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Abstract

Over the past few years, quantum computing has become more plausible due
to the great advances in technology. While quantum computers are on their
birth, the underlying mathematics have evolved to the point of proving that
some quantum algorithms can solve problems that were unsolvable in classic
computers. In order to implement these algorithms in a real machine, it is
important to develop efficient ways to do it. The Solovay-Kitaev Theorem states
that is possible. This work pretends to offer a complete review of the Solovay-
Kitaev Theorem giving all the necessary tools to prove it. Moreover, we offer a
brief introduction to the standard mathematical model of quantum computing,
based on unitary operations.

Resum

En els últims anys, la computació quàntica ha esdevingut més factible a causa
dels grans avenços tecnològics. Mentre els ordinadors quàntics encara estan en el
seu naixement, les matemàtiques han avançat fins el punt de demostar que certs
algorismes quàntics poden resoldre problemes que eren impossible de resoldre en
un ordinador clàssic. Per implementar aquests algorismes en una màquina real,
és important desenvolupar formes eficients de fer-ho, i aqúı és on el teorema de
Solovay-Kitaev prova que és possible. Aquest treball pretén oferir una revisió
completa del Teorema de Solovay-Kitaev donant totes les eines necessàries per
demostrar-lo. A més, oferim una breu introducció al model matemàtic estàndard
de la computació quàntica basat en operacions unitàries.
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1 Introduction

“A classical computation is like a solo voice, one line of pure tones
succeeding each other. A quantum computation is like a symphony,
many lines of tones interfering with one another.”.

—Seth Lloyd, Programming the Universe.

Nowadays we are living what many scientists call, a second quantum rev-
olution. The first quantum revolution dates back to the first half of the 20th
century, when scientists understood the basic rules of quantum mechanics which
were the foundation that allowed inventions like the laser or the transistors, the
basic building blocks of computers. Over the past few years, technology has de-
veloped to the point where we have control over one single atom, which means
that quantum properties like superposition or entangling can be used to build
new devices, in particular the quantum computer. The first ideas of quantum
computing were established in the early eighties, but during the last years the
great advances in mathematics, materials science, and computer science have
turned quantum computing from a theory into a reality.

The main idea of quantum computing relies on the physical device where the
information is stored. Quantum computing uses physical systems like atoms,
superconducting circuits or photons, that allow to create superpositions of clas-
sical states. For example, an electron can be in two levels of energy, the ground
state and an excited state, and in each state we can store information as 0 or
1 (like the bits in classical computing). However, quantum mechanics allow
physical states to be in a superposition, so we can have states that are at the
same time 0 and 1. More precisely, if we imagine a sphere and we associate the
0 to the north pole and the 1 to the south pole, the quantum state can be any
point on the surface of the sphere, and these points is what we call qubits; the
analogues to the bit in quantum computing. This way of seeing the qubit as a
point on a sphere is more accurate rather than saying that is in both states 0
and 1 at the same time.

The great advantage of quantum computing over classical, is the exponential
scaling of the quantum systems in front of the classical. Since a qubit can repre-
sent two bits states, n qubits can represent 2n bits states, and this fact allows to
manipulate more information with less resources. There are different physical
implementations of a quantum computer (see Chapter 7 of [NC00]), but the key
point is that the operations that can be done in a quantum system are unitary
transformations. Mathematically, it turns out that quantum computing can be
described by vectors in C2n representing the qubits, and elements of the unitary
group U(n) representing the operations (like the classical gates NOT, XOR. . . ).
From this new way of computing a new type of algorithms completely different
from the classical arise. Also, with these new algorithms, quantum computers
may be able to efficiently solve some problems which classical computers could
not solve. One of the most promising quantum algorithms is Shor’s algorithm
[Mon16], which allows to solve efficiently integer factorization, a problem that
classically belongs to the complexity class NP. Other useful applications will
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be in fields like machine learning, economical models, artificial intelligence, or
molecular simulations, which could help to develop new types of drugs and ma-
terials. However, near term quantum computers are restricted by the number
of qubits that can handle and the amount of operations that we can perform.
Algorithms like Shor’s requires thousands of qubits, while the best quantum
computers that we have can run less than 50 qubits, so if one wishes to run
useful quantum algorithms it is important to find efficient ways to do it.

Now we are approaching what John Preskill called the NISQ era (Noisy
Intermediate-Scale Quantum) [Pre18]. In this near stage we will deal with quan-
tum computers that operate between 50 and 100 qubits, not enough for running
Shor’s algorithm, but in fields like the simulation of many body quantum sys-
tems, quantum computers will offer a great advantage over the classical. In this
scenario, apart from the limitation on the number of qubits we will have to deal
with “noise”, which means that the devices will offer errors due to the fragility
of the quantum systems. This fact raises two problems in the implementation
of quantum algorithms: the first and most obvious is that we can not build
quantum circuits with an arbitrary number of quantum operations, since if the
computation takes too long, the information can be lost due to the fragility of
the system. The second is that we will have to implement error correction to the
algorithms in order to avoid problems like the loss of the information of some
qubits.

Most quantum algorithms can be decomposed in quantum gates that operate
on a single qubit, together with some other gates that act on two qubits (called
entangling gates). However, since one will be restricted by the number of gates
that can use to operate in a quantum circuit, it is necessary to work with a set of
gates that can approximate any unitary operation and can perform fault tolerant
computations. A set that can approximate with an arbitrary precision any
unitary operation is called a universal set of quantum gates. Finding a universal
set of quantum gates is equivalent to finding dense sets in the unitary group U(n)
(these facts will be explained at the end of Section 3). Note that since the unitary
group U(n) is infinite, it is impossible to achieve any element of the group with
a finite set, since one is uncountable and the other countable. This is why a
universal set of quantum gates cannot achieve an arbitrary element of U(n) with
zero error. With a universal set of quantum gates it is important to know how
fast one can achieve any unitary operation with a certain precision, in the sense
that we want to construct the operations with short sequences of elements of our
gate set. The result that states how fast a universal set of quantum gates can
achieve any unitary operation is the Solovay-Kitaev Theorem. In the simplest
form, it states that:

Theorem (Solovay-Kitaev). Given a set of elements in SU(2) that generates
a dense subset, then it is possible to find approximations for any element of
SU(2) with short sequences of elements of the given set.

Specifically, the theorem states that the length of the approximation scales
polylogarithmically in function of the error of the approximated element. More-
over, this result is important for defining quantum complexity classes. Like in
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the classical case, we can define new complexity classes for quantum algorithms,
the most known are BQP (bounded-error quantum polynomial time) and QMA
(Quantum Merlin Arthur) which are the bounded-error quantum analogues of
P and NP. In order to have a good definition for the classes BQP and QMA,
we need independence of the gate set that is used for the computation. Here
the Solovay-Kitaev Theorem states that a change of a gate set only increases
the complexity of the algorithms in a polylogarithmic factor, so they can be
well defined. However, there are certain details of the exact statement of the
theorem that have to be improved (see [Kup15]).

The aim of this work is to introduce the Solovay Kitaev theorem for readers
without prior knowledge in quantum mechanics or quantum computation. The
proof of this theorem is based on exploiting the non-abelian structure of SU(2).
Basically, it consists on picking a dense subset of SU(2) and generating a good
approximation for the identity. Then, using some properties of the distance
between the elements of the group, it can be proved that we can achieve better
approximations for the identity at the cost of having a more dense subset. For
these approximations we will use the group commutator. This is an operator
for the unitary group which is equal to the identity whenever two elements
commute. Iterating the process of having better approximations for the identity
we will have elements very close to the identity, and using a translation step we
can move these dense subsets to other points of the group. In this manner, we
will achieve approximations for any element of SU(2).

Solovay announced the theorem in 1995 for the case SU(2) in an email dis-
cussion but he did not publish it. In 1997, Kitaev generalized the result to the
case of SU(d) and published it in a review paper [Kit97]. The proof that we will
give is based on the Appendix 3 of [NC00], and it involves some geometrical ex-
planations matching distances between SU(2) and R3. Note that in the present
text, we provide all the computations that were left as exercises in the book,
some of them taken from [Har01] and [Ozo09]. Also, throughout our exposition
we have tried to add all the mathematical rigour that is sometimes lacking in
the standard expositions of the Solovay-Kitaev Theorem, most of them intended
for physicists and quantum computer scientists.

As we will see, a main ingredient in the proof of the Solovay-Kitaev The-
orem is the notion of dense subset in a metric space with a biinvariant met-
ric. With this idea in mind, the theorem has been extended, generalized and
adapted to other settings that we do not cover in the present work, such as
[AB17],[ND05],[HBC02],[Ozo09]. Also, several prominent topologists and ge-
ometers have recently shown their interest and developed works related to the
ideas of the original Solovay-Kitaev Theorem (see for instance the work of
Freedman-Kitaev-Lurie [FKL03] and Sarnak’s lectures on golden gates [Sar15]).
Some of the ideas underlying these more general proofs are briefly explained in
the last section.

This work is organized into three sections as follows:
Section 2 focuses on the unitary group U(n). In particular, we give some

fundamental properties for the case n = 2, which will help us understand the
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concept of single qubit gates. Also, we provide a brief introduction to matrix
Lie groups and their Lie algebras.

In Section 3, we introduce the notion of qubit as a point in a complex
projective space. Then, we recall the Bloch sphere representation, which is a
geometrical way for understanding the qubit. Using some results of Section
2, we give a relation between a quantum gate and a rotation over the Bloch
sphere. Lastly, we define a universal set of quantum gates, a key ingredient of
the Solovay-Kitaev Theorem. In this section, we also include a standard proof
of a particular set of gates that is universal.

Section 4 is the core of this work: we give a proof of the Solovay Kitaev
Theorem for the case of SU(2). Also, we provide all the computations needed
to prove the Shrinking Lemma, is an essential result for proving the Solovay
Kitaev Theorem. Finally we sketch the proof for the general case SU(d) and
give some details of an alternative proof of the theorem.

In Section 5, we collect some final considerations, comment on alternative
and improved proofs, and generalizations of the Solovay-Kitaev Theorem.

For Section 2, we will assume that the reader has familiarity with the main
notions and properties on differentiable manifolds. Some basic references are
[Lan99] and [War83], although we will not need much more than the definitions
of differentiable manifold and differentiable map, always within the point of
view of Lie groups. For Sections 3 and 4 we do not assume any prerequisites,
since we will provide a brief introduction to the mathematics used in quantum
mechanics.

