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1. Abstract 

Urban wastewater can have different characteristics depending on its origin and the 

industrial component. When focusing on wastewater influenced by wine industry, these 

characteristics are very significant for the design of a Wastewater Treatment Plant. This 

wastewater gathers a high quantity of organic matter during the harvest of the grapes 

season (vintage). In this study are evaluated and solved the main difficulties in the design 

of an Activated Sludge (AS) process from an urban WWTP in a winery region in Aragón, 

Spain. 

 

After a research, it has been concluded that the main challenges for the water treatment 

of urban winery regions like this are the high flowrate and high organic matter load, 

especially in the shape of readily biodegradable organic matter (mainly organic acids, 

sugars and alcohols). Another difficulty found has been the lack of nutrients needed for 

the microorganisms to biologically treat the organic matter in this wastewater. 

 

After the research has been done, the peaks of organic matter have been solved by 

designing the AS process with the influent parameters from the month of October as a 

worst-case scenario. Designing the plant to meet parameters in this scenario ensures that 

the system will overcome the increase of organic load provoked during vintage period. 

The AS process will also perform properly during the rest of the year. 

 

Secondly, through the influent analysis, the nitrogen scarcity challenge has been 

analyzed. It has been concluded that the minimum BOD5 ratio of BOD5:TKN:TP = 100:5:1 

has not been achieved during some parts of the year. Because of this, the minimum 

nitrogen and phosphorous ratio in the Activated Sludge process has been increased into 

BOD5:TKN:TP = 100:7:1.2 to calculate the ammonia and orthophosphates addition that is 

needed in every month of the year. 

 

Then, a preliminary design of the AS process has been performed according the ASM1 

model and using the worst-case scenario influent. This model can give an idea of the 

dimensions of the system, which is adjusted and checked later through simulation. 

However, this model requires a COD fractioning, and, in this case, it hugely varies from a 

standard one because the readily biodegradable COD fraction (like organic acids, sugars 

and alcohols) takes a high percentage. COD fractioning from Beck and collaborators work 

(2005 (1)) has been used as a reference, since it is also devoted to urban wastewater from 

a winery region. This fractioning suits better because it lowers the recalcitrant fraction of 

the COD in the influent and increases the biodegradable one.  
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After the ASM1 calculation, the design volume of the aerobic reactor has been set at 

248.8 m3 and its Solid Retention Time has been stablished at 5 days. The design inlet 

flowrate has been 1.5 times higher than the flowrate of the worst-case scenario influent. 

 

In the last part of the report, LynxASM1 software has been used to perform the 

simulation of the AS system and it takes the ASM1 values obtained in the preliminary 

design. A worst-case scenario and a yearly simulation have been made to assure that the 

effluent meets the legislation standards of a WWTP with no nitrogen release limitations. 

 

2. Nomenclature 

- AS: Activated Sludge 

- WWTP: Wastewater Treatment Plant 

- COD: Chemical Oxygen Demand 

- SI: Non-biodegradable soluble COD 

- Ss: Readily biodegradable COD  

- So: Dissolved oxygen 

- SNO: Nitrate and nitrite nitrogen 

- SNH: Ammoniacal nitrogen 

- SND: Biodegradable soluble organic nitrogen 

- XI: Non-biodegradable particulate COD 

- XS: Slowly biodegradable COD 

- XBH: Active heterotrophic biomass 

- XBA: Active autotrophic biomass 

- XP: Particulate products arising from biomass decay 

- XND: Particulate biodegradable organic nitrogen 

- TSS: Total Suspended Solids 

- BOD: Biological Organic Demand 

- SRT: Solids Retention Time 

- HRT: Hydraulic Retention Time 

- CD,BOD5: BOD load in the inlet 

- Ks: Half-saturation coefficient for heterotrophs 

- Kd: Heterotrophic decay rate 

- µH: Heterotrophic specific growth rate 

- µH,MÁX Heterotrophic maximum specific growth rate 

- ƟX: SRT 

- ƟX,MIN: Minimum SRT 

- SS,OUT: Readily biodegradable COD in the outlet of the AS 

- YH: Heterotrophic yield 
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- Q: AS inlet Flowrate  

