetries in NaOH 0.5 M, at 50 mV s-1, of the electrodeposited films, 

after immersion during 5 minutes in NaOH 0.5 M. (E vs Ag/AgClKCl 3M reference electrode) 



The first scan of the Co-fcc/Co(OH)2 and Co-hcp/Co(OH)2 substrates show significant 

oxidation, especially in the case of the Co-hcp. After that, the stationary voltammetric profiles 

show a clear passivation of the surface,being more pronounced in the case of the Co-fcc 

film,for which no current is detected after a few cycles. Therefore, a passivating layer of 

cobalt oxide or hydroxide is formed; being the more stable compounds of Co-Ox species the 

cubic spinel Co3O4[28] and β-Co(OH)2[32].Probably, the oxidation of β-Co(OH)2 to Co3O4 

leads to a passivation of the substrate. The Co3O4 oxidation to CoO(OH) is not detected in 

Figure 3, because the corresponding oxidation peak should appear just before of oxygen 

evolution, at around 500-550mV [34].The stability of the mixed Co(II)/(III) oxide, the spinel 

Co3O4,doesn’t favour its electro-oxidation to CoO(OH)[33]. The passivating layer is also the 

cause of the shifting of the oxygen evolution to more positive potentials during the cycling. 

The voltammetry profiles of the oxidised CoNi films are intermediate between those of 

oxidized Co and Ni, although the specific voltammetric response varies as a function of the 

composition and crystalline phase of the alloy films. The stationary scans 

showanodic/cathodic peaks,but of decreasing intensity as the Co content in the deposits 

increases. Also, the peaks gradually shift to less positive values as the cobalt percentage 

increases, which agree with the results found for other authors independently of the synthesis 

method [35][36][9][37][21][38][14]. This demonstrates that the CoNi deposits prepared form, 

in NaOH solution, mixed hydroxides of Ni(II) and Co(II), instead of a mixture of the 

individual Co(OH)2and Ni(OH)2 species. The same behaviour has been also observed for 

other bimetallic hydroxides of nickel as FeNi[39] or MnNi[29]. Therefore, the main 

oxidation/reduction peaks can be assigned to the oxidation of the mixed hydroxides to 

MO(OH) species and the corresponding reduction. However, the stationary profiles of the 

originally fcc or hcp deposits present some differences: 

-The profiles obtained from the oxidized CoNi films with fcc phase (Co5Ni5-fcc and Co7Ni3-

fcc) are more similar than that obtained from the Ni-fccoxidized films. Moreover, a reduction 

shoulder at around 300mV is detected in these cases, independently of the cobalt content, 

shoulder that appears after or before the main reduction peak. According to the results of the 

Ni-fcc oxidized deposits, this cathodic peak corresponds to the reduction of NiO(OH) to α-

Ni(OH)2, fact that explains the independence of its position with the Co content. Therefore, 

the CoNi-Ox species formed from the Co5Ni5-fcc and Co7Ni3-fcc films can be, initially, 

mixed hydroxides of Ni(II) and Co(II), which can be electro-oxidized to mixed MO(OH) 



species, containing a small amount of pure Ni(III) oxo-hydroxides (NiO(OH)), next to the 

mixed MO(OH),which reduces to α-Ni(OH)2. 

-The profiles obtained from the oxidized CoNi films with high cobalt content and hcp phase 

(Co7Ni3-hcp) are more similar to the observed for the oxidized Co-hcp deposit. Drastic 

oxidation and passivation takes place during the first scan, according to the formation of metal 

oxides type-Co3O4, although the formation of some MO(OH) is now possible, reflected for 

the redox couple at 214/170 mV.  

Therefore, although the cobalt content in the deposits can be high, when the electrodeposits 

present fcc phase, the behaviour of the oxidized films is similar to the detected for the 

oxidized Ni-fcc 

Figure 4 shows the SEM images of each deposit after the immersion in the NaOH solution 

and the posterior voltammetric cycling, according to the voltammetries of the Figure 3. The 

comparison of these images with those obtained before the voltammetric treatment (Figure 1) 

allows detecting the changes produced in the surface. The Co deposits (Co-fcc and Co-hcp) 

maintains their original morphology, although the surface present now new crystals, probably 

of Co3O4 oxides.The films of fcc phase (Ni-fcc, Co5Ni5-fcc, Co7Ni3-fcc) show low superficial 

modification and the Co7Ni3-hcp film shows an evolution of its morphology during the 

cycling. However, in these cases, a clear layer of oxidized species is not detected. 