To conclude we would like to note that this work does not include any quan-
tum algorithm, quantum circuit or explanations about how it is possible to
compute with a quantum computer. We encourage the interested reader to
take a look at references like [NC00] or [KN02], where the quantum computa-
tional model is well defined. These references include the most representative’s
quantum algorithms.
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2 Preliminaries on Lie groups and Lie algebras

Lie groups appear naturally in almost every theory where the notion of symme-
try plays a role. Many systems studied in theoretical physics show some form
of symmetry. For instance, in particle physics Lie groups and their associated
representation theory are useful to model the symmetries of subatomic particles.
In this section, we review some main definitions and properties on Lie groups
and Lie algebras that we will use througout the text. We center our attention
to matrix Lie groups and in particular, to the groups U(n) and SU(n) of unitary
matrices, whose definition and main properties we recall below. We will mostly
follow the book [Hal15] of Hall, which focuses on matrix Lie groups. Other
references on the subject are [FH91] and [War83].

2.1 Matrix Lie groups

Definition 2.1. A Lie group is a smooth manifold G which is also a group and
such that the group product:

µ : G×G −→ G

and the inverse map are smooth. These conditions can be combined into the
single requirement that the map G×G −→ G given by (x, y) 7→ x−1y is smooth.

Definition 2.2. Let G and H be Lie groups. A Lie group homomorphism from
G to H is a group homomorphism Φ : G→ H which is also a smooth map. If,
in addition, Φ is one-to-one and onto and the inverse map Φ−1 is smooth, then
Φ is called a Lie group isomorphism.

Examples 2.3. We list some very first examples of Lie groups:

(a) The euclidean space Rn is a Lie group under vector addition.

(b) The non-zero complex numbers C∗ form a Lie group under multiplication.

(c) The unit circle S1 ⊆ C∗ forms a Lie group with the multiplication induced
from C∗.

Although many of the results presented in this section are valid over an
arbitrary field, to simplify our exposition, from now on we will let K denote
either the field R of real numbers or the field C of complex numbers.

Let us now fix some notation on matrices. We will denote by Mn(K) the
set of all n× n matrices with entries in K.

(1) Given A ∈Mn(K), we will denote its (i, j)-entry by Aij , so that

A =

A00 · · · A0n

...
. . .

...
An0 · · · Ann

.

 .
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(2) The trace of A ∈Mn(K) will be denoted by trace(A):

trace(A) :=

n∑
i=0

Aii.

(3) The transpose of A ∈Mn(K) will be denoted by Atr:

(Atr)ij := Aji.

(4) The adjoint of A ∈Mn(C) will be denoted by A∗:

(A∗)jk := A∗kj ,

where A∗kj denotes the complex conjugate of Akj . If A∗ = A, A is said to
be an Hermitian matrix.

(5) The commutator of two matrices A,B ∈Mn(K) is given by

[A,B] := AB −BA

and the anticommuatator by

{A,B} := AB +BA.

Definition 2.4. The general linear group over K, denoted by GL(n;K), is the
group of all n× n invertible matrices with entries in K:

GL(n;K) := {A ∈Mn(K); det(A) 6= 0} .

Matrix Lie groups are, by definition, closed subgroups of the general linear
group. To make this definition precise, let us recall the notion of convergence
in the space of matrices.

Definition 2.5. Let Am be a sequence of complex matrices inMn(C). We say
that Am converges to a matrix A if each entry of Am converges (as m −→ ∞)
to the corresponding entry of A.

Definition 2.6. A matrix Lie group is a subgroup G of GL(n;C) with the
following properties:

(1) The identity matrix is in G.

(2) For all A and B in G, the matrices AB and A−1 are also in G.

(3) If Am is any sequence of matrices in G, and Am converges to some matrix
A, then either A is in G or A is not invertible.

Remark 2.7. Many works give these definitions for the specific case of K = C
since any matrix Lie group should be a subgroup of this case.
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Remark 2.8. Every matrix Lie group is a Lie group. To see this, one proves
that every matrix Lie group is a smooth embedded submanifold of Mn(C). On
the other hand it can be proved that every Lie group is not isomorphic to a
matrix Lie group. We will not prove these results, but the curious reader can
find the proofs in [Hal15]. Chapter 1 and 2 for the proof of that every matrix
Lie group is a Lie group, and Chapter 4 for the other.

Proposition 2.9. The general linear group GL(n;K) is a matrix Lie group.

Proof. If Am is a sequence of matrices in GL(n;C) and Am converges to A, then
by definition, either A is in GL(n;C) or A is not invertible. Moreover, GL(n;R)
is a subgroup of GL(n;C), and if Am is a sequence of matrices in GL(n;R) and
converges to A, then the entries of A are real. Thus, either A is not invertible
or A is in GL(n;R).

We now review some other interesting matrix Lie groups.

Example 2.10. The special linear group over K is the group of n×n invertible
matrices (with entries in K) having determinant one:

SL(n;K) := {A ∈Mn(K); det(A) = 1}.

Note that, since the determinant is a continuous function, if An is a sequence
of matrices with determinant one and An converges to A, then A also has
determinant one. This proves that SL(n;K) is a matrix Lie group.

Example 2.11. The unitary group, denoted by U(n), is the group of n × n
complex matrices A ∈Mn(C) such that:

k∑
`=1

(A∗)jlA`k = δjk,

where δjk denotes the Kronocker delta. From this definition it is easy to check
that matrices in U(n) satisfy A∗A = AA∗ = I. We have:

U(n) = {A ∈Mn(C); A∗ = A−1}.

Note that if A belongs to U(n), then det(A) = eiϕ with ϕ ∈ R.

Example 2.12. The special unitary group SU(n) is the subgroup of U(n) con-
sisting of unitary matrices with determinant one:

SU(n) := {A ∈Mn(C); A∗ = A−1, det(A) = 1}.

In fact, the determinant induces a group homomorphism from U(n) and
U(1),

det : U(n) −→ U(1).

The kernel of this homomorphism is precisely SU(n).
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Example 2.13. The orthogonal group O(n) is the group of n×n real matrices
A ∈Mn(R) such that:

n∑
`=1

A`jA`k = δjk

This condition is equivalent to Atr = A−1 and it holds if and only if A preserves
the inner product on Rn. We have:

O(n) := {A ∈ GL(n;R); Atr = A−1}.

Note that if A belongs to O(n) then det(A) = ±1.

Example 2.14. The special orthogonal group SO(n) is the subgroup of O(n)
given by those matrices with determinant one:

SO(n) := {A ∈ GL(n;R); Atr = A−1, det(A) = 1}.

Geometrically the elements of O(n) are rotations or combinations of rota-
tions and reflections, and the elements of SO(n) are rotations. Since both groups
are closed subgroups of GL(n;C), it is clear that they form matrix Lie groups.

2.2 The Matrix Exponential

Before introducing the notion of Lie algebra, we briefly recall some results on
the exponential of a matrix. As we will see, this operation plays a crucial role in
the theory of Lie groups, connecting matrix Lie groups with their corresponding
Lie algebras. Extended details and proofs for the results in this section can be
found, for instance, in Section 2 of [Hal15].

Definition 2.15. The exponential of a matrix A ∈Mn(K) is defined by:

eA =

∞∑
m=0

Am

m!

Sometimes we will denote exp(A) instead of eA.

Remark 2.16. As usual A0 is defined to be the identity matrix and Am is the
product of A, m times with itself.

The main objective of this section is to give some properties of the exponen-
tial of a matrix. These results will help us throughout this work, especially in
Section 2.3 on Lie algebras and in Section 3.4 on single qubit operations.

Proposition 2.17. Let A,B ∈Mn(K). Then:

(1) e0 = I.

(2) (eA)
∗

= eA
∗
.

(3) eA is invertible and (eA)
−1

= e−A.
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(4) If [A,B] = 0, then eA+B = eAeB = eBeA.

(5) If C is invertible, then eCAC
−1

= CeAC−1.

Proof. Point 1 is trivial and Point 2 follows from (Am)∗ = (A∗)m and the series
expansion of the exponential. Point 3 is a special case of Point 4. To check
Point it suffices to compute the power series term by term

eAeB = (I +A+
A2

2!
+ · · · )(I +B +

B2

2!
+ · · · ).

Rearranging all the terms,

eAeB =

∞∑
m=0

m∑
k=0

Ak

k!

Bm−k

(m− k)!
=

∞∑
m=0

1

m!

m∑
k=0

m!

k!(m− k)!
AkBm−k.

Using that A and B commute,

(A+B)m =

m∑
k=0

m!

k!(m− k)!
AkBm−k

Thus,

eAeB =

∞∑
m=0

1

m!
(A+B)m = eA+B .

Point 5 follows from (CAC−1)m = (CAmC−1) and the series expansion of the
matrix exponential.

Given A ∈ Mn(K), we may view etA as a smooth curve in Mn(K). We
have:

Proposition 2.18. Given A ∈Mn(K), the following identities are satisfied:

1. d
dte

tA = AetA = etAA.

2. det(eA) = etrace(A).

Proof. The first statement is a simple computation. For the second one it suf-
fices to see that if A is diagonalizable with eigenvalues λ1, ..., λn then eA is
diagonalizable with eigenvalues eλ1 , ..., eλn . Thus

det(eA) = eλ1 · · · eλn = eλ1+···+λn = etrace(A).

If A is not diagonalizable we can distinguish if A is nilpotent or A is arbitrary.
If A is nilpotent means that Nk = 0 for k sufficiently large. Then A can be

written as A = C−1XC for some invertible matrix C and X an upper diagonal
matrix with al the diagonal entries equal to 0. Using Point 5 of Proposition 2.17
the result follows.
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If A is arbitrary then it may be written as A = S + N , with [S,N ] = 0,
where S is a diagonalizable matrix and N is a nilpotent matrix (see Appendix
B.3 of [Hal15]). In particular, its exponential is a finite sum and hence has an
explicit expression. Since [S,N ] = 0, by Proposition 2.17 and the previous cases
we have

eA = eS+N = eSeN .

It now suffices to use the expressions for eS and eN respectively.

We will also use the following result:

Proposition 2.19. Let x ∈ R and A ∈Mn(K) such that A2 = I. Then:

eiAx = cos(x)I + i sin(x)A.

Proof. Using the usual series expansion for the sine and cosine we can compute
directly:

eiAx =

∞∑
m=0

(iAx)m

m!
=

∞∑
m=0

1

(2m)!
(iAx)2m +

∞∑
m=0

1

(2m+ 1)!
(iAx)2m+1

= I

∞∑
m=0

(−1)m

(2m)!
x2m + iA

∞∑
m=0

(−1)m

(2m+ 1)!
x2m+1 = cos(x)I + isin(x)A.

2.3 Lie Algebras

Lie algebras are an essential tool in the study of Lie groups. Lie algebras are
simpler than Lie groups, because a Lie algebra is a linear space (so they can be
understood doing linear algebra). There are some correspondences between a
matrix Lie group and a Lie algebra, thus many problems that are hard to work
in matrix Lie groups become easier if we work in the Lie algebra.