- V: Reactor Volume 

- XBH,R: Heterotrophic biomass in the settler 

- QW: AS Purge flowrate 

- R: Recirculation flowrate factor 

- Qrs: AS recirculation flowrate 

- Qin: AS inlet flowrate 

- YH,OBS:Observed Heterotrophic yield 

- XBH,W : Heterotrophic Biomass in the recirculation 

- rso: Oxygen consumption rate 

- V: Reactor Volume 

- OR: Oxygen Rate 

 

3. Introduction 

The project has started with the analysis and characterization of the wastewater to be 

treated. Yearly data of a real influent from Aragon Autonomous Region, Spain, has been 

provided. 

 

The wastewater data comes from a domestic sewage in a small town located in a wine 

region of the Autonomous Community of Aragón, Spain. Wine production is one of the 

most robust industries in the world and every year is increasing its production. The global 

production of wine in 2013 was of 265 MhL which 68% came from Europe (2). 

 

Wine production has always been known as a clean process. However, there is a great 

quantity of waste generated for every liter of wine produced. It has been estimated that 

for every 100 kg of grapes, 23.5 kg of residues (skins, seeds, lees, etc.) and 141 kg of 

wastewater are produced (most from cleaning the tanks and bottling facilities) (3). 

 

If focusing just in wastewater, 1 to 4 liters of wastewater are generated for every liter of 

wine produced and it varies depending on the working period of the wine cellar (racking, 

bottling or vintage) (4). These are the main characteristics of raw winery wastewater: 

 

- Variable pH: Slightly acidic due to the accumulation of fermentation process 

waste. However, the mixture with the rest of the domestic wastewater sets the 

pH value in the inlet of the AS process near to 7 almost all year. 
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- High organic load: The major constituents of these effluents are organic acids 

(tartaric, lactic and acetic), sugars (glucose and fructose) and alcohols (ethanol 

and glycerol). Except of polyphenols, a great part of them are biodegradable (5). 

 

- Lack of nutrients: There can be found a low concentration of nitrogen and 

phosphorus, which may cause an imbalance on the recommended ratios for 

biological treatment when this effluent is submitted to conventional treatment.   

 

- Seasonal: Wine production involves several steps that take place during all year. 

Each one of them leads to significant variations in volume, organic load and other 

parameters of the wastewater. 

 

The main environmental impact of winery wastewater when is not properly treated is 

eutrophication (due to an excess of easily biodegradable organic content like sugars or 

alcohols, not to nutrient excess) which can lead the consumption of the dissolved oxygen 

in rivers or lakes. Other impacts of winery wastewater can be the alteration of 

physiochemical properties of groundwater, the inhibition effects on plant growth (due to 

high electrical conductivity), and the hazardous effects produced by small concentration 

of some phenolic compounds (6,7,8). 

 

However, the wastewater data that is being analyzed doesn’t have a high percentage of 

raw wastewater because, as it was said before, it comes from a small town where it is 

mixed with urban wastewater. This mixture is done to lower the risk of receiving high 

organic loads in the WWTP.  

 

The treated water coming out from this WWTP will have to reach European Union legal 

requirements. These requirements are the ones marked in the “Council Directive 

91/271/EEC concerning urban waste-water treatment” (9), exactly the ones referring to 

WWTP’s working with a secondary treatment. In Table 1 are shown the main parameters 

limits for these WWTP’s: 

 
Table 1: Legal concentration requirements for wastewater disposal in the EU. 

PARAMETER CONCENTRATION (mg/L) % MIN. REDUCTION 

BOD5 25 70-90 

COD 125 75 

TSS 35 90 
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4. Goals 

The general objective has been to determine the conditions of design and operation of a 

wastewater treatment based on an activated sludge system and that it guarantees a good 

quality of the effluent, despite the nutrient scarcity and the organic load and flow peaks 

caused by the wine industry activity in the area. 