New replicas of each type of electrodeposit were immersed in 0.5M NaOH for 5 hours at 

22ºC to induce significant oxidation; after that, the oxidized layer formed in each case was 

observed by SEM and posteriorly analysed by means Raman Microscopy. The results are 

shown in the Figure 5. 

 



 

Figure 4:SEM images of the oxidised surfaces after the voltammetric scans of Figure 3. Scale 

bar: 1 µm  

 

 

 



Figure 5.SEM images of the oxidised surfaces after immersion of the deposits in NaOH 0.5 M 

during 5 hours (Scale bar: 1 µm) and the corresponding Raman spectra in the 300-700 cm-1 

region 

 

The surface of the two types of Co deposits (Co-fcc and Co-hcp) shows a significant amount 

of oxidized species instead of the original morphology. Big crystals are observed, of similar 

shape than those detected after the cycling of the deposit in NaOH. The Raman spectrum 

shows the characteristics bands of the 3F2g (477 and 516 cm-1), Eg (607 cm-1) and A1g (680 

cm-1) of the Co3O4 spinel [40][R7][41][42][33][43][17]. This strong absorption at 680 cm-1, 

assigned at the highly symmetrical mode A1g, is attributed to the octahedral coordination of 

Co(III)-O [42] in the spinel. Therefore, the Co3O4 is the oxidized species formed from the Co-

fcc deposit, both by immersion during long time and for electro-oxidation in the same basic 

medium. This oxide blocks the deposit, passivating its surface. 

The image corresponding to the Co-hcp deposit shows also crystalline oxidised species on the 

surface of the deposits, but with different amount and morphology than in the case of the Co-

fcc. In the corresponding Raman spectrum, the band at 687 of the A1g mode of OHCo(III)-O, 

appears, but the other vibrational modes seem to be hidden by the wide band at 505 cm-1. As 

the laser power can modify the surface structure [41] and, in order to minimize this influence, 

the spectrum was recorded applying both the same power that in the other samples and at a 

power reduced until a 25% (the Raman spectrum that is shown in Figure 5 for the Co-hcp 

oxidized sample), remaining unchanged[41]. Therefore, the differences observed in the 

spectrum respect to that of the Co-fcc deposit is not due to the experimental conditions of 

analysis but to the presence of a new oxidized species. The wide band at 505 cm-1 is assigned 

to the presence of crystalline β-Co(OH)2[A15] in a mixed crystalline structure of: β-

Co(OH)2+ Co3O4 spinel. The co-spinelstructure is rejected because the no presence of the 

band at ≈470 cm-1[43]. The differences in the oxidized species formed over Co-fcc(Co3O4) 

and Co-hcp (Co3O4 + β-Co(OH)2) deposits justify also their different voltammetric behaviour. 

In the same way, the spectrum of the oxidised surface of the Co7Ni3-hcp deposit is assigned 

tothe presence of a mixed spinel (Co2NiO4) and aCoxNi(1-x)(OH)2 mixed hydroxide structure.  

The SEM images of the oxidised surfaces of thedeposits of cubic phase(Ni-fcc, Co5Ni5-fcc 

and Co7Ni3-fcc) in Figure 5 are almost identical to those of Figure 4. Therefore, both by the 

cycling treatment and after immersion during long time in the basic medium, the amount of 



oxides formed is low. This agrees with the very low intensity of the Raman bands in the 

spectra of these three deposits. According to the Raman spectra and the voltammetry 

experiments, the oxidized surfaces of the deposits of cubic phasecontain a thin layer of 

crystalline β-CoxNi(1-x)(OH)2 with a very thin layer of the low crystalline phase α-Ni(OH)2 

(out of Raman sensitivity). 

The corrosion behaviour of the electrodeposited films has been also analysed in the NaOH 0.5 

M selected medium. Figure 6 shows the typical potentiodynamic curves (in logarithmic 

form)to determine the values of the corrosion potential (Ecorr) for each deposit in the basic 

medium. 

 

Figure 6:Potentiodynamic curvesin NaOH 0.5M,at 0.1 mVs-1,for the different 

electrodeposited films. E vs Ag/AgClKCl 3M reference electrode. 