Definition 2.20. A Lie algebra over K is a K-vector space g, together with a
binary operation

[ · , · ] : g× g −→ g

with the following properties:

(1) [ · , · ] is bilinear:
[aX + bY, Z] = a[X,Y ] + b[Y,Z]

[Z, aX + bY ] = a[Z,X] + b[Z, Y ]

for all a, b ∈ K and for all X,Y, Z ∈ g.

(2) [ · , · ] is skew symmetric: [X,Y ] = −[Y,X] for all X,Y ∈ g.
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(3) The Jacobi identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ g.

Remark 2.21. A Lie algebra g is said to be commutative (or abelian) if for all
X,Y ∈ g we have [X,Y ] = 0. Any vector space is a commutative Lie algebra
when endowed with the trivial bracket, but in general, Lie algebras are not
commutative. Also, Lie algebras are not associative in general, but the Jacobi
identity is in fact a substitute for associativity.

Example 2.22. Let g = R3 and let [·, ·] : R3 × R3 −→ R3 be given by
[x, y] := x × y where x × y is the vector product. Then g is a Lie algebra.
Indeed, bilinearity, skew symmetry, and Jacobi are known properties of the
vector product.

Example 2.23. Let A be an associative algebra and let g be a subspace of A
such that XY − Y X ∈ g for all X,Y ∈ g. Then g is a Lie algebra with the
binary operation (referred as the Lie bracket or commutator) given by

[X,Y ] := XY − Y X.

This example will be important for us, since we will work with matrix Lie groups,
for which the commutator of matrices defines the binary operation in the Lie
algebra associated to such groups.

Every Lie group has an associated Lie algebra. In general, this is defined
as the tangent space of the Lie group at the identity. However, the Lie algebra
associated to a matrix Lie group admits a simpler and explicit definition via the
exponential matrix as we next explain. We conveniently choose this approach,
since it will be most useful for our purposes.

Definition 2.24. Let G be a matrix Lie group. The Lie algebra of G, denoted
by g, is the set of all matrices A such that etA is in G for all real numbers t:

g :=
{
A ∈Mn(C); etA ∈ G for all t ∈ R

}
.

The Lie bracket of g is given by the commutator of matrices.

Theorem 2.25. Let G be a matrix Lie group with Lie algebra g. If X and Y
are elements of g, the following results hold:

(1) AXA−1 ∈ g for every A ∈ G.

(2) sX ∈ g for every real number s.

(3) X + Y ∈ g.

(4) XY − Y X ∈ g.
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Idea of proof. Point 1 is easily verified using Proposition 2.17, etAXA
−1

= AetXA−1

and etX is in G since X is an element of g. Point 2 is immediate since
et(sX) = e(ts)X . If A and B commute we have et(X+Y ) = etXetY and point
3 is verified. If A and B does not commute we will need to use the Lie product
formula,

et(X+Y ) = lim
m→∞

(
etX/metY/m)m,

and the definition of matrix Lie group (see Chapter 2 of [Hal15] for more details).
Point 4 is proved using Proposition 2.18 and the product rule,

d

dt

(
etXY e−tX

)
|t=0 = (XY )e0 − e0Y X = XY − Y X

From Point 1 etXY e−tX is in g and the result follows using the limit definition
of the derivate and noting that g is a closed subset of Mn(C).

Like in the previous section, we will now see some useful examples of Lie
algebras. In fact, we will give the Lie algebras associated to the matrix Lie
groups that we previously introduced.

Remark 2.26. Physicists often use the map t 7−→ eitX , so the expressions for
the Lie algebras differ by a factor of i from the mathematicians expressions.

Example 2.27. The Lie algebra of GL(n;K), denoted by gl(n,K), is the space
Mn(K) of all n× n matrices with entries in K:

gl(n;K) =Mn(K).

Indeed, by Proposition 2.17, the exponential etA is an invertible matrix for any
t ∈ R and any A ∈Mn(C). This shows the above identity in the complex case.
The real case follows similarly, by noting that if etA is a real matrix for all t ∈ R,
then A is also a real matrix.

Example 2.28. The Lie algebra of SL(n;K) denoted by sl(n;K) consists of all
n× n complex matrices with trace zero:

sl(n;K) = {A ∈Mn(K); trace(A) = 0}

Indeed, ifA ∈Mn(C) has trace zero, then by Proposition 2.18 we have det(etA) =
1. Therefore A belongs to the Lie algebra of SL(n;C). Conversely, if det(etA) =
et·trace(A) = 1 for every real number t, then:

trace(A) =
d

dt
et·trace(A)|t=0 = 0

Following similar arguments we find that the Lie algebra of SL(n;R) consists of
all n× n matrices with trace zero.
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Example 2.29. The Lie algebra of U(n) denoted by u(n) consists of all complex
matrices satisfying:

u(n) = {A ∈Mn(C); A∗ = −A}

Indeed, a matrix U belongs to U(n) if and only if U∗ = U−1. Thus using 2.17,
etX is in U(n) if and only if:(

etA
)∗

=
(
etA
)−1

= e−tA

Again using 2.17
(
etA
)∗

= etA
∗

and:

etA
∗

= e−tA

This condition holds for all real t if and only if A∗ = −A. Thus, this was the
condition that we were claiming for Abelonging to the Lie algebra of U(n).

Example 2.30. The Lie algebra of SU(n) denoted by su(n) consists of all
complex matrices satisfying:

su(n) = {A ∈Mn(C); A∗ = −A, trace(A) = 0}

Indeed, the condition A∗ = −A follows from the previous example, and as in
the previous results adding the condition of determinant 1 of the special group,
it translates to the condition ”trace 0” to the algebra.

Example 2.31. The Lie algebra of O(n) denoted by o(n) consists of all real
matrices satisfying:

o(n) = {A ∈Mn(R); Atr = −A}

Example 2.32. The Lie algebra of SO(n) denoted by so(n) consists of all real
matrices satisfying:

so(n) = {A ∈Mn(R); Atr = −A}

For the Lie groups O(n) and SO(n) an exactly similar argument follows for
finding their Lie algebras.

As we mentioned earlier, a Lie group and its Lie algebra are related by a
map as follows:

Definition 2.33. If G is a matrix Lie group with Lie algebra g, then the
exponential map for G is defined by:

exp : g −→ G

A 7→ exp(A).

Given the above map, it is natural to ask whether for every element in G,
there exists an element in g which can be matched by the exponential map. The
answer turns out to be negative, as shown by the following example.
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Example 2.34. Let A ∈ SL(2;C) be the matrix given by

A =

(
−1 1
0 −1

)
Then there does not exist a matrix X ∈ sl(2;C) such that exp(X) = A. Indeed,
if X ∈ sl(2;C) has distinct eigenvalues, then X is diagonalizable end exp(X) too,
unlike the matrix A. If X ∈ sl(2;C) has a repeated eigenvalue, this eigenvalue
must be 0 or the trace of X would not be zero. Thus, there is a nonzero vector
v with Xv = 0. Then eXv = e0v = v. We conclude that the eigenvalue of eX is
1, unlike the matrix A.

2.4 Matrix Norm

The proof of the Solovay-Kitaev Theorem relays on the fact that we can equip
the group SU(2) with a norm and induce a distance between all the elements
of the group. As we will see in Chapter 3 and 4 we will measure how close are
two elements of SU(2) using this distance. In order to prove the Solovay-Kitaev
Theorem the most common norm used is the trace norm, however since SU(2)
is a finite dimensional space, all norms can be related to each other by constant
factors.

The trace norm is defined as:

Definition 2.35. Let A ∈Mn(C). The trace norm of A is defined as:

‖A‖ := trace
√
A∗A

If A is normal (A∗A = AA∗) and λ1...λn are the eigenvalues of A, this norm
can be computed as ‖A‖ =

∑n
i=1 λi. The trace norm satisfies the following

properties:

1. Triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖.

2. Submultiplicativity: ‖AB‖ ≤ ‖A‖ · ‖B‖.

3. Unitary invariance: ‖UAV ‖ = ‖A‖ for all U, V belonging to U(n).

Let d(·, ·) :Mn(C) −→ R be the metric induced by the trace norm, i.e:

d(A,B) = ‖A−B‖

The following property will play a key role in the proof of the Solovay-Kitaev
Theorem:

Definition 2.36. A distance in Mn(C),

d(·, ·) :Mn(C) −→ R,

is called unitary biinvariant if and only if

d(A,B) = d(AU,BU) = d(UA,UB),

for any U ∈ U(n).
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Note that the distance d defined above is clearly unitary biinvariant, since
the trace norm has the property of unitary invariance.

Remark 2.37. Some texts use a different norm, called the operator norm. This
norm is defined as:

‖A‖op = sup
v 6=0

|Av|
|v|

Equivalently, ‖A‖op2 is the largest eigenvalue of the operator A∗A.

2.5 Unitary transformations

The unitary groups can be defined in terms of quantities that are left invariant.
In the next section on quantum mechanics we will see why such transformations
are so useful for physicists.

Consider a complex transformation in two dimensions given by x′ = Ax,
x, x′ ∈ C2 where

A =

(
a b
c d

)
with a, b, c, d ∈ C. (1)

This transformation is unitary if and only if |x|2 remains invariant. Equiva-
lently, if x = (x1, x2), A is unitary if and only if |x1|2 + |x2|2 remains invariant.
This is equivalent to:

|a|2 + |c|2 = 1 |b|2 + |d|2 = 1 ab∗ + cd∗ = 0

Note from Example 2.11 that these conditions are equivalent to asking that
the above square matrix is in U(2). So by simple calculations we see that the
Lie group U(n) is the group of unitary transformations.

In addition if we want that the determinant of the unitary transformation
to be one, all conditions can be summarized in the following way:

A =

(
a b
−b∗ a∗

)
, |a|2 + |b|2 = 1 (2)

That is the form of the elements in SU(2). Note that there are three-free pa-
rameters, since a,b are complex numbers, each have two parameters (the real
part and the imaginary part). Also defining the map ϕ : C2 → SU(2) as,

ϕ(a, b) =

(
a b
−b∗ a∗

)
with a, b ∈ C,

it can be viewed that the 3-sphere S3 is diffeomorphic to SU(2). Consider

a = x+ iy and b = z+ it, with x, y, z, t ∈ R. If |a|2 + |b|2 = 1 it is equivalent to

x2 + y2 + z2 + t2 = 1.

This is the equation of the 3-sphere S3. Thus, restricting ϕ to S3, we have
that ϕ : S3 → SU(2) is clearly injective and surjective. Furthermore this map
is smooth. Hence, as a manifold, S3 is diffeomorphic to SU(2), and S3 can be
viewed as a Lie group.
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Remark 2.38. In higher dimensions a unitary transformation is a transforma-
tion A : Cn → Cn such that for every x ∈ Cn, |Ax| = |x|. Similarly these
transformations can be identified with an element in U(n).

2.6 The Lie algebra of SU(2)

We learned that the exponential map is, in general, not surjective. For our later
discussions it will be useful to connect the particular matrix Lie group SU(2) to
its Lie algebra. In this section we give some results to do this.