 

To achieve this objective, the following steps have been pursued and achieved: 

 

- Analysis of the annual influent data. 

 

- Determination of worst-case scenario of operation. 

 

- Preliminary calculation of the design according to the ASM1 model and based on 

the worst-case scenario. 

 

- Simulation of the process according to the results of the ASM1 calculation until 

reaching the design and operation conditions that allow to obtain an effluent 

within the legal limitations. 

 

- Verification, with a yearly simulation, that the limitations are also met throughout 

the year, maintaining the same design and operation conditions. 

 

5. Methodology 

The methodology of this report involves all the tools used to pre-design and simulate and 

Activated Sludge process. The key tools used from design and simulation have been the 

ASM1 Model and the LynxASM1 simulator, respectively. 

 

Activated Sludge Model No. 1 was created in 1983 by the International Association on 

Water Quality (IAWQ) and it facilitates the application of practical models or design and 

operations of biological wastewater treatment systems (10). It easies the design because 

it just involves 7 COD components, 7 Nitrogen components and 2 other components: 

 

- SI: Non-biodegradable soluble COD 

- Ss: Readily biodegradable COD  

- XI: Non-biodegradable particulate COD 

- XS: Slowly biodegradable COD 

- XBH: Active heterotrophic biomass 

- XBA: Active autotrophic biomass 
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- XP: Particulate products arising from biomass decay 

 

- SNO: Nitrate and nitrite nitrogen 

- SNH: Ammoniacal nitrogen 

- SND: Biodegradable soluble organic nitrogen 

- XND: Particulate biodegradable organic nitrogen 

- SNI: Non-biodegradable soluble organic nitrogen 

- XNi: Particulate non-biodegradable organic nitrogen 

- XNP: Particulate nitrogen arising from biomass decay 

  

- So: Dissolved oxygen 

- SALK: Alkalinity 

 

This total of 16 variables are consumed or produced in a total of 8 dynamic processes in 

the biological reactors of activated sludge: 

 

 

These 8 dynamic processes can be all simulated at the same time in a biological reactor 

using the LynxASM1 simulator. LynxASM1 is a free of charge simulation software 

designed by Aula Bioindicación Gonzalo Cuesta (ABGC) from IIAMA-UPV (Instituto de 

Ingeniería del Agua y Medio Ambiente de la Universitat Politècnica de València). This 

program allows to simulate AS processes in a very practical and easy way because it 

Figure 1: Dynamic processes involved in the ASM1 model 
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allows to change the inlet parameters of the previous 16 variables and the kinetic values 

of the following Table 2.  

 

The kinetic parameters, as growth rate (Kd) or decay rate (µH) decrease their value as the 

temperature lowers because microorganisms are less active. During the design with 

ASM1 and simulation of this with LynxASM1, kinetics values at 10ºC have been used 

because the WWTP is located in a cold area and also because it is a worst-case scenario 

due to the low activity of the microorganisms. 

 
Table 2: Kinetic parameters of the ASM1 Model (10) 
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6. Results 

6.1.1 Influent Analysis and Worst-Case Scenario Determination 

As said before, seasons have a significant importance in wine industry. Its production 

process can be summarized in the following six steps (As it is seen in Picture 1: Wine 

making process steps.): grape harvesting (1-2), crushing (3), fermentation (4), aging (7), 

filtration (8) and (9) bottling (11). However, it can be simplified into vintage, aging and 

bottling.  

Vintage involves from harvesting to fermentation and it lasts from 2 to 6 weeks (in the 

North Hemisphere is set between August and October). This period produces the highest 

organic load and suspended solids concentration, it reduces the pH of the recipient water 

streams and it involves up to 50% of total water consumption. In the other hand, aging 

and bottling increase the pH of the recipient water streams due to the addition of NaOH 

into the tanks cleaning water processes. 

 

Due to the high organic load the most difficult conditions to treat the wastewater are 

those related to the vintage season. Because of this, the average conditions of the 

consecutive Octobers from 2014 to 2016 have been selected as the design conditions for 

the simulation and as the worst-case scenario possible. 