The values obtained of the Ecorrin basic medium for the different deposits obtained are 

dependent of the nobility of the metals, their crystalline phase and the passivating layers 

formed. Although Ni is a nobler metal than Co, the Co-fccdeposit present higher corrosion 

potential due to the formation of the blocking Co3O4 layer that passivates the film. When the 

blocking of the surface is not complete, Ni presents higher Ecorr than Co. The Co-hcp films, 

according to the assigned co-structure of Co3O4+β-Co(OH)2, less passivating than the pure 

Co3O4 one, present a lower value of the Ecorr than the Co-fcc. 

Mixed deposits show higher corrosion tendency than pure-metallic deposits, being this 

tendency, for the deposits of cubic phase, gradually increased as the cobalt percentage 

increases. However, the Co7Ni3-hcp presents higher Ecorr than Co7Ni3-fcc due to the presence 

of the blocking spinel oxides on the surface (Co2NiO3), next to the β-CoxNi(1-x)(OH)2, species. 



3.3. Effective area of the Co7Ni3-fcc and Co7Ni3-hcpelectroddeposits 

To study the influence of the CoNi films of the same composition but different crystalline 

phase, by forming the M(III) oxidized species on the surface, on the urea electro-oxidation the 

real area of the deposits must be compared, in order to compensate the possible differences in 

the effective area of the electro-catalysts. As it has been shown in Figures 2,4 and 5, the 

morphology of the Co7Ni3-fcc and Co7Ni3-hcp deposits is clearly different, either before as 

after oxidation Therefore, we try to minimize their influence in the posterior urea electro-

oxidation, through the area's correction, from the surface texture parameters, measured with a 

confocal microscope. In the Table 2 we present some of the more significant surface texture 

parameters obtained from the deposits analysed in Figure 7: Sa (3D amplitude parameter 

equivalent to the Ra of a 2D profile) and Sq (3D amplitude parameter equivalent to the Rq of 

a 2D profile). .As it can be seen, the amplitude parameters commonly used to evaluate the 

surface roughness (Sa and Sq) are only of a few nanometres in the case of the deposits of fcc 

phase. 

 



Figure 7.Surface texture images of the Co7Ni3-fcc andCo7Ni3-hcp electrodeposited films 

before and after surface oxidation 

 

 

 

 

 

 

Table 2.Surface texture parameters, projected area Spar and extended area . 

 

The images shown in the figure 7 were obtained with a confocal microscope and Leica lens 

EPL150x/1.2. A lens of the highest magnification was used for a maximum surface texture 

resolution. Even the apparent large change in the morphology seen in the SEM images of 

figures 2, 4, 5, the surface texture parameters are not so different. The most important 

parameters for our application are the Spar and Sdar. Spar is the surface flat projected area 

(similar to the area of measurement) and Sdar gives the extended area (area of an equivalent 

flat surface obtained by stretching all the mountains and valleys). The Sdar/Spar ratio informs us 

about the significance of the observed roughness in the real area of the surface. The Co-hcp 

surface shows an effective area of 120% respect of the geometrical measure, while the Co-fcc 

has same area as the macroscopically measured, as correspond with a flat, very fine grain 

surface. In the case of the oxidised surfaces the Co-hcp has an increase up to 125% of the 

measured macroscopic area and the Co-fcc can be considered invariant. 

 

3.4. Influence of the alloy composition and crystal phase of the oxidised CoNi filmsin urea 

electro-oxidation  

Oxidized nickel-cobalt species on the deposits can catalyse the urea electro-oxidation in a 

similar way that occurs for methanol or glucose in basic medium. To test the influence on the 

catalytic electro-oxidation of the urea, the different deposited films were oxidised by means of 

Surface 

Texture 

Parameters 

Co7Ni3 hcp phase  Co7Ni3fcc phase  

deposited activated deposited Activated 

Sa (μm) 0.106 0.112 0.0059 0.0088 

Sq (μm) 0.139 0.152 0.0076 0.0138 

Sdar (μm²) 6529.4 6770.7 5402.8 5405.9 

Spar (μm²) 5402.3 5402.7 5401.3 5401.5 

Sdar/Spar 1.209 1.253 1.000 1.001 



100 consecutive voltammetric scans in NaOH 0.5M. After the surface oxidation, urea is added 

to the solution and, after homogenization, new voltammetric profile were performed in the 

NaOH 0.5M + urea 0.1M solution. The electrocatalytic performance of the different oxidized 

deposits for urea electro-oxidation was analysed and interpreted. 