Consider the following three matrices:

u1 =

(
0 i
i 0

)
, u2 =

(
0 −1
1 0

)
and u3 =

(
i 0
0 −i

)
These matrices belong to su(2) and in fact, are generators of su(2).

In physics, when dealing with SU(2) or su(2) it is usual to work with the
Pauli matrices, defined as:

σx = −iu1 σy = iu2 σz = −iu3

The Pauli matrices are extensively used in quantum mechanics to represent the
spin of fundamental particles. In fact, they are introduced because physicists are
used to work with Hermitian operators in quantum mechanics, and multiplying
by the factor i the generators of su(2) they become Hermitian (σ∗i = σi). In
addition, they are unitary matrices.

This set of matrices satisfies the commutation and anticommutation rela-
tions:

[σi, σj ] = 2iεijkσk {σi, σj} = 2δijI

Where εijk denotes the Levi-Civita symbol and δij is the Kronecker delta, both
defined as:

εijk =

 1, if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1, if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)
0, if i = j, i = k, or j = k

δij =

{
1, if i 6= j
0, if i = j

Sometimes it will be useful to consider the Pauli vector, defined as:

σ = (σx, σy, σz)

Given a point x = (x1, x2, x3) ∈ R3 we will denote the map u : R3 → SU(2)
as

u(x) := exp(− i
2
x · σ), (3)

where x · σ denotes
x · σ = x1σx + xyσ2 + x3σz.



2.7 Connecting SU(2) with SO(3) 20

Note from the definitions of σi, that iσi ∈ su(2) and using Theorem 2.25 it is
clear that ix · σ ∈ su(2).

Let x be decomposed as

x = ϕ · n = ϕ · (nx, nynz)

such that ϕ ∈ R and n is a unit vector. Then if we compute u(x) simply by
taking Definition 2.15 and making the calculations, we obtain:

u(x) =

(
cos( 1

2ϕ)− inz sin( 1
2ϕ) −(ny + inx) sin( 1

2ϕ)
(ny − inx) sin( 1

2ϕ) cos( 1
2ϕ) + inz sin( 1

2ϕ)

)
.

One may easily verify that this is in the form of Equation 2. Thus we have

Lemma 2.39. For any element U in SU(2), we can choose x ∈ R3 such that
u(x) = U .

This is why it is said that the Pauli matrices are infinitesimal generators of
SU(2).

2.7 Connecting SU(2) with SO(3)

In the last part of this section we are going to see the relation between the Lie
groups SU(2) and SU(3).

The groups SU(2) and SO(3) are not isomorphic, but one can define a group
homomorphism Φ : SU(2) −→ SU(3) that is two-to-one and onto, leading to an
isomorphism

SU(2)/Z2
∼= SO(3).

Consider the space V of all 2 × 2 complex matrices which are self-adjoint
and have trace zero. Elements of V are the matrices X of the form

X =

(
x1 x2 + ix3

x2 − ix3 −x1

)
with x1, x2, x3 ∈ R3. If we identify V with R3 by the coordinates x1, x2, x3 the
standard inner product on R3 can be computed as:

〈X,X ′〉 =
1

2
trace(X,X ′) = x1x

′
1 + x2x

′
2 + x3x

′
3.

For each U ∈ SU(2), define the map ΦU : V −→ V by:

ΦU (X) = UXU−1

Since U is unitary, we have

ΦU (A) = (UAU−1)
∗

= UAU−1,

showing that ΦU (A) is again in V . It is easy to check that for all U1, U2 ∈ U(n)

ΦU1U2
= ΦU1

ΦU2
.
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Furthermore, each ΦU preserves the inner product trace(X,X ′)/2:

1

2
trace((UXU−1)(UX ′U−1)) =

1

2
trace(UXX ′U−1) =

1

2
trace(XX ′)

where we have used that the trace is invariant under conjugation. It follows that
the map U −→ ΦU is a homomorphism of SU(2) into the group of orthogonal
linear transformations of V ∼= R3, that is O(3) (see Example 2.13). Note that
ΦU = Φ−U for any U ∈ SU(2), so, the map ΦU is not one to one. In order to
prove that ΦU actually lies in SO(3) and that is a two to one map, we will use
the following proposition, whose proof can be found in [Hal15, Page 24].

Proposition 2.40. The map U −→ ΦU is a 2 − 1 and onto map of SU(2) to
SO(3) with kernel equal to {I,−I}.
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3 Quantum computing

In this section we present the qubit, which is the basic unit of information in
quantum computing. In order to understand the qubit we will use the Bloch
sphere, a geometrical representation of the qubit that allows to see in a clear
way the differences with the classical bit. Then, we introduce the concepts of
a quantum gate, which plays the role of the operations that we can perform
in a quantum computer. Quantum gates are the analogues of the logic gates
in classical computing, but they are very different since the operations that
we can perform in a quantum system are unitary operations from the group
U(n). Finally we give the notion of a universal set of quantum gates, which
are a set of unitary operations such that they can generate an arbitrary unitary
operation with a given error. The discussion of the optimality of these sets will
be given in the next section, connecting with the main result of this work: The
Solovay-Kitaev theorem.

3.1 Qubit

Popular science has introduced the notion of a qubit as a classical bit being
in the superposition of 0 and 1 at the same time. This point of view is the
easiest way to understand what is a qubit, but in general a qubit is much more
than that. As this is a mathematics text, we pretend to give a more rigorous
definition and hopefully a much richer vision.

First of all, let us briefly present the braket notation, widely used in quantum
mechanics. Let ψ = (a1, · · · , an) ∈ Cn be a point in Cn. The ket will be defined
simply as ψ = |ψ〉 and we will represent it as a column vector. The bra, will
be understood as the adjoint of the ket, denoted 〈ψ| and represented by a row
vector:

|ψ〉 =


a1
a2
...
an

 〈ψ| =
(
a∗1 a∗2 · · · a∗n

)
A braket will be just the product between the bra and the ket understood as:

〈ψ|ψ〉 = a0a0
∗ + a1a1

∗ + · · · anan∗

For physicists, a n-quantum level system is just a point |ψ〉 in Cn. The space of
all these points forms a complex Hilbert space. We briefly recall that a complex
Hilbert space is a complex vector space H, equipped with an inner product, such
that the norm turns H into a complete metric space. Given |ψ〉 , |ϕ〉 ∈ H, the
inner product is defined as the braket between the two states:

〈ϕ|ψ〉 = b1
∗a1 + · · ·+ bn

∗an where a0, · · · , an and b0 · · · bn

are the coefficients of the vectors |ψ〉 and |ϕ〉.
Physically, a vector |ψ〉 represents a superposition of n-classical states, and

this classical states are just the vector basis where |ψ〉 is defined. For example,
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given an electron, with two spin states up |↑〉 and down |↓〉. We will represent
the spin states of the electron as |ψ〉 = a1 |↑〉+ a2 |↓〉, and if we write |ψ〉 in the
basis

{|↑〉 , |↓〉}, |ψ〉 =

(
a1
a2

)
.

Actually the coefficients a1, a2 can be understood as the probabilities of the
electron to be with spin up or with spin down. In quantum mechanics these
probabilities are computed with the inner product of two vectors, so since the
electron can be only with spin up or down it is natural to give the vector
normalized: |a0|2 + |a1|2 = 1. For that reason the next definition arises:

Definition 3.1. A pure state of a n-quantum level system is a vector |ψ〉 in Cn
such that 〈ψ|ψ〉 = 1.

Moreover, in quantum mechanics it is not possible to distinguish physical
states that are the same up to a global phase factor, it means that we can not
distinguish between |ψ〉 and eiθ |ψ〉. For that reason it is convenient to introduce
the following equivalence relation:

ψ ∼ ψ′ ⇐⇒ ψ = eiθψ′

for some θ ∈ R. This equivalence relation leads naturally to think about the
equivalance classes as ”complex” lines through the origen in Cn. These lines
form the complex projective space

CPn−1 :=
Cn − {0}
z ∼ λz

, λ ∈ C∗.

There is a one to one correspondence between points in CPn−1 and n-quantum
level systems. With this identification we are ready to give the definition of a
qubit.

Definition 3.2. A qubit is a 2-level quantum system understood as a complex
projective line CP1. A pure qubit state is a point in CP1.

Remark 3.3. In general the standard basis used for a qubit is B = {|0〉 , |1〉}.
The 0 and 1 are used to make an analogy between the classical bits that can
be 0 or 1. Nowadays, there is not a clear quantum system to make a qubit but
for example the |0〉 and |1〉 can be physically realized by photons and assign
these states to states of polarization that can be ”horizontal” or ”vertical”. The
physical realization of the qubit is one of the most active fields in physics now
since there are lot of ways to implement them.

Since there is a correspondence between geometry and the definition of a
qubit, we next describe a standard way to visualize geometrically the qubit.
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3.2 The density matrix

In quantum mechanics there are other physical states apart of the pure states
which are called mixed states. These states can be understood as an ensemble
of pure states. More precisely, given n pure states |ψi〉, 1 ≤ i ≤ n, let pi be the
probability of the quantum system to be in the state |ψi〉. Then a mixed state
is defined by

{pi, |ψi〉}.

To describe these states we will use the density matrix defined by the following
equation:

ρ ≡
∑
i

pi |ψi〉 ⊗ 〈ψi|

Note that the density matrix of a pure state |ψ〉 is ρ = |ψ〉 ⊗ 〈ψ|. This
alternate formulation is equivalent to the state vector approach (vectors in Cn),
but in quantum mechanics there are lot of scenarios which is more useful to
work with the density matrix. For us, the density matrix will be useful because
it provides an easy way of visualizing geometrically the qubit with the Bloch
Sphere.

3.3 Bloch Sphere

The Bloch sphere is the most common representation of points in CP1 used by
Physicists. We briefly explain how to relate points in CP1 and points in a sphere
S2.

Without loss of generality we can write the state of a pure qubit as:

|ψ〉 =

(
cos( θ2 )

eiφ sin( θ2 )

)
(4)

with θ ∈ [0, π] and φ ∈ [0, 2π]. The factor 1
2 is introduced to arrange the

intervals like the spherical coordinates. With this convention, we can visualize
the space of qubits in Figure 1.