 
Table 3: Vintage wastewater parameters and their average values from 2014 to 2016 

YEAR MONTH BOD5 COD pH TSS SNH SNO TKN TP FLOWRATE 

2014 OCTOBER 1580.00 2782.33 6.41 557.46 16.40 1.41 37.25 5.97 122 

2015 OCTOBER 1039.17 2534.39 6.35 408.72 12.51 3.30 39.35 7.74 159 

2016 OCTOBER 1221.78 2460.88 6.06 356.24 6.33 4.20 20.60 4.43 151 

Picture 1: Wine making process steps. 
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YEAR MONTH BOD5 COD pH TSS SNH SNO TKN TP FLOWRATE  
AVERAGE 1280.31 2592.53 6.27 440.80 11.75 2.97 32.40 6.04 144  
(UNITS) mg/L mg/L 

 
mg/L mg/L mg/L mg/L mg/L m3/day 

 

The most important parameters of the worst-case scenario have been the flowrate of 

144 m3/day and the COD concentration of 2592.53 mg/L, which are key for the following 

pre-design of the AS process. 

 

As it can also be seen with TKN, SNH, COD and TSS values in Table 3, these parameters 

have been decreasing their concentration every year. This is because the wineries from 

the region have been increasing their wastewater treatment effectiveness in site in order 

to prevent fines and lawsuits from the local entities.  

 

In the following Chart 1 are shown the legal required parameters from the 2016 to 

analyze the difference of organic load depending on the wine season: 

 

 

As it is seen in both Table 3 and Chart 1, the organic load increases significantly in October 

compared with the non-vintage period (March to September). However, the flow is 

maintained during these months because the urban wastewater disposal from the town 

is stable during all year and it’s not influenced by the wine harvesting periods. 

 

To sum up, if the AS process is designed with parameters from the worst-case scenario, 

it will assure that a quality effluent during the rest of the year.  
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Chart 1: Monthly COD, BOD and SS during the 2016 year. 
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6.1.2 Other Influent Parameters 

6.1.2.1 Nutrients Ratio 

A balanced nutrient ratio is crucial for microorganisms to grow and function effectively. 

These main nutrients are Nitrogen and Phosphorous and both are lacking when treating 

winery wastewater.  

 

Because of that, there is the need to make a small calculation to see if this lack of 

nutrients is indeed real and to know how much of a nutrient addition would be needed. 

The maximum nutrient ratio for achieving microorganism’s growth is shown in Equation 

1. 

 

 

Nutrient scarcity is a common problem all year long, as we can see in the small calculation 

done in Appendix 8.1. BOD/TKN and BOD/TP ratios have been over the maximum in 13 

and 20 of the 36 months from 2014 to 2016, respectively, being October the month 

where both nutrient lacks have been always present. 

 

The worst-case scenario, which is the average of the months of October from 2014 to 

2016, has had the following nutrient ratio. 

 
Table 4: Nutrients analysis for worst-case scenario. 

 
BOD5 (mg/L) TKN (mg/L) TP (mg/L) BOD5/TKN BOD5/TP 

WORST-CASE 1280.31 32.40 6.04 39.52 211.86 

 

As it was displayed before, the maximum ratio for Nitrogen and Phosphorous is 20 and 

100, respectively, and in both cases those values are not reached in the worst-case 

scenario. The solution to this concern is to externally add urea (mainly ammonia) to 

increase TKN concentration and orthophosphates to increase TP concentration (these 

results are shown in Simulation Chapter 6.3). 

 

6.1.2.2 COD Fractioning 

A bibliographical research has been carried out to detail a suitable fractioning of COD 

contained in the influent. This fractioning is required to perform ASM1 calculation and 

also to do the mathematical simulation of the process. 