Figure 8 show the voltammetric profiles obtained over the oxidized deposits with fcc 

crystalline phase. The maximum of the urea electro-oxidation appears at around 0.5 V, 

followed by the drastic current increase due to oxygen evolution. When the cobalt content in 

the deposits increases, the catalytic activity of the surfaces decreases, as it has been also 

detected for other authors [35]. The previous study about the nature of the superficial oxidized 

species formed indicates that the catalytic activity of the CoxNi(1-x)(OH)2 species increases 

from x=1 to x=0 (for x=0, only Co3O4, non-active ,is formed) as it was described by Yan et al. 

[21]. Anyway, although the higher oxidation peak is the obtained using an oxidized nickel 

surface, the oxidation peak slightly advances when cobalt in incorporated to the deposits. 

 

 

Figure 8:Cyclic voltammetries at 50 mV s-1 in NaOH 0.5 M + 0.1 M urea solution of the 

different oxidized deposits with fcc crystalline phase. 

 

Figure 9 allows us to compare the effect of the crystalline phase of the Co7Ni3 deposits in the 

posterior superficial oxidation process and the catalytic behaviour respect to the urea electro-

oxidation.According to the identification of the oxidized species forming during the 



voltammetric cycling, we expect a difference in performance. In order to eliminate the effect 

of the higher roughness of the Co7Ni3-hcpfilm, the normalized curve according to the Sdar/Spar 

ratio is also included: the geometrical area was corrected by the factor of 1.25 corresponding 

at the Sdar/Spar value. With this correction, the effective areas for both alloys can be considered 

equal. Therefore, as the deposits of the same composition but different crystalline phase 

oxidized in a different way, they favour in different form the urea electro-oxidation. More 

intense and advanced oxidation peaks were observed for the Co7Ni3-hcpfilm and, therefore, 

urea oxidation is both advanced and enhanced. This study demonstrates that really cobalt-

nickel alloys advance the electro-oxidation of compounds as the urea in this case, as the 

manner that lower potentials are necessary to induce the process. Also, the effect of the 

Co7Ni3-hcpfilms is not only due to the higher effective surface respect to the Co7Ni3-fcc films, 

but also to the influence of the crystalline phase of the deposits in the superficial oxidation 

process.The amount of active oxidized species of CoxNi(1-x)(OH)2 formed is higher in the case 

of the Co7Ni3-hcpfilm 

The surfaces that has oxides in its composition seem to be more electrochemically actives 

than the composed by hydroxides as it was found for methanol oxidation by Sun et al.[35]. 

 

 



Figure 9.Cyclic voltammetries in NaOH 0.5 M + 0.1 M urea solution, at 50 mV s-1, of the 

oxidized Co7Ni3 deposits. Black line:  Co7Ni3-hcp and grey line: Co7Ni3-fcc deposits. 

 

4. Conclusions 

The (electrodeposition + surface electro-oxidation) method has been revealed able to obtain 

CoNi oxidized electrodes as catalysers for urea electro-oxidation in alkaline medium. The 

electrodeposition has permitted the preparation of CoxNi(1−x)films of the same composition 

but different crystalline structure. After voltammetric activation in alkaline medium, the 

oxidized layer formed is differ-ent depending on the crystalline phase of the as-deposited 

CoNi film. The electrodes prepared from CoNi-fcc films have superficial _-

M(OH)2hydroxides, while those prepared from Co7Ni3-hcp filmspresent a highly crystalline 

Co2NiO4oxide (mixed spinel) next tothe  _-M(OH)2. Because the catalytic species for 

compounds oxidation as urea are the different oxidized species formed from the fcc or the hcp 

deposits, the catalytic effect of the electrodes on urea electro-oxidation depends on the 

crystalline structure of the as-deposited CoNi films. The presence of Co in the deposited CoNi 

films decreases the current of urea oxidation, although it advances the potential for the 

electro-oxidation, which is an advantage in the urea’s electrolysis for hydrogen production. 

The performance of oxidized Co7Ni3-hcpfilms for urea electro-oxidation is good, with a 

higher anodic cur-rent than that of the oxidized film-fcc, the lowest potential for the electro-

oxidation and the lowest oxygen evolution of all the CoNi films. The electrode prepared from 

Co7Ni3-hcp alloy becomes a good material as anode for urea electro-oxidation. 
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