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Abstract: In this work, the atomic energy levels for hydrogen-like atoms, in particular, for muonic hydrogen are 
described. We discuss why this exotic atom is a good candidate to help measure the proton radius. Such experiments 

with muonic hydrogen have been performed very recently and have shown a “shrinkage” of the proton size in 

disagreement with previous measurements. This so-called “proton radius puzzle” is still under debate but we 

summarize some possible explanations that have been proposed. 

I. INTRODUCTION 

The proton is one of the most common particles in the visible 

Universe but some of its properties such as its charge radius 

are yet not precisely known. In this work we intend to review 

the present status of our knowledge of the root-mean-square 

charge radius of the proton, 𝑟𝑝, and the latest scientific 

experiments aiming to determine it. Transition frequencies in 

atomic hydrogen (and other exotic atoms where the electron 

is replaced by a heavier particle) depend on the proton size 

because the electric field differs from that produced by a 

point charge. This effect is detectable due to the accuracy 

with which optical frequencies can be measured. Indeed, 

theory of quantum electrodynamics (QED) is needed to 

accurately understand atomic transitions.  

Until recently, the value for the proton charge radius was 

mainly determined using two methods: with an accuracy of 

2% at best in 𝑟𝑝, by electron-proton scattering experiments 

[1,2] or using spectroscopy to measure the energy levels of 

electrons orbiting an atomic nucleus. The current most 

accurate measurement of 𝑟𝑝 with 1% uncertainty is given by 

the CODATA value, based on precision spectroscopy of 

atomic hydrogen [3,4] and calculations of bound-state 

quantum electrodynamics.  

The hydrogen atom is the one best studied atom to date in 

modern physics. In 1947 the splitting of the 2S1/2-2P1/2 

discovered by Lamb and Retherford [8] stimulated the 

development of the theory of QED, as Dirac’s theory proved 

insufficient. Current tests of  QED on atomic hydrogen have 

reached such high precision that comparison with the theory 

is limited by the experimental uncertainty in the proton form 

factors. Very recent experiments [5,6] using muonic 

hydrogen (where the electron is replaced by a muon) allowed 

for the first time to measure the 2S-2P Lamb shift of this 

exotic atom and have provided a different way to measure 𝑟𝑝, 

with more accuracy. As the muon is 207 times heavier than 

the electron, its atomic Bohr radius is also about 200 times 

smaller than in electronic hydrogen, thus enhancing the 

nuclear finite-size effects.  

This new line of experiments performed in 2010 [5] and 2013 

[6] on muonic hydrogen led up to a measurement of 𝑟𝑝 

=0.84184(67) fm which differs by about 5 standard 

deviations from the 2010 CODATA value of 0.8768(69) fm 

and the current CODATA value of  0.8751(61) fm, as it is 

shown in Fig. 1. This discrepancy is known as The proton 

radius puzzle and its origins are yet unclear. 

In order to understand the reason of such discrepancy, more 

recent experiments with muonic deuterium [14] (where a 

muon orbits a nucleus of one proton and one neutron) and 

with electronic hydrogen [15] have been performed with new 

and improved techniques and calculations. The results are in 

agreement with the “smaller” proton size found with muonic 

hydrogen, furthering the proton radius puzzle. 

This work has the following structure. Section II contains the 

corrections to atomic energy levels for hydrogen-like atoms, 

such as fine structure, Lamb shift and recoil corrections. In 

section III we introduce the muonic hydrogen and describe 

the experiments that measure the muonic Lamb shift aiming 

to determine the value of 𝑟𝑝. In section IV the results from 

new and improved experiments performed with laser 

spectroscopy in H are summarized. Finally, section V 

contains the summary and conclusions. 

FIG. 1: Plot of the determination of rp using different methods. 

The discrepancy between the 2010 CODATA value and muonic 

hydrogen is clear. 

II. ENERGY LEVELS OF HYDROGEN-LIKE 

ATOMS 

As the simplest of all stable atoms, hydrogen (H) allows for 

high-precision comparisons between theory and experiments 

of bound-state energy physics. The Bohr atomic model was 

inspired by the observation of the Balmer series in H, it 

introduced the quantization rules in order to explain the 

existence of the observed stable energy discrete levels.  