𝐵𝑂𝐷5: 𝑇𝐾𝑁: 𝑇𝑃 = 100: 5: 1 
𝐵𝑂𝐷5
𝑇𝐾𝑁

= 20 
𝐵𝑂𝐷5
𝑇𝑃

= 100 

Equation 1: Maximum Nutrient Ratio for microorganism sgrowth. (12) 
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In the ASM1 model it is estimated that in the inlet of the AS process there is zero 

concentration of biomass. Consequently, there are 4 parameters remaining in the COD 

fractioning:  

 

- SI: Non-biodegradable soluble COD 

- Ss: Readily biodegradable COD  

- XI: Non-biodegradable particulate COD 

- XS: Slowly biodegradable COD 

 

For urban wastewater with the influence of winery industry, the COD fractioning used 

comes from Beck and collaborators work (2005 (1)) which characterizes a mixed urban 

effluent from different spots from a winery region in Germany (Haut-Rhin).  

 
Table 5: COD fractioning used in the design and simulation of the WWTP 

  
BECK ET AL. 

COD IWA (ASM1) Vintage period Non-vintage period 

Ss 0.46 0.85 0.31 

Si 0.04 0.012 0.15 

Xs 0.47 0.094 0.5 

Xi 0.03 0.05 0.04 

 

As it is seen in Table 5, during vintage period, readily biodegradable COD (Ss) has a higher 

fraction due to the load of organic acids, sugars and alcohols. This fractioning is applied 

then for the worst-case scenario simulation and for October and November months in 

the dynamic simulation. In the other hand, ASM1 default domestic fractions are used in 

the dynamic simulation of non-vintage periods (10). 

Figure 2: COD Fractioning in the ASM1 model. (10) 
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As COD fractioning is done, a preliminary calculation of the AS design has been developed 

by using the ASM1 model of the IWA (International Water Association) before making a 

simulation. 

 

6.2 AS Design 

6.2.1 Introduction in the Design 

In its simpler version, the AS wastewater treatment process is based on an aerobic 

reactor followed by a settler where all the sludge created is separated from the cleared 

water. AS processes are optimal for the oxidation of high load of carbonaceous of 

biological matter. In Figure 3 there is a basic overlook of the process 

 

 
Figure 3: Diagram of an activated sludge system process (13) 

 

All nutrient removal operations have not been studied since the location of the WWTP is 

not a sensitive area according to BOE-A-2009-2347, referring to the Inspection report of 

the Management of the Tax for private use or special use of the local public domain (14). 

No restrictions are imposed in the nitrogen content of the WWTP effluent. 
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6.2.2 AS Design with ASM1 Model 

To obtain the preliminary design values of the AS, ASM1 model seen in Chapter 

“Methodology” has been used. Additional information regarding the Solids Retention 

Time (SRT) has been taken from the ATV-DVWK-A 131E standards (15). After all the 

calculations (shown in Appendix 8.2), Table 6 summarizes the main parameters obtained, 

which will be key for the simulation of the AS process. As it was said in in Chapter 

“Methodology”, all kinetic parameters from the ASM1 calculation are at 10ºC (10) and the 

design flowrate is 1.5 times the worst-case scenario (216 m3/day). 

 
Table 6: ASM1 parameters obtained 

Definition Value Units 

SRT 5 Days 

Minimum SRT 0.36 Days 

HRT 27.6 Hours 

Reactor Volume 248.8 m3 

F/M ratio 0.599  

Sludge in reactor 3200 mg cel. COD/L 

Recirculation ratio (Qr/Q) 0.770  

Purge Ratio (Qw/(Qr+Qw)) 0.130  

Sludge production 159.2 Kg SSV/day 

Oxygen demand 316.1 Kg O2/day 

6.3 Simulation Process 

6.3.1 Worst-Case Scenario Simulation 

Once the initial calculations have been carried out, a worst-case scenario simulation with 

the software LynxASM1 has been executed. However, previously there has been the need 

to know which value of concentration of ammonia and ortophosphates is needed to 

reach the maximum BOD5/TKN and BOD5/TP ratio of 20 and 100, respectively. 

 

The concentration needed to reach the maximum nutrient ratio of BOD5/TKN = 20 and 

BOD5/TP = 100 in the worst-case scenario is the next: 

 
Table 7: Nutrients concentration required for the maximum the worst-case scenario. 