The states of the basis |0〉 and |1〉 are placed at the north pole and the
south pole of the sphere respectively. This suggest that there must be a one to
one correspondence between pure qubit states and the points of a unit sphere
S2 in R3. Indeed, a pure qubit state was defined as a point of CP1 which is
homeomorphic to the sphere S2. To see that define a Bloch vector r in R3 as
r = (x, y, z): 

x = sin(θ) cos(φ)

y = sin(θ) sin(φ)

z = cos(θ)

The density matrix of 4 can be written as:

ρ = |ψ〉 ⊗ 〈ψ| = 1

2

(
1 + cos(θ) e−iφ sin(θ)
eiφ sin(θ) 1− cos(θ)

)
=

1

2
(I + xσx + yσy + zσz)
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Figure 1: Bloch sphere

If r = (x, y, z) and σ denotes the the Pauli vector we can rewrite the density
matrix as:

ρ =
1

2
(I + r · σ)

This way of writing the density matrix relates pure state qubits with points in
the unit sphere S2 in R3. Moreover, we can relate the inner products for the
pure qubit states and the standard inner product in R3. If r1 and r2 are the
Bloch vectors for the pure qubit states |ψ1〉 and |ψ2〉. Then we have:

| 〈ψ1|ψ2〉 |2 = trace(ρ1ρ2) =
1

2
(1 + r1 · r2).

Remark 3.4. If we have two pure qubit states that are orthogonal, (〈ϕ|ϕ′〉) = 0,
from the last relation we see that r1 · r2 = −1. So in the Bloch sphere picture
orthogonal states correspond to antipodal points.

Remark 3.5. If we work with mixed states, the same construction gives that
the points inside the Bloch sphere corresponds to mixed states. Thus, the
surface of the Bloch sphere correspond to pure qubit states, and the inside to
mixed states.

3.4 Single qubit operations

Given the basic notions of the interpretation of the qubit it is time to describe
how we operate on them. Operations on a qubit must preserve the inner prod-
uct with itself in order to maintain the probabilities for the states. As we saw
in Section 1.5 this type of transformations are the 2 × 2 unitary matrices. Re-
member that a pure state qubit is represented by a point z = (z0, z1) ∈ CP1, so
a unitary transformation U ∈ U(2) will act as a matrix vector product, U · x.
Then, we can provide a definition analogous to the classical logical gate in the
quantum case.



3.4 Single qubit operations 26

Definition 3.6. A quantum gate for a pure state qubit is a unitary transfor-
mation U : CP1 −→ CP1.

There are some important quantum gates that will be useful to consider. Of
these, some of the most important are the Pauli matrices:

X =

(
0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
.

Note that when we talk about Pauli matrices in terms of quantum gates we
change the notation. Three other quantum gates that play a huge role in quan-
tum computation are the Hadamard gate (denoted H), phase gate (denoted S),
and π/8 gate (denoted T):

H =
1√
2

(
1 1
1 −1

)
; S =

(
1 0
0 i

)
; T =

(
1 0
0 exp( iπ4 )

)
.

As we will see in Section 3.5, H and T are a universal set of quantum gates or
equivalently, they generate a dense subset in U(2).

With the picture of the Bloch sphere we can try to visualize this type of op-
erations with rotations. Since a qubit is a point of the Bloch sphere, a quantum
gate sends this point to another, so intuitively one can think of these quan-
tum gates as rotations over some axis. In fact, when we exponentiate the Pauli
matrices we find the rotation operators:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
(5)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
(6)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
(7)

The calculations for Ri(θ) can be done easily using proposition 2.19.
If you take a general qubit state (4) and apply one of these operators it

follows that they are rotations about the x, y, z axes of the Bloch sphere.

Example 3.7. Consider the following state:

|ψ〉 =
1√
2

(
1
1

)
=

(
cos(π/4)
sin(π/4)

)
From (4) we see that the Bloch sphere angles θ, φ correspond to θ = π

2 and
φ = 0. If we apply a rotation over the y axis of θ = π/2 to the state |ψ〉 it will
be brought to the south pole corresponding to the state |1〉. Let’s see:

Ry
(π

2

)
|ψ〉 =

(
1√
2
− 1√

2
1√
2

1√
2

)(
1√
2
1√
2

)
=

(
0
1

)
= |1〉 .
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In general it can be shown that a rotation of an angle θ about a general axis
n = (nx, ny, nz) (normalized to 1) of the Bloch sphere can be expressed as:

Rn(θ) ≡ exp(−iθn · σ/2) = cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ). (8)

Example 3.8. The Hadamard gate in the Bloch sphere can be expressed as
a product of rotations over the x and z axis up to a global phase. By direct
calculation:

H = ei
π
2Rz

(π
2

)
Rx
(π

2

)
Rz
(π

2

)
Example 3.9. The π/8 gate T is, up to a global phase a rotation by π/4 radians
around the z axis on the Bloch sphere.

T =

(
1 0

0 e(
iπ
4 )

)
= ei

π
8

(
e−i

π
8 0

0 ei
π
8

)
= ei

π
8Rz

(π
4

)
.

Example 3.10. The product of Hadamard gates and π/8 gates HTH is up to
a global phase a rotation by π/4 radians around the x axis on the Bloch Sphere.
By direct calculation:

Rx
(π

4

)
= e−i

π
8HTH.

With these results one can think if is it possible to express any unitary
operator as a composition of rotations. Indeed, we have the following result:

Proposition 3.11. Suppose that U ∈ U(2) is a quantum gate. Then there exist
real numbers α, β, γ and δ such that:

U = eiαRz(β)Ry(γ) Rz(δ).

Proof. From the definitions of the rotation matrices it follows that:

eiαRz(β)Ry(γ) Rz(δ) =

(
ei(α−β/2−δ/2)cosγ2 −ei(α−β/2+δ/2)sinγ2
ei(α+β/2−δ/2)sinγ2 ei(α+β/2+δ/2)cosγ2

)
From Section 2.5, imposing that U is unitary it can be shown that the general
expression coincides with the calculation above.

Actually there exists other forms of expressing a 2× 2 unitary matrix with
the product of rotation operators. Remember from Section 1.7 that there was
a map between SU(2) and SO(3), so it is quite natural that unitary operators
can be viewed as rotations. In particular the above theorem can be generalized
with the following result:

Proposition 3.12. Let m and n be non-parallel real unit vectors of R3. For
any quantum gate U acting on a single qubit there exist real numbers α, β, γ and
δ such that:

U = eiαRn(β)Rm(γ) Rn(δ).
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3.5 Universal quantum gates

At this point one may wonder why we have focused in studying only a single
qubit. As anyone can imagine a single qubit is not useful for real computations.
For example, a physical system with two qubits can simulate the classical states
00, 01, 10 and 11. Moreover this system can actually be a superposition of all
these states, so there’s an exponential gain in terms of computational power. If
we work with a system of n-qubits we would be able to simulate a superposition
of 2n classical states.

From our definition of quantum gate, it can be generalized to systems to
n-qubits as unitary matrices of dimension 2n × 2n. At this point it seems that
we would need to study operations in higher dimensions. What happens is that
any unitary operation on n qubits can be decomposed as operations on a single
qubit and a extra gate called controlled not (CNOT) in U(4). The gate CNOT
acts on 2 qubits. In the computational basis {|00〉 , |01〉 , |10〉 , |11〉} the gate
CNOT acts flipping the second qubit if the first qubit is 0, which means:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉 , CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉 .

We refer to Section 4 of [NC00] for a proof of this fact. For this reason, it is
important to study the single qubit operations.

In practice, if one wishes to compute with a quantum computer, the set
of quantum operations will be finite. It is important to remark that all these
unitary transformations will translate to physical operations in some system, so
we will be restricted. Furthermore, these physical operations seems to be very
difficult to control in the laboratories, so in principle we will have access to a
small number of operations. This is why it is useful to find what we call a set
of universal quantum gates. Let’s introduce some basic definitions to introduce
this concept.

Definition 3.13. Let d, ` ≥ 1 be integers and G a finite set of elements of
SU(2). A word of length ` of elements in G is given by w` = g1g2...g`, with
gi ∈ G. Denote by G` the set of all words in G of length at most `: and by 〈G〉
the set of all words in G of finite length:

G` = {wk = g1g2 · · · gk; gi ∈ G, k ≤ `} and 〈G〉 =
⋃
`<∞

G`.

Remark 3.14. Note that in general, such a word w` = g1g2...g` ∈ G` is not
necessarily an element of G.

Remark 3.15. Since matrices in U(2) and SU(2) differ from a constant factor
we will give most of the definitions in SU(2).
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Informally a set of quantum gates G is called a set of universal quantum
gates if for any quantum gate U, it can be expressed as some word w` from
G`. It is not difficult to see that this definition is not very useful. Note that
SU(2) has infinite elements, and the number of finite sequences from a finite set
is countable. To solve this problem we use the concept of density. Recall we
have a notion of distance for matrices introduced in Section 2.4.

Definition 3.16. A set of quantum gates G is called a set of universal quantum
gates if 〈G〉 is dense in SU(2), i.e., if and only if for every element U ∈ SU(2)
and for all ε > 0, there exists g ∈ 〈G〉 such that d(g, U) < ε.

From this definition d(g, U) can be understood as the error of implementing
g instead of U . More precisely:

Definition 3.17. Let U, V ∈ U(2). The error when V is implemented instead
of U is defined by:

E(U, V ) := max
||ψ〉|=1

‖(U − V ) |ψ〉 ‖.

From Section 2.4, this definition of error is equivalent to the distance between
the operators U and V induced by the operator norm. Moreover, the error can
be defined using another distance like the trace norm. Thus, the concepts of
universal set of quantum gates can be viewed as a set that can implement an
arbitrary unitary operation with an arbitrary non-zero error.

Proposition 3.18. Given two sequences V1, V2, · · ·Vm U1, U2, · · ·Um of quan-
tum gates, the error of implementing the first sequence instead of the second
satisfies:

E(Um · · ·U2U1, Vm · · ·V2V1) ≤
m∑
i=1

E(Ui, Vi).

Proof. To prove the result it suffices to prove the first case for m = 2. The
general case follows immediately by induction.

E(U2U1, V2V1) = max
||ψ〉|=1

‖(U2U1 − V2V1) |ψ〉 ‖

max
||ψ〉|=1

‖(U2U1 − V2U1) |ψ〉+ (V2U1 − V2V1) |ψ〉 ‖

Using the triangle inequality, and the biinvariance of the distance we get:

E(U2U1, V2V1) ≤ max
||ψ〉|=1

‖(U2 − V2)U1 |ψ〉 ‖+ max
||ψ〉|=1

‖(U1 − V1)U2 |ψ〉 ‖

= E(U2, V2) + E(U1, V1)

The following result can be found in Chapter 4 of [NC00]. We give a proof
for completeness.
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Theorem 3.19. The Hadamard gate H and the π/8 gate T are a set of universal
quantum gates for SU(2).

Proof. Consider the gates T and HTH. We are going to show that a successive
product of these gates can be used to approximate any single qubit gate with
an arbitrary accuracy.