Schrödinger model. In the first approximation, energy levels 
of hydrogen atoms are described by the solution of the 

Schrödinger equation of an electron in the field of an 

infinitely heavy Coulomb center of charge 𝑍. They can be 

written as: 

𝐸𝑛(𝑀 = ∞) = −
𝑚𝑐2

2𝑛2
(𝑍𝛼)2 = −ℎ𝑐𝑅∞

𝑍2

𝑛2  ,    (1) 
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where 𝑛 is the principal quantum number, c is the speed of 

light, α is the fine structure constant, 𝑚 is the electron mass 

and 𝑅∞ is the Rydberg constant. Besides the principal 

quantum number 𝑛 each state is labelled with the value for 

the orbital angular momentum 𝑙 and its projection 𝑚. 

Therefore, the 𝐸𝑛 energy levels are 𝑛 times degenerate with 

respect to 𝑙 and each level with given 𝑙 is additionally 2𝑙 + 1 

times degenerate. 

To take into account the effect of the finite mass of the 

nucleus 𝑀, one has to work with the reduced mass of the 

two-body system 𝑚𝑟 = 
𝑚𝑀

𝑚+𝑀
 and the Bohr energy levels are 

correspondingly modified:  

𝐸𝑛 =
𝑚𝑟

𝑚
𝐸𝑛(𝑀 = ∞).   (2) 

Dirac model. More precise measurements on H revealed a 

splitting of the  𝑛 = 2 states, its origins are effects arising 

from the spin of the electron and relativity. A proper 

description of all relativistic corrections to the energy levels 

of a spin ½ particle is given by the Dirac equation with a 
Coulomb source: 

     𝐸𝑛𝑗(𝑀 = ∞) = 𝑚𝑐2𝑓(𝑛, 𝑗)  ,       (3) 

 

𝑓(𝑛, 𝑗) = [1 +
(𝑍𝛼)2

[𝑛−𝑗−
1

2
+√(𝑗+

1

2
)

2
−(𝑍𝛼)2]

2]

−1/2

   

≈ [1 −
(𝑍𝛼)2

2𝑛2
−

(𝑍𝛼)4

2𝑛3
(

1

𝑗 +
1

2

−
3

4𝑛
) + ⋯ ]  ,      (4) 

 

where the total angular momentum quantum number 𝑗 

(𝐽 = 𝐿⃗⃗ + 𝑆) was introduced. Now the degeneracy for the total 

angular momentum has been broken but energy levels are 

still degenerate for the orbital angular momentum 𝑙.  
We must note that Dirac’s energy levels do not take into 

account the finite mass of the proton. As the relativistic 

effects introduce small modifications on the energy levels (at 

least for small charge 𝑍 of the nucleus), it is possible to 

approximate the recoil correction of finite mass with the 

reduced mass factor: 

𝐸𝑛𝑗 = 𝑚𝑐2 + 𝑚𝑟𝑐2[𝑓(𝑛, 𝑗) − 1] .             (5) 

In order to provide more accurate corrections of the Dirac 

spectrum with the reduced mass dependence in eq. (5) they 

should be derived from QED and lead to the result [7]: 

Enj =m𝑐2+mr𝑐2[f(n,j)-1] −
mr

2𝑐2

2(m+M)
[f(n,j)-1]2 + 

+
(Zα)4mr

3𝑐2

2n3M2
(

1

j+
1

2

−
1

l+
1

2

) (1-δl0)  .     (6) 

We note the appearance of the last term in (6) which breaks 

the degeneracy in the Dirac spectrum between levels with the 

same 𝑗 and 𝑙 = 𝑗 ± 1/2. 

 

Nuclear-structure corrections. Even with the Bohr radius 

being orders of magnitude larger than the size of the nucleus 

the actual theoretical and experimental level of precision is 

sensitive to the nuclear structure. The energy shifts from 
nuclear contributions involve properties of the finite nuclear 

volume and the nuclear magnetic moment (hyperfine 

splitting, HFS). The finite size contribution is non-vanishing 

only for S states. Since the proton charge is actually 

distributed over a finite volume and not point-like, the 

electron which is within this volume experiences a smaller 

attraction, leading to an energy shift given by [11]: 

∆𝐸𝑉 = −
2

3

(𝑍𝛼)4

𝑛3
𝑚𝑟

3𝑐6 (
𝑟𝑝

ħ𝑐
)

2

,       (7) 

in terms of the root-mean-square charge radius 𝑟𝑝 of the 

proton, which is defined as 𝑟𝑝
2 = ∫ 𝑟2𝜌(𝑟)𝑑𝑟,  where 𝜌(𝑟) is 

the proton charge distribution.  