 
Real Needed Added (Needed-Real) 

TKN 32.40 64.02 31.62 

TP 6.04 12.80 6.76 

 



MASTER FINAL PROJECT 

Oriol Fàbregas Oller (Master of Environmental Engineering – Universitat de Barcelona) 

16 - 38 

 

MFP INTERIM WRITTEN REPORT: WWTP DESIGN & SIMULATION OF A LOW-

By adding this new concentration in form of ammonia, the first simulation of the worst-

case scenario has been carried (phosphorous is not considered in the ASM1 model). The 

following parameters have been added in the influent data: 

 
Table 8: Worst-case scenario influent data with maximum nutrient ratio (Part 1) 

 Flowrate Ss Xs XBH  XBA  XP SO SNO  SNH 

Value 216 2206.65 246.7 0 0 0 0 2.97 43.37 

Units m3/day mg COD/L mg COD/L mg COD/L mg COD/L mg COD/L mg O2/L mg NO3/L mg NH4/L 

 
Table 9: Worst-case scenario influent data with maximum nutrient ratio (Part 2) 

 
SND XND SALK SI XI 

Value 9.11 11.54 100 31.11 129.63 

Units mg N/L mg N/L mmol CO3-/L mg COD/L mg COD/L 

 

Then, by inserting the reactor volume, the recirculation ratio and the purge ratio into the 

software, the results of the first simulation have been the following: 

 

 

As it can be seen in the simulation, there has not been a good organic matter removal 

since the concentration of readily biodegradable COD in the effluent (Ss), has been too 

high and it has not reached the compliance of the “Council Directive 91/271/EEC 

concerning urban waste-water treatment” (9). The next step therefore has been to slightly 

modify the nutrient maximum ratio to ensure that all the microorganisms have the 

enough nitrogen to grow. 

 

Knowing that the maximum ratio of BOD5/TKN = 20 and BOD5/TP = 100 has not been 

enough to achieve a good quality effluent, the best option has been to lower the 

maximum ratio, so the ammonia concentration is higher during the simulation. The 

nutrient ratio for the AS process has been increased into the one in Equation 2: 

Figure 4: Worst-case simulation with the maximum nutrient ratio of BOD/TKN=20. 
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Then, the new concentration of TKN and TP needed to reach the correct nutrient ratio in 

the worst-case scenario has increased into the one in Table 10 (in mg/L): 

 
Table 10: Nutrients required for the worst-case scenario. 

 
Real (mg/L) Needed (mg/L) Added (Needed-Real) (mg/L) 

TKN 32.40 89.62 57.22 

TP 6.04 15.36 9.32 

 

Now, the inlet parameters have the same value as the ones in Table 8 y Table 9 except 

from the ammonia concentration (SNH), which has increased from 43.37 to 68.97 mg/L 

due to the change of the nutrient ratio. The results of the simulation with the new 

nutrient ratio are shown in the following Figure 5 and Table 11. 

 

 
Table 11: Results of the simulation of the worst-case scenario. 

Parameter Inlet Outlet Units % Reduction 

Flowrate 216.00 191.12 m3/day - 

Ss 2206.65 3.63 mg COD/L - 

Xs 246.70 0.14 mg COD/L - 

XBH  0.00 16.11 mg COD/L - 

XBA  0.00 0.03 mg COD/L - 

XP 0.00 3.93 mg COD/L - 

SO 0.00 2.00 mg O2/L - 

SNO  2.97 0.26 mg NO3/L - 

SNH 68.97 1.13 mg NH4/L - 

SND 9.11 0.70 mg N/L - 

XND 11.54 0.01 mg N/L - 

𝐵𝑂𝐷5: 𝑇𝐾𝑁: 𝑇𝑃 = 100: 7: 1.2 
𝐵𝑂𝐷5
𝑇𝐾𝑁

= 14.29 
𝐵𝑂𝐷5
𝑇𝑃

= 83.33 

Equation 2: Real nutrient ratio for the WWTP design. 