From examples 3.9 and 3.10 the product THTH can be expressed as:

THTH = Rz
(π

4

)
Rx
(π

4

)
=

(
cos

π

8
I − isinπ

8
Z

)(
cos

π

8
I − isinπ

8
X

)
=

= cos2
π

8
I − i

(
cos

π

8
(X + Z) + sin

π

8
Y

)
sin

π

8

where we have used that Y = −iZX. From the expression of a general rotation
over the Bloch sphere 8, we see that this product corresponds to a rotation of
axis

n = (cos
π

8
, sin

π

8
, cos

π

8
)

and through an angle θ corresponding to cos(θ/2) = cos2 π8 . Note that the
vector n is not normalized, thus, to see this result one should do some basic
manipulations. This θ is an irrational multiple of π. (This result can be found
in [BMP+99]) Let Rn(θ) denote this new rotation.

Iterating this new rotation we will find that we can achieve with a certain
error any rotation of angle α around the n axis with a certain accuracy. Let δ > 0
be the desired accuracy, and N an integer larger than 2π/δ. Let θk ∈ [0, 2π)
be the angle achieved after iterating k times Rn(θ), θk = (kθ)mod(2π). Then
using the pigeonhole principle it implies that there exists k and j in the interval
1, · · · , N such that |θk − θj | ≤ 2π/N < δ, thus |θk−j | < δ. Using that θ is an
irrational multiple of 2π and j 6= k it follows that the sequence θ`(k−j) fills up
the interval [0, 2π) with angles separated by no more than δ.

With that construction we can say that for any ε > 0 there exists an n such
that:

E(Rn(α), Rn(θ)n) < ε

From Proposition 3.12 we see that if we can approximate a rotation over another
axis different from n the result will follow immediately. Simple algebra implies
that for any α:

HRn(α)H = Rm(α)

where m = (cosπ8 ,−sin
π
8 , cos

π
8 ). Using the same iterations as before we find

that:
E(Rm(α), Rm(θ)n) < ε

Using Proposition 3.12, any quantum gate U action on a single qubit may be
written as:

U = Rn(β)Rm(γ)Rn(δ)
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up to a global phase. Finally, using Proposition 3.18 and the approximated
rotations, there exists positive integers, n1, n2, n3 such that:

E(U,Rn(θ)n1HRn(θ)n2HRn(θ)n3) < 3ε

Note that all these rotations are constructed only using Hadamard gates and
π/8 gates. If we want to approximate any U with an error of δ, use ε = δ/3 and
the result follows.

From this result it seems that finding a universal set of quantum gates is
not difficult. In fact if one wish to prove that a particular set of quantum gates
is an universal set it suffices to prove that this set generate some rotations of a
irrational multiple of π. Then this rotations will full fill the interval [0, 2π) and
since any unitary operation can be expressed as product of rotations the result
will follow. In particular finding a particular set is not difficult, in [Llo95] was
proved that almost any set of two qubit quantum gates is universal.
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4 Solovay-Kitaev

In the last section we presented the concept of universal set of quantum gates
in order to approximate any unitary operation. However, we did not give a
solid argument about how many gates we would need from our set to achieve
the desired approximation. As we mentioned before we will be restricted by the
physical systems, and controlling a high number of gates does not seem to be
realizable, at least in the firsts steps of quantum computing.

The Solovay-Kitaev Theorem demonstrates that it is possible to approximate
any unitary operation to precision ε with O(logc(1/ε) gates from a given set,
where c is a constant between 2 and 4 that depends on the implementation.
The best value of c that we can achieve is 1 [HBC02], but achieving this value
seems to be very difficult.

Remark 4.1. The big O notation is used to classify functions according to
their growth rates. In this work we will use the standard O which is defined as
follows:

Let f be a real or complex function and g a real function. Then

f(x) = O(g(x))⇔ ∃x0,K ∈ R, K > 0 s.t |f(x)| ≤ Kg(x) for any x ≥ x0.

Throughout this section we will review the standard construction with c = 4
that is presented in [NC00]. In order to make a more detailed construction, we
have added all the important computations that were left as exercises in the
book, some of them taken from [Har01] and [Ozo09]. In the last part of the
section we briefly sketch some modifications to improve the value of c to 3.

4.1 Preliminaries on distances in SU(2)

In order to prove the Solovay-Kitaev Theorem, we will need some previous
results. Some of these results provide a relation between the distance in SU(2)
induced by the trace norm and the usual distance in R3. These relations will be
useful to understand in a clear way the construction of the theorem for matrices
in SU(2). Once one has understood the construction in dimension 2, the general
case follows by a few modifications.

Recall from Section 2.4, that the trace norm of a matrix A ∈Mn(C) is given
by

‖A‖ = trace
√
A∗A.

Definition 4.2. Given elements U, V ∈ SU(d), we will denote their group com-
mutator by

[U, V ]gp := UV U∗V ∗.

Remark 4.3. The group commutator is related to the usual commutator in
the sense that if U, V ∈ SU(d) satisfy [U, V ] = 0 then we have [U, V ]gp = I. So,
the group commutator is close to the identity if and only if the two matrices
almost-commute.
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Proposition 4.4. Let ε ≥ 0 and let A,B be Hermitian matrices such that ‖A‖,
‖B‖ ≤ ε. Then for sufficient small ε there is a constant c such that

‖e−[A,B] − [e−iA, e−iB ]gp‖ ≤ cε3.

Proof. Using the hermicity of A and B and Point 2 of Proposition 2.17

[e−iA, e−iB ]gp = e−iAe−iBeiAeiB

and the series expansion for the matrix exponential

[e−iA, e−iB ]gp = I − [A,B] +
i

2
[A+B,A2 + 2AB +B2] +O(ε4)

Computing the other term:

e−[A,B] = I − [A,B] +O(ε4)

Note that all terms are equal up to second order, thus using the triangle in-
equality and the submultiplicativty of the norm the result follows.

In Section 4.4 this result is proved for the case n = 2 giving a value for the
constant c.

In order to relate the distances between SU(2) and R3, we will use de map
u : R3 → SU(2) introduced in Section 2.6:

u(x) = exp(− i
2
x · σ)

The following is a direct computation, using that [σi, σj ] = 2iεijk.

Proposition 4.5. Let y, z ∈ R3. Then

exp(−[
1

2
y · σ, 1

2
z · σ]) = u(y × z).

Proposition 4.6. If ~r ∈ R3 then ‖u(~r)− I‖ = 4sin |~r|4 .

Proof. The eigenvalues of r · σ are ± | r |. If r = (rx, ry, rz):

det((r · σ)− λI) =

∣∣∣∣ rz − λ rx − iry
rx + iry −rz − λ

∣∣∣∣ = λ2 − r2x − r2y − r2z .

Thus the eigenvalues of u(r)− I are e±
i
2 |r| + 1. From a simple computation we

see that |e± i
2 |r| + 1| = 2sin r4 . Computing the trace norm 2.35 with the sum of

the modulus of the eigenvalues the result follows.

Remark 4.7. Note that from the first part of the proof it follows that given
any x ∈ R3 then ‖x · σ‖ = 2|x|.
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Given an integer ε ≥ 0, we will denote by Sε the closed ball of radius ε and
center the identity matrix in SU(d):

Sε := {s ∈ SU(2); d(s, I) ≤ ε} .

The following proposition relates the distance of an element of SU(2) to the
identity and the length of a vector in R3

Proposition 4.8. Let r ∈ R3. If u(r) ∈ Sε then |r| < ε+O(ε3).

Proof. From 4.6 we have ‖u(r)− I‖ = 4 sin |r|4 < ε. The inequality comes from
the condition u(r) ∈ Sε. Thus:

|r| < 4 arcsin
( ε

4

)
.

The result follows immediately using the Taylor expansion

arcsin(x) = x+
x3

2 · 3
+ · · · .

Finally, the following proposition will allow us to relate the distance between
two elements in SU(2) and the length of two vectors in R3.

Proposition 4.9. If y, z ∈ R3 with |y| < ε, |z| < ε, then

‖u(y)− u(z)‖ = |y − z|+O(ε3).

Proof. Let Y = 1
2σy and Z = 1

2σz. Expanding u(y) and u(z) by the definition
of matrix exponential and using (2Y )2 = (σy)2 = y2I:

A = u(y)− u(z) = −i(Y − Z)− Y 2 − Z2

2
+ i

Y 3 − Z3

6
+O(ε4)

−i(Y − Z)− y2 − z2

8
+ i

y2Y − z2Z
24

+O(ε4)

Thus:

AA∗ = (Y − Z)2 − (Y − Z)(y2Y − z2Z)

24
− (y2Y − z2Z)(Y − Z)

24

+

(
y2 − z2

8

)2

I +O(ε5)

= (
1

4
|y − x|2 + β)I +O(ε2)

where β is defined as:

β =
y4 + z4

3 · 24
− (y2 + z2)y · z

3 · 24
+

(
y2 − z2

8

)2
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To do this rearrangement we have used the associativity of the scalar product

and (σi)
2 = I. Let α = |y − x|, then

√
AA∗ =

√
1
4 (α2 + β)I +O(ε5). Since we

have expressed
√
AA∗ in terms of the identity matrix, it will be easy to compute

the trace norm 2.35 :

‖u(y)− u(z)‖ = trace
√
AA∗ = α

√
1 + 4β/α2 +O(ε3)

Since β ≤ 0 , ‖u(y)− u(z)‖ ≤ α+ kε3 for some constant k.

4.2 Shrinking Lemma

The standard proof of the Solovay-Kitaev Theorem relies on the Shrinking
Lemma. This lemma allows us to construct better approximations of unitary
matrices around a neighbourhood of the identity at the cost of requiring higher
number of generators.

Definition 4.10. Let ε, ε′ ≥ 0 be integers and let S,W be subsets of SU(2).
Then:

(1) The set W is called ε-net for S if for all s ∈ S there exists w ∈W such that
d(s, w) ≤ ε, so that S is contained in the ε-neighbourhood of W .

(2) The set W is called (ε, ε′)-net if it is ε′-net for Sε, so that the closed ball Sε
is contained in the ε′-neighbourhood of W .

Given a set of elements G in SU(2), recall the definitions of 〈G〉 and G`
established in Definition 3.13.

Lemma 4.11 (Shrinking Lemma). Let G be a finite set of elements in SU(2)
containing its own inverses such that 〈G〉 is dense in SU(2). There exist con-
stants C, ε′ > 0 with Cε′ < 1 such that, for every ε ≤ ε′:

If G` is an (ε, ε2)-net, then G5` is a (
√
Cε

3
2 , Cε3)-net.

Moreover, the constant ε′ is independent of G.