On the other hand, as the nucleus has a non-zero magnetic 

moment it is expected that it will interact with the electron, 

causing additional modifications to the energy levels, called 

hyperfine splitting. Treating the magnetic interaction as a 

perturbation, it is found that the fine-structure energy levels 

split depending on the angular momentum of the nucleus 𝐼 

and that of the nucleus and electron 𝐹⃗ = 𝐽 + 𝐼, which gives 

rise to additional corrections  ∆𝐸𝑛𝑙𝑗𝐼𝐹 ∝ [𝐹(𝐹 + 1) −

𝐼(𝐼 + 1) − 𝑗(𝑗 + 1)]. 
  

Radiative QED corrections. Investigation on the energy 

levels of hydrogen revealed a small deviation from the 
prediction of the Dirac equation. This energy difference is 

known as the Lamb shift, its origins are quantum fluctuations 

and shows that energy levels depend, also, on the angular 

momentum 𝑙. See a schematic layout for the innermost 

energy levels for H in Fig. 2. 

 

We have seen in (6) that energy levels are predicted to 

depend on 𝑙 when introducing recoil corrections but such 

energy differences are too small compared to what was found 

experimentally, those effects arise from QED effects such as 
radiative corrections and vacuum polarization. The classical 

example of this is the energy splitting between states 2S1/2 

and 2P1/2 in the hydrogen atom. It was measured for the first 

time by Lamb and Retherford with microwave spectroscopy 

[8]. Since its discovery, the Lamb shift has been well studied 

for hydrogen as laser spectroscopy measurements have 

reached extreme precision and accurate theoretical numerical 

predictions have been made to explain the experimental 

results.  

Because the Lamb shift originates from quantum 

electrodynamics effects, S-states are more affected by this 
correction as the probability of the electron to be inside the 

nucleus is non-vanishing for 𝑙=0. 

To leading order, the correction from the Lamb shift to the 

energy levels for hydrogen-like atoms can be expressed as 

[9]: 

∆𝐸𝑛𝑙𝑗
𝐿𝑆 =

4𝑚𝑐2

3𝜋𝑛3
𝛼(𝑍𝛼)4 {𝐿𝑛𝑙 + [

19

30
− 2ln (𝑍𝛼)] 𝛿𝑙0

±
3

4

1

(2𝑗 + 1)(2𝑙 + 1)
(1 − 𝛿𝑙0)} ,    (9) 

where 𝐿𝑛𝑙 is known as the Bethe logarithm and has to be 
evaluated numerically [9]. We now see that the degeneracy 

with the angular momentum 𝑙 has been broken and states 

with 𝑙 = 0 are affected differently as they have a non-zero 

probability to be inside the nucleus. 

To achieve a still better quantitative prediction for the Lamb 

shift, several contributions of higher-order from QED and 

from the finite size of the nucleus must be included in (9). 
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FIG. 2: Schematic layout, not at scale, of the innermost energy 

levels for hydrogen for the Coulomb potential, Dirac model, 
Lamb shift and hyperfine splitting. 

        

These can be found in reference [7] as well as in references 

quoted in [13]. Today’s result of theoretical value of the 

Lamb shift for the states 2S1/2 and 2P1/2 for hydrogen is in 

excellent agreement with the experiment. Yet, a source of 

uncertainties is the limited knowledge of the size of the 

proton radius. A solution for obtaining a determination of 𝑟𝑝 

with less uncertainty is using muonic hydrogen (𝜇𝑝); the 

muon’s larger mass gives muonic hydrogen a smaller atomic 

size resulting in seven orders of magnitude larger influence of 

𝑟𝑝 on the energy levels, which allows the proton structure to 

be studied more accurately. A comparison between the 2S 

and 2P energy levels for both atoms is shown in Fig. 3 [10]. 

III. PROTON RADIUS  FROM MUONIC 

HYDROGEN 

A muon is an elementary particle with the same properties as 

the electron except its mass, being the muon 

206.768 2826(46) times heavier. The muonic Bohr radius is, 

therefore, about 200 times smaller than for the electron; thus 

making finite size effects play a major role when the muon 

orbits a nucleus.  

Production of muonic hydrogen. By inelastic scattering 
experiments with high-energy protons, pions are produced. 

They decay into muons by the weak interaction through the 

reaction  𝜋− → 𝜇− + 𝜈𝜇 . The muons are then decelerated and 

bombarded onto ordinary hydrogen where they are 

“captured”, usually in one of the outer energy levels 𝑛≈14. 