Figure 5: LynxASM1 diagram of the AS process. 
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Parameter Inlet Outlet Units % Reduction 

SALK 100.00 95.38 mmol CO3-/L - 

SI 31.11 31.11 mg COD/L - 

XI 129.63 2.77 mg COD/L - 

COD 2614.09 57.73 mg COD/L 97.79 

TSS 282.24 17.24 mg / L 93.89 

BOD5 1280.31 2.36* Mg O2/L 99.82 

 

* Outlet BOD Estimation = (Xs + Ss) / 1.6 (16) 

 

As it can be seen in Table 11, the legal requirements of BOD, COD and Suspended Solids 

from Table 1 have been achieved in both concentration and in the percentage of 

minimum reduction. The main advantage is that if this design is suitable for the most 

strictive conditions, it also assures a good quality effluent during the rest of the year. 

 

However, a pseudo-dynamic simulation for all year has been done to ensure a good 

quality effluent every month of the year, and not just for the worst-case scenario of the 

month of October. 

 

6.3.2 Pseudo-Dynamic Simulation 

The inlet parameters used for this simulation have been the monthly averages from the 

2014 to 2016, which are shown in Appendix 8.3. The AS design and operation conditions 

maintained were those obtained from the worst-case scenario simulation.  

 

Twelve simulations (one for each month) have been performed. The parameters 

obtained from inside the reactor by the end of January simulation were transferred to 

the beginning of February simulation, and so on, in order to obtain a pseudo-dynamic 

simulation. No real dynamic simulation could be performed with this software since it 

does not provide the possibility to introduce variability in operating parameters such as 

the purge or the recirculation ratio. By the end of each month, the outlet parameters 

obtained were considered the averaged effluent values of the corresponding month. 

 

However, to assure that this pseudo-dynamic simulation has a final nutrient ratio of 

BOD5/TKN = 14.29 it has been key to know the TKN and TP necessary concentration in 

every month.  
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6.3.2.1 Nutrient Stream Calculation (Urea and Orthophosphates) 

Urea 

With the BOD5 monthly values of Appendix 8.1, the average of the TKN needed to get 

BOD5/TKN = 14.29 in every month from 2014 to 2016 has been calculated with Equation 

3 and is shown in Table 12. 

 

 
Table 12: Monthly TKN values needed to achieve the sufficient nutrient ratio 

 
TKN NEEDED (mg/L) 

MONTH 2014 2015 2016 AVERAGE 

JANUARY 86.63 80.15 109.20 91.99 

FEBRUARY 55.48 63.42 73.31 64.07 

MARCH 81.38 34.91 36.05 50.78 

APRIL 38.33 65.33 37.08 46.91 

MAY 80.15 32.20 10.20 40.85 

JUNE 18.38 73.50 40.08 43.98 

JULY 30.10 24.50 40.60 31.73 

AUGUST 21.93 30.72 29.45 27.37 

SEPTEMBER 28.70 16.45 26.50 23.88 

OCTOBER 110.60 72.74 85.52 89.62 

NOVEMBER 53.03 57.23 91.36 67.20 

DECEMBER 24.50 19.25 44.89 29.55 

 

With the TKN needed from the different months, the next step has been to know which 

of these months do already have this TKN needed in the influent or instead needs to be 

added externally. The following calculation to know the TKN to add in every month has 

been done: 

 

 
Table 13: TKN to add for every month in the pseudo-dynamic simulation 

MONTH 
Avrg. BOD5 

(mg/L) 
Avrg. 
TKN 

Avrg.TKN 
Needed (mg/L) 

TKN to add 
(mg/L) 

JANUARY 1314.17 42.70 91.99 49.29 

FEBRUARY 915.25 50.28 64.07 13.78 

MARCH 725.42 31.29 50.78 19.49 

APRIL 670.19 54.48 46.91 -7.57* 

MAY 583.56 47.42 40.85 -6.57* 

JUNE 628.33 41.05 43.98 2.93 

JULY 453.33 52.47 31.73 -20.73* 

𝑇𝐾𝑁 𝑡𝑜 𝑎𝑑𝑑 (
𝑚𝑔

𝐿
) = 𝑇𝐾𝑁 𝑁𝑒𝑒𝑑𝑒𝑑 (

𝑚𝑔

𝐿
) − 𝑇𝐾𝑁 (

𝑚𝑔

𝐿
) 