The main idea in the proof of the Lemma is taking group commutators of
elements in Sε and proving that these commutators fills Sε2 much more densely.
The proof is completed using the biinvariance of the distance, which allows to
apply a translation step in order to get good approximations for any element of
S√

Cε
3
2

Proof. Assume that G` is an (ε, ε2)-net, for some ε > 0. We first prove that there
is a constants C such that G4` is a (ε2, Cε3)-net. Let U ∈ Sε2 . Since U ∈ SU(2),
by Section 2.6 we can find x ∈ R3 such that

U = u(x) = exp(− i
2
x · σ).
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Combining Proposition 4.6 with ‖u(x)− I‖ < ε2 and expanding sin(x) with the
Taylor expansion we get:

|x| < ε2 +O(ε6)

Now choose y, z ∈ R3 such that x = y × z and |y|, |z| < ε. Recall that by
Proposition 4.6 and using the Taylor expansion of sin(x) one easily verifies that
u(y), u(z) ∈ Sε.

As G` is a (ε, ε2)-net, there exist Y,Z ∈ SU(2) such that Y,Z ∈ G` ∩ Sε and

‖Y − u(y)‖ ≤ ε2

‖Z − u(z)‖ ≤ ε2.

By Section 2.6 we can find y0, z0 ∈ R3 such that Y = u(y0) and Z = u(z0).
From Propositions 4.8 and 4.9 we obtain the following inequalities:

‖u(y0)− I‖ < ε

‖u(z0)− I‖ < ε

|y0|, |z0| < ε+O(ε3)

|y0 − y| < ε2, |z0 − z| < ε2

We will now prove that:

‖U − [u(y0), u(z0)]gp‖ < Cε3

To perform this calculation it suffices to use the triangle inequality together
with U = u(y × z). We get:

‖U − [u(y0), u(z0)]gp‖ ≤ ‖u(y× z)−u(y0× z0)‖+‖u(y0× z0)− [u(y0), u(z0)]gp‖.

For the first term we use Proposition 4.9:

‖u(y × z)− u(y0 × z0)‖ = |y × z − y0 × z0|+O(ε6) =

= |(y − y0)× (z − zo) + y0 × (z − z0) + (y − y0)× z0|+O(ε6) ≤

≤ |y − y0||z − z0|+ |y0||z − z0|+ |y − y0||z0|+O(ε6)

≤ 2ε3 +O(ε4)

For the second term we use Propositions 4.4 and 4.5:

‖u(y0 × z0)− [u(y0), u(z0)]gp‖ ≤

≤ ‖ exp(−[
1

2
y0 · σ,

1

2
z0 · σ])− [exp(− i

2
y0 · σ), exp(− i

2
z0 · σ)]gp‖ ≤ cε3

In order to apply Proposition 4.4 note that σi are Hermitian and ‖ 12y0 · σ‖ < ε
and ‖ 12z0 · σ‖ < ε. Defining C = c+ 2 the calculation is done.
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Since u(y0) = Y ∈ G` and u(z0) = Z ∈ G`, we can conclude that any U ∈ Sε2
can be approximated with a sequence of 4` elements of G. This proves that G4`
is (ε2, Cε3)-net.

Finally we prove that there is a constant ε′ such that for any ε ≤ ε′ G5` is a
(
√
Cε

3
2 , Cε3)-net.

Now let U ∈ S√Cε3 . The condition that defines ε′ is that S√Cε′3 ⊆ Sε′ , or

equivalently Cε′ < 1. Since G` is a (ε, ε2)-net, it follows that for any ε ≤ ε′ we
can find V ∈ G` such that:

‖U − V ‖ = ‖UV ∗ − I‖ < ε2,

where in the above identity we used the biinvariance of the distance. This result
shows that UV ∗ ∈ Sε2 . Since G4` is (ε2, Cε3)-net we can find y0, z0 ∈ R3 such
that

‖UV ∗ − Y ZY ∗Z∗‖ < Cε3,

where we defined Y := u(y0) and Z := u(z0). Using again the biinvariance of
the distance the final result follows:

‖UV ∗ − Y ZY ∗Z∗‖ = ‖U − Y ZY ∗Z∗V ‖ < Cε3 (9)

Since Y,Z, V ∈ G` it implies Y ZY ∗Z∗V ∈ G5`, thus we can conclude that G5` is
a (
√
Cε

3
2 , Cε3)-net.

Note that the value of C depends uniquely in the value of c given by Proposi-
tion 4.4. This value of C plays a crucial role in the proof of the Solovay-Kitaev
Theorem and its important also in the Shrinking Lemma since it determines
the condition of the constant ε′. As we commented before, this value will be
discussed in Section 4.4.

4.3 The Solovay Kitaev Theorem

The Solovay-Kitaev Theorem is one of the most important results in quan-
tum computation since it tells us that any quantum gate can be approximated
efficiently given a universal set of quantum gates. Moreover, if we have a se-
quence of m quantum gates acting on a single qubit, the Solovay Kitaev theorem
shows that we can achieve a good approximation for the whole sequence using
O(m logc(m/ε)) gates from the given gate set, where ε denotes the total accu-
racy of the approximation. A sequence of quantum gates is called a quantum
circuit, and this result shows that is possible to approximate a quantum circuit
with a polylogarithmic increase over the original size of the circuit, which is
acceptable for real applications.

With the Shrinking Lemma established we have the necessary tools to give
a proof of the Solovay-Kitaev Theorem:

Theorem 4.12 (Solovay-Kitaev Theorem). Let G be a finite set of elements in
SU(2) containing its own inverses, such that 〈G〉 is dense in SU(2). Let ε > 0
be a fixed integer. Then G` is an ε-net in SU(d) for

` = O(logc (1/ε)) with c =
log 5

log 3/2
≈ 4.
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Proof. The proof is divided in two stages. First stage is called ’Shrinking’
and it consists in building a set of nets such that get very dense in a small
neighbourhood of the identity. The second stage is called ”Zooming in”, in this
stage we pick the sequence of nets produced in the previous step, and using the
biinvariance of the distance we will be able to translate the nets to the desired
points of SU(d) that we want to approximate.

Let’s begin with the construction of the two stages.
Shrinking. Since 〈G〉 is dense in SU(2) we can choose an ε0 ≤ ε′ (the ε′

comes from Shrinking Lemma 4.11) and find a `0 such that G`0 is an ε20-net for
SU(2). In particular G`0 is an (ε0, ε

2
0)-net. Applying the Shrinking Lemma on

G`0 we find that there is a constant C > 0 independent of G, such that G5`0 is

a (Cε3,
√
Cε

3
2 )-net. Picking G5`0 and applying again the lemma we obtain that

G52`0 is a (
√
C(Cε

3
2 )3, C(

√
Cε

3
2 )3)-net. Iterating k times we find a sequence of

nets such that:

G5k`0 is a (ε(k), ε(k)
2
)-net with ε(k) = (Cε0)

3
2
k

C .

From the statement of the Shrinking Lemma remember that Cε′ < 1 , and since
ε0 ≤ ε′, note that as k increases, ε(k) decreases very fast. Moreover, to be able
to perform the next stage we must choose ε0 sufficiently small to achieve that
ε(k)

2
< ε(k + 1).

Zooming in. Let U ∈ SU(2) be any element. Since G`0 is an ε20-net for SU(2),

we can find U0 ∈ G`0 such that d(U,U0) < ε(0)
2
. Define V = UU0

∗. Provided

that U0 is unitary, the distance is biinvariant and ε(k)
2
< ε(k + 1):

d(V, I) = d(V,U0U0
∗) = d(UU0

∗, U0U0
∗) = d(U,U0) < ε(0)

2
< ε(1)

Thus V ∈ Sε(1). As G5`0 is a (ε(1), ε(1)
2
)-net, we can find U1 ∈ G5`0 such that

d(V,U1) < ε(1)
2
. Using the same techniques as before:

d(U,U1U0) = d(UU0
∗, U1U0U0

∗) = d(UU0
∗, U1) = d(V,U1) < ε(1)

2

Thus U1U0 is an ε(1)
2

approximation for U. Now as before, define V ′ = UU0
∗U1
∗:

d(V ′, I) = d(UU0
∗U1
∗, U1U0U0

∗U1
∗) = d(U,U1U0) =< ε(1)

2
< ε(2)

Thus V ∈ Sε(2). As G52`0 is a (ε(2), ε(2)
2
)-net we can find U2 ∈ G52`0 such that

d(V ′, U2) < ε(2)
2
.

d(U,U2U1U0) = d(UU0
∗U1
∗, U2U1U0U0

∗U1
∗) = d(V ′, U2) < ε(2)

2

So U2U1U0 is an ε(2)
2

approximation for U. Iterating this process k times we

will find that UkUk−1...U0 is an ε(k)
2

for approximation for U. To achieve the

desired result, it suffices to stop the iteration when we find that ε(k)
2
< ε.

The final step is to count the number of elements of the approximation.
Using that Uk ∈ G5k`0 we arrive to a total count of:

k∑
n=0

5n`0 = `0
1− 5k+1

1− 5
= `0

5k+1 − 1

4
<

5

4
5k`0 (10)
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From the expression of ε(k): (
3

2

)k
<

log( 1
C2ε )

2 log( 1
Cε0

)
(11)

Also it will be useful to consider this relation:

5k =

(
3

2

)kc
⇒ c =

log 5

log 3/2
≈ 4 (12)

Thus, if ` is the number of elements of the approximation:

` <
5

4
5k`0 =

5

4

(
3

2

)kc
`0 <

5

4

(
log( 1

C2ε )

2 log( 1
Cε0

)

)c
`0 (13)

Finally we achieve the desired result, G` is an ε-net in SU(d) for ` = O(logc (1/ε))
with c ≈ 4.

Remark 4.13. If we want to improve the result to c > 3 the Shrinking step
will need to consider the quality of the nets and produce them in a different
way. This procedure is called ”Telescoping” and it will be commented later.

Most of the modifications of the previous theorem focus on lowering the
constant c of the logarithm to the lower bound of 1. One the other hand, we
can not forget the constants that appear in front of the logarithm like ε0 or `0.
The constant `0 depends on the initial set of gates G, and there is not a general
construction to give an accurate value. Thus, another way of achieving efficient
quantum circuits is studying the set of quantum gates. The constant ε0 depends
on the construction of the Shrinking Lemma and for an arbitrary dimension it
is hard to calculate, but for the case of SU(2) is it possible to find an upper
bound.

4.4 The initial epsilon net

One of the most important conditions that the Solovay Kitaev theorem requires
is the initial (ε0, ε

2
0)-net. So, it is important to give a numeric value for ε0

because if one wishes to implement the theorem in a practical way, the value
for ε0 is fundamental.

In this section we are going to give an upper bound of ε0 for the case of
SU(2). From the proof of the Solovay-Kitaev Theorem the value of ε0 was given
from the condition Cε0 < 1, thus we need to find the value of C. The constant
C comes from the proof of the Shrinking lemma, specifically we left to calculate
the constant c given by Proposition 4.4. In order to calculate the constant c we
give the following proposition:

Proposition 4.14. Let ε ≥ 0 and y, z ∈ R3 with |y|, |z| ≤ ε. Then

‖[u(y), u(z)]gp − u(y × z)‖ ≤ cε3,
with c ≤ 4

3
√
3

.