By a cascade of radiative transitions, about 99% of the muons 

proceed to the 1S ground state emitting X-rays, while the 

remaining 1% muons populate the metastable 2S state. 

Muons decay by weak interaction (𝜇− → 𝑒− + 𝜈𝜇 + 𝜈̅𝑒) but 

have a lifetime of 𝜏𝜇 = 2.2 𝜇s so they can be regarded as 

nearly stable when dealing with electromagnetic processes.  

 

Experiments to measure the Lamb shift in muonic hydrogen 

have long been suggested as likely to lead to significant 

improvement in the determination of the proton radius, but 

that was no achieved until as recently as 2010 because of the 

considerable experimental challenges in dealing with this 
exotic atom. 

 
FIG. 3: a. Schematic layout, not to scale, of the 2S and 2P 
hydrogen energy levels; the Lamb shift is about 4 μeV. b. 

Schematic layout of the same energy levels for muonic hydrogen 
where the Lamb shift accounts for 206 meV. Note also the 
different relative position of the 2S1/2 and 2P1/2 in the two atoms. 

Figure taken from [10]. 

A. First measurement of the Lamb shift in muonic 

hydrogen (2010) 

The goal of this experiment [5] performed at the Paul 

Scherrer Institute (Switzerland) is to measure the 2𝑆 − 2𝑃 

energy difference in 𝜇𝑝 atoms by laser spectroscopy and to 

deduce the charge radius of the proton with 10−3 precision, 
an order of magnitude better than ever previously measured. 

The experiment is based on the measurement of the energy 

difference between the 2𝑆1/2
𝐹=1 and  2𝑃3/2

𝐹=2 muonic energy 

levels, see Fig. 4c. This transition was chosen because it 

gives the largest signal of all six allowed optical 2𝑆 − 2𝑃 

muonic transitions. In the setup of the experiment, negative 

muons from a low-energy muon beam are stopped in H2 gas 

at 1 hPa, where highly excited 𝜇𝑝 atoms are formed. 

Practically all of them de-excite to the 1S ground state. 

However, there is about 1% probability for the long-lived 2S 

state to be populated. Using a laser pulse, transitions of the 

muons from the 2𝑆 state to the 2𝑃 state are induced on 

resonance at 𝜆 ≈ 6 𝜇m, see Fig. 4a. Immediately, the 

2𝑃 → 1𝑆 deexcitation of the muon takes place by emitting a 

1.9 keV X-ray (lifetime 𝜏2𝑃 = 8.5 ps), see Fig. 4b. Detection 
in a narrow time window distinguishes the laser-induced X-

rays from the background X-rays from other unwanted 

produced states and from muon decays. The lifetime of the 

𝜇𝑝 2𝑆 state is of importance in the experiment, because in 

absence of collisions, 𝜏2𝑆 would be equal to the muon 

lifetime of 2.2μs. But in the H2 gas collisions between atoms 

may cause “prompt” deexcitations of the 2𝑆 state. The 1hPa 

pressure of the H2 gas cavity is a trade-off between 

maximizing 𝜏2𝑆 (requiring low pressure) and minimizing the 
muon stop volume (requiring high pressure), which 

minimizes the laser pulse energy required to drive the wanted 

transition. 

The relation between the measured energy of the 

2𝑆1/2
𝐹=1  − 2𝑃3/2

𝐹=2 muonic transition and 𝑟𝑝 requires detailed 

calculations of relativistic, QED and recoil corrections to the 

energies of the 2S and 2P states, some of which are proton 

charge-radius dependent, as well as the hyperfine splitting 

predictions. 

a b 
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FIG. 4: a. Cascade deexcitation to the ground state as soon as 

the 𝜇𝑝 atom is formed. b. Laser pulse excitation to the 2P 

energy level and subsequent deexcitation to the 1S ground state. 
c. Lamb shift energy splitting, finite size effects and hyperfine 
structure. The green arrow represents the laser pulse excitation 
of the muon. Figure taken from [5].  
 

These calculations have been performed in the literature 

and the corresponding results and references to the original 

authors can be found in [5] and in table 2.2 in [10]. From 

these contributions the total predicted 2𝑆1/2
𝐹=1 − 2𝑃3/2

𝐹=2 energy 

difference is obtained as 

∆𝐸̃ = 209.9779(49) − 5.2262𝑟𝑝
2 + 0.0347𝑟𝑝

3 meV, (10) 

where 𝑟𝑝 is expressed in fm and numbers in parenthesis 

indicate the 1 standard deviation uncertainty of the last digits 

of the value.  
The largest contribution in (10) comes from vacuum 

polarization effects and the second largest correction to the 

energy levels is given, in muonic hydrogen, by nuclear-size 

effects and accounts for about 2% of the 2𝑆 − 2𝑃 Lamb shift. 