Equation 4: TKN to add equation 

𝑇𝐾𝑁 𝑁𝑒𝑒𝑑𝑒𝑑 (
𝑚𝑔

𝐿
) = 𝐴𝑣𝑟𝑔 𝐵𝑂𝐷 (

𝑚𝑔

𝐿
) / 14.29 

Equation 3: TKN Needed in every month equation 



MASTER FINAL PROJECT 

Oriol Fàbregas Oller (Master of Environmental Engineering – Universitat de Barcelona) 

20 - 38 

 

MFP INTERIM WRITTEN REPORT: WWTP DESIGN & SIMULATION OF A LOW-

MONTH 
Avrg. BOD5 

(mg/L) 
Avrg. 
TKN 

Avrg.TKN 
Needed (mg/L) 

TKN to add 
(mg/L) 

AUGUST 390.96 46.08 27.37 -18.72* 

SEPTEMBER 341.17 27.73 23.88 -3.85* 

OCTOBER 1280.31 32.40 89.62 57.22 

NOVEMBER 960.05 31.92 67.20 35.28 

DECEMBER 422.11 77.77 29.55 -48.22* 

 

(*The ratio of BOD5:TKN:TP = 100:7:1.2 is already achieved so there is no need to add 

nutrients externally.) 

 

In 6 of 12 average months there is the necessity to add nitrogen to increase the TKN 

concentration. This is the reason why the nutrient addition stream of urea (mainly 

ammonia) has been calculated for every month simulation. The urea flowrate for every 

month has been achieved by knowing the design flowrate of the AS process (216000 

L/day) and by knowing the TKN load this would mean. An example of the calculation is 

shown below: 

 

 

The final values of the urea load are shown in the last column of Table 13: 

 

 
Table 14: Urea load calculation every month 

MONTH TKN Load 
(kg/day) 

Urea load 
(kg/day) 

JANUARY 10.6 23.146 

FEBRUARY 2.977 6.473 

MARCH 4.209 9.150 

APRIL * * 

MAY * * 

JUNE 0.634 1.377 

JULY * * 

AUGUST * * 

SEPTEMBER * * 

OCTOBER 12.360 26.869 

NOVEMBER 7.621 16.567 

DECEMBER * * 

 

𝑇𝐾𝑁 𝑙𝑜𝑎𝑑 (
𝑘𝑔

𝑑𝑎𝑦
) = 𝑇𝐾𝑁 𝑡𝑜 𝑎𝑑𝑑 (

𝑚𝑔

𝐿
) ·

1 𝑘𝑔

106𝑚𝑔
·
2,16 · 105 𝐿

1 𝑑𝑎𝑦
 

𝑈𝑟𝑒𝑎 𝑙𝑜𝑎𝑑 (
𝑘𝑔

𝑑𝑎𝑦
) = 𝑇𝐾𝑁 𝑙𝑜𝑎𝑑 (

𝑘𝑔

𝑑𝑎𝑦
) ·

1 𝑘𝑔 𝑈𝑟𝑒𝑎

0,47 𝑘𝑔 𝑁
 

Equation 5: Calculation of the monthly TKN load 

Equation 6: Calculation of the monthly urea load (17) 
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(*The minimum ratio of BOD5:TKN:TP = 100:7:1.2 is already achieved so there is no need 

to add nutrients externally.) 

 

Going back to the simulations, the urea addition produces the increase of the inlet SNH 

concentration during the pseudo-dynamic simulation into the next ones (SNH final): 

 
Table 15: Final ammonia (SNH) inlet concentration in every month simulation 

MONTH Avrg SNH (mg/L) SNH to add (mg/L) SNH final (mg/L) 

JANUARY 25.850 49.290 75.140 

FEBRUARY 26.717 13.780 40.497 

MARCH 