4.5 Generalization to SU(d) 40

Proof. Let Y = 1
2σy and Z = 1

2σz, so u(y) = e−iY and u(z) = e−iZ . By

proposition 4.5 e−[Y,Z] = u(y × z). Then:

[e−iY , e−iZ ]gp = e−iY e−iZeiY eiZ =

I − [Y,Z] +
i

2
[Y + Z, Y 2 + 2Y Z + Z2] +O(ε4)

and
e−[Y,Z] = I − [Y, Z] +O(ε4)

Putting all together it can be shown that:

T ≡ [e−iY eiZ ]gp − e−[Y,Z] = − i
4

[(y + z)× (y × z)] · σ +O(ε4)

The eigenvalues of T can be computed as λ = 1
4 |(y+ z)× (y× z)| (in fact it

is a double eigenvalue). A more detailed computation can be found in [Har01]
and [AR85]. Let θ be the angle between y and z:

|λ| = 1

4
|(y + z)||y||z||sinθ|

=
1

4

√
y2 + z2 + 2yzcosθyz|sinθ|

≤ 1

4

√
2ε2(1 + cos(θ)ε2| sin(θ)| = 1

4

√
2ε3
√

1 + cos(θ)| sin(θ)|

≤ 2

3
√

3
ε3

The last inequality comes from finding the maximum of the function
√

1 + cos(θ)| sin(θ)|
using standard techniques. In this case, the trace norm can be computed by
simply summing all the eigenvalues of T :

[‖[u(y), u(z)]gp − u(y × z)‖ = trace
√
TT ∗ = |λ|+ |λ| ≤ 4

3
√

3
ε3

Thus c ≤ 4
3
√
3
.

From the expression of C that we mentioned in Section 4.2, C = c+2 we have
C ≤ 2.77. Since Cε0 < 1, the initial net will have a value for ε0 < 1/C = 0.361.

4.5 Generalization to SU(d)

Although the results given in the previous sections are stated for the case of
SU(2), the Solovay-Kitaev Theorem can be generalized to the general case of
SU(d), d ≥ 2. The definitions of ε-net, (ε, ε′)-net and Sε trivially extend to
arbitrary dimension. As in classical computation, we can generalize the concept
of a gate too. A system of n qubits can be represented as a normalized vector
in C2n, or more precisely as a point in CP2n−1 if we consider the equivalence
between global phases. Thus, we can generalize the definition of a quantum
gate acting on a single qubit to a quantum circuit acting on n-qubits as:
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Definition 4.15. A quantum gate acting on n-qubits is a unitary transforma-
tion U : CPn−1 −→ CPn−1 such that U ∈ U(2n).

Note that the proof of the Solovay-Kitaev Theorem does not depend on the
dimension, it depends uniquely on the Shrinking Lemma. Thus, if we generalize
the Shrinking lemma the Solovay-Kitaev Theorem will follow. In order to gen-
eralize the Shrinking lemma, it suffices to prove only the first part of the proof
given in Section 4.2, specifically:

Proposition 4.16. Given a finite set of elements in SU(d), d ≥ 2, containing
its own inverses such that 〈G〉 is dense in SU(d) then:

If G` is a (ε, ε2)-net, then G4` is a (ε2, Cε3)

for some constant C.

The proof of this result relies on the Proposition 4.4 and the following propo-
sition:

Proposition 4.17. Let H be a n×n traceless Hermitian matrix. Then we can
find F and G Hermitian matrices such that:

[F,G] = iH with ‖F‖, ‖G‖,≤ n 1
4

(n− 1

2
)1/2

√
‖H‖.

The proof of this Proposition, and the detailled construction of the general
Shrinking Lemma can be found in Section 5 of [ND05]. In the next lines we
are going to review the main idea in order to prove Proposition 4.16. Also we
will need the generalization of Proposition 4.8 i.e given H an Hermitian matrix,
then d(I, exp(iH)) = ‖H‖+O(‖H‖3).

Proof. We sketch the main idea of the proof and refer to [ND05] for details.
Given, any U ∈ SU(d) we can find an hermitian matrix H such that U =
exp(iH). If U ∈ S2

ε , using that d(U, I) = ‖H‖+O(‖H‖3) we can use Proposition
4.17 in order to find F and G such that [F,G] = iH and ‖F‖, ‖G‖ ≤ c′ε where
c′ is the constant term given by the proposition. Setting Y = exp(iF ) and
Z = exp(iH) and using Proposition 4.4 it follows that

d(U, Y ZY ∗Z∗) < Cε3

for some constant C. Moreover, d(I, Y ), d(I, Z) < c′ε and since Gl is a (ε, ε2)-net
the result follows. The details for the constants can be found in the mentioned
reference.

With that result, the second part of the Shrinking Lemma follows with the
same construction. Thus, the Solovay-Kitaev Theorem can be generalized for
an arbitrary dimension.

Theorem 4.18 (Solovay-Kitaev Theorem). Let G be a finite set of elements in
SU(d) with d ≥ 2 containing its own inverses, such that 〈G〉 is dense in SU(d).
Let ε > 0 be a fixed integer. Then G` is an ε-net in SU(d) for

` = O(logc (1/ε)) with c =
log 5

log 3/2
≈ 4.
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4.6 Controlling the nets

The general construction of the Solovay-Kitaev Theorem can be improved if we
change some details of the original proof. In this section we are going to briefly
review the modifications that Kitaev, Shen and Vyalyi add to the theorem in
order to improve the number of gates to O(logc(1/ε) with c > 3. The full
construction can be found in [KN02]. In the next lines we are going to sketch
some of the details. The main idea in order to improve the theorem is realizing
that we have put ”unnecessary” points in the nets and controlling a parameter
called quality of the net. The following definitions state these concepts:

Definition 4.19. Let S be an ε-net for W in SU(d). We say that S has no
extra points if any s ∈ S belongs to the ε-neighbourhood of W . The net S is
called α-sparse (0 < α < 1) if it has no extra points and the distance between
any two distinct elements of S is greater than αε.

Definition 4.20. Let S be an (ε, δ)-net. The quality of the net is defined as
the ratio q = ε/δ > 1.

Since the quality plays an important role for the new constructions, we will
denote a (ε, δ)-net with quality q as (ε, ε/q)-net.

The first improvement for Theorem 4.18 modifies the step of Shrinking in
order to work with sparse nets where there are not extra points. Let S1 ⊆ SU(n)
and S2 ⊆ SU(n) be an (ε1, ε1/q1)-net and (ε2, ε2/q2) respectively for some quality
q1, q2 > 1.

If q1 = q2 we will denote by [[S1, S2]]α an α-sparse subnet selected from:

[[S1, S2]] = {[s1, s2]gp : s1 ∈ S1, s2 ∈ S2}

Then the Shrinking lemma 4.2 is modified in the following way:

Lemma 4.21. If q1 = q2 > 20 and ε1, ε2 ≤ O(1/q1) then [[S1, S2]]1/6 is an
ε1ε2/4, 5ε1ε2/q)-net.

Note that this is result is more precise than the original Shrinking Lemma
4.2. In fact, this results allows to combine different nets with the same quality
and making a new one with the properties of being sparse. However, the quality
of the new net is degraded by a factor of 20 from the original ones. The following
proposition will solve this problem allowing to combine two nets into one of
higher quality:

Proposition 4.22 (Telescoping). If ε1/q1 < ε2, then the set

S1S2 = {s1s2 : s1 ∈ S1, s2 ∈ S2}

is an (ε1, ε2/q2)-net.

Combining two nets with this proposition is called telescoping the two nets.
This procedure allows to combine the radius of one net with the error of the
other.
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The construction of the Solovay-Kitaev Theorem using the new Shrinking
lemma differs from the one that we presented in the step of Shrinking. The new
step is done by applying successively the new Shrinking Lemma to the initial
net and then ”telescoping” it with one of the previous nets in order to keep the
original quality of the net. Since we are working with sparse nets the number
of generators will be reduced and we will get a better result for the constant c.
The exact construction of the new step can be found in the reference [KN02].
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5 Conclusions

In this work, we have reviewed the standard proof of the Solvay-Kitaev Theorem
based on the successive approximations of the ε-nets. There is an alternative
proof in Chapter 13 of [KN02] but it requires a little more explanation of quan-
tum gates and quantum circuits. In this work, we focused on presenting the
Solovay-Kitaev Theorem for readers without prior knowledge on the field of
quantum physics and quantum computing. We have tried to present the theo-
rem in a self-contained way, since many works skip some of the details or leave
them as exercises.

After the first proof of the Solovay-Kitaev Theorem, there have been several
works extending the theorem. In [HBC02] it was proven that for a particular
choice of the gate set, the optimal value of c = 1 can be achieved. Later,
in [PS17], Sarnak and Parzanchevski discussed what they called Super Golden
Gates, which are generators that give very efficient single quantum gates and can
reduce the constant c to 1. These two works attack the problem of achieving
efficient unitary approximations focusing on the gate set, instead of giving a
general construction as the Solovay-Kitaev Theorem offers.

We would like to mention some other works related to the Solovay-Kitaev
Theorem, which give other improvements, rather than achieving a better value of
c. The first is an article by Freedman, Kitaev, and Lurie [FKL03]. In this work,
it is proven that for any subset G of a semisimple Lie group, there is a constant
d, independent of the group, such that if all points of the group are within a
distance less than d from the points of G, then G must generate a dense subset.
This work relaxes the condition of having a universal set of quantum gates, to
having a set that can approximate any element with a certain precision d. The
second is a paper by Ozols and Bouland [AB17] where the condition of having
the inverses in the initial set of the theorem is changed. Instead, they prove that
if the set contains an irreducible representation of any finite group G, then, the
Solovay-Kitaev theorem can be proven with a constant c = log2 |G|+3.97. This
is the first step to achieve a theorem without the condition of having the inverses,
and it is important in order to define quantum complexity classes; problems that
are in a complexity class must be independent of the gate set, thus the Solovay-
Kitaev Theorem gives a polylogarithmic relation between operations of different
sets which is acceptable. The last, is a paper by Kuperberg [Kup15]. This work
is focused on the approximation of Jones Polynomials, a type of polynomials that
appears in knot theory. It contains a generalization of the theorem for connected
Lie groups whose Lie algebra is perfect. The theorem is used to approximate
Tutte Polynomials which are graphs of polynomials that play an important role
in graph theory. Note that from this last work, the Solovay-Kitaev Theorem
can be used in other fields rather than quantum computing.

Finally, we summarize which parts of the Solovay-Kitaev Theorem remain
as open problems:

• Prove if it is possible to lower the constant c of the theorem to the best
value of c = 1 for any gate set.
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• Achieve a free-inverse version of the theorem.

• Extending the theorem to other Lie groups.

So, if someone is interested, there is a lot of work to do beyond the Solovay-
Kitaev Theorem!
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