Vacuum polarization for muonic hydrogen. In 𝜇𝑝 atoms, 

where states are more sensitive to QED effects, vacuum 

polarization is the most important contribution to the Lamb 

shift (Fig. 3 shows how much more relevant the muonic 

Lamb shift is compared to ordinary hydrogen’s Lamb shift). 

 The radius of the muonic atom becomes of the same 

order as the electron Compton wavelength 𝜆𝑒, which 

approximately describes the size of the charge distribution of 

the 𝑒+𝑒− pairs produced by the vacuum polarization. 

Therefore, the muon’s wave functions of S-states overlap 

strongly with the charge distribution of the virtual 𝑒+𝑒− 

pairs. This effect is treated with the Uehling potential [9] and 

gives  in 𝜇𝑝 atoms a contribution to the Lamb shift of 

205.0282 meV [10]. Other smaller contributions containing 
relativistic recoil, self-energy and higher-order corrections 

[12] have to be taken into account to finally obtain the first 

term in (10). 

Nuclear size effects. The last two terms in (10) are the 

finite-size contributions to the 2S-2P energy splitting. 

Because the muon is much heavier than the electron its orbit 

around the proton is much smaller, making it more sensitive 

to the nuclear structure. The leading finite-size effect is given 

by eq. (7) where we see that the nuclear size effects scale 

with the reduced mass of the system and it gives a correction 

of −5.1975𝑟𝑝
2. This represents a contribution of −3.98 meV, 

taking 𝑟𝑝 = 0.875 fm, which is two orders of magnitude 

larger than for H. All main contributions related to the proton 

finite size are given in [5,10,11] and lead to the result quoted 

in eq. (10). 

Fine and hyperfine structure.  In order to determine the 

“pure” Lamb shift from the 2S-2P transition it is required to 

know fine and hyperfine contributions to the 𝑛 = 2 state. The 

fine structure of the 2P states can be calculated for 𝜇𝑝 using 

the relativistic Dirac energies, taking into account recoil 

corrections and other effects [10]. The total result is: 

∆𝐸𝐹𝑆(2𝑃3 2⁄ − 2𝑃1 2⁄ ) = 8.352 meV.  (X) 

In hydrogen the hyperfine splitting has been measured 

with tremendous accuracy. Therefore, the Lamb shift in 
hydrogen can be extracted using the measured HFS value. 

For muonic hydrogen, however, there is not a measurement 

of the hyperfine splitting available up to date so theoretical 

predictions of the HFS of the muonic levels must be used. 

The hyperfine energy shifts are calculated including 

radiative, recoil and finite-size corrections. The result for the 

muonic hydrogen [12,13] is: 

∆𝐸𝐻𝐹𝑆(2𝑃3/2
𝐹=2) = 1.2724  meV ,     

∆𝐸𝐻𝐹𝑆(2𝑆1/2
𝐹=1) = −5.7037 meV .       

The results (X) and (Y) add up to a total contribution to the 

2𝑆1/2
𝐹=1 − 2𝑃3/2

𝐹=2 energy difference of ∆𝐸𝐹+𝐻𝐹𝑆 = 3.9207 

meV.  

In the experiment [5], it was obtained that the frequency 

of the laser to induce the 2𝑆1/2
𝐹=1 − 2𝑃3/2

𝐹=2 transition 

corresponds to an energy of ∆𝐸̃ = 206.2949(32) meV. From 

eq. (10), a proton charge radius of 𝑟𝑝 = 0.84184(36)(56) 

fm is deduced [5]; where the first uncertainty is experimental 

and the second one comes from the first term in (10). This 

new value of the proton radius is 10 times more precise than 

the previous world average mainly inferred from H 

spectroscopy but 5 standard deviations smaller. 

We note that an additional term of +0.31meV in eq. (10) 

would be needed to match the measured ∆𝐸̃ energy 

difference with the CODATA value 𝑟𝑝 = 0.8768(69)  fm. 

B. Second experiment with muonic hydrogen (2013) 

To further verify the previous result, a second experiment 

with muonic hydrogen was performed [6] in 2013. In order to 

rule out some possible error arising from theoretical 

predictions, two energy transitions were measured. In the 

new experiment, the muonic energy transition 2𝑆1/2
𝐹=0 −

2𝑃3/2
𝐹=1 was measured as well as the previously studied 

transition 2𝑆1/2
𝐹=1 − 2𝑃3/2

𝐹=2, see Fig. 5, using the same method 

of laser spectroscopy. The measurement of the two transitions 

allowed for an extraction of the proton radius 𝑟𝑝  without 

relying on the theoretical predictions of the hyperfine 

splitting of the 2S muonic energy level, and only theoretical 

predictions of the HFS for the 2P energy levels were still 

needed. 

The new value 𝑟𝑝 = 0.84087(39) fm obtained is 1.7 

times more precise than the previous measurement of 2010 
with muonic hydrogen and in agreement with it, but still in 

(Y) 
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strong disagreement with the CODATA value, therefore 

reinforcing the “proton radius puzzle”. 

Let us mention that, in 2016, the same team performed 

another laser spectroscopy experiment [14] in order to shed 

some light to the proton radius puzzle. This time the atom 

used was muonic deuterium, 𝜇𝑑, composed of a nucleus with 

a proton and a neutron. Currently, nuclear masses of the 

proton and the neutron are accurately known, this allows one 
to appropriately link the atomic transition frequencies from H 

with the ones from deuterium. Therefore, it’s possible to 

obtain the proton charge radius from the determination of the 

deuteron charge radius [14]. The new proton radius value 

extracted 𝑟𝑑  gives a proton radius  𝑟𝑝 = 0.8356(20) fm, 

which is slightly below the muonic hydrogen measurements 

but still confirming the “shrinkage” of the proton radius. 

 

 
FIG. 5: 2S an 2P levels in mounic hydrogen and the measured 

transitions 𝜈𝑠and 𝜈𝑡 . Figure taken from [6].   

IV. RECENT EXPERIMENTS WITH  

HYDROGEN 

When reviewing earlier experiments with precision laser 

spectroscopy in H, one notes [15] that the measurements 

were limited by the electron-impact excitation used to 

produce H atoms in an excited state, resulting in additional 

corrections to consider. In a new experiment [15] performed 

in 2017 with hydrogen, the experimental set up allowed the 

measurements to be essentially unaffected by these 

systematic effects. A new data analysis specially developed 

for this measurement was also used to treat the results. In the 

experiment, two transition frequencies were measured: the 

very well-known hydrogen transition 1S-2S and the 2S-4P 
transition. For brevity we will not further discuss the 

experiment here, details and specific calculations can be 

found in [15] and references quoted within. The results 

obtained are the most accurate from all H spectroscopy world 

data.  

 

In this particular case, it was simultaneously determined 𝑟𝑝 

and 𝑅∞ (we see in eq. (1) that atomic energy levels also 

depend on the Rydberg constant), giving a new value for the 

proton charge radius of 0.8335(95) fm, that is in good 

agreement with the 𝜇𝑝 value but still in disagreement with 

the CODATA value.  

V. CONCLUSIONS 

In this work, we have revised atomic energy levels for 

hydrogen-like atoms, focusing on muonic hydrogen, which 

we have seen is a good candidate to help us obtain a better 

measurement of the proton radius. We have given an 
overview of the different experiments performed on muonic 

hydrogen and its results in the calculations of the proton 

charge radius. The so-called “proton radius puzzle” has been 

intriguing scientists for a while and its origins are still far to 

be understood. Nonetheless, some possible explanations have 

been proposed. Assuming experimental results are correct 

one can ask whether the QED corrections are complete or 

maybe higher order contributions have been undervalued or 

even dismissed. The most recent discussion of these possible 

deficiencies can be found in [12]. Another suggestion has 

been assuming a further particle-antiparticle fluctuation 

beyond 𝑒+𝑒− and 𝜇+𝜇− but it is still left to investigate the 

influence of such effects on energy levels of muonic 

hydrogen. On the other hand, provided that QED calculations 

are correct, new experiments with improved accuracy can 

provide additional experimental data and help understand the 

discrepancy. 

 

One thing is clear, even with the proton being the single most 

common particle around us, some of its properties are still not 

well understood. The proton radius puzzle has questioned the 

correctness of various experiments and quantum 
electrodynamics calculations, the value of the Rydberg 

constant, our understanding of the proton structure and the 

standard model of particle physics. 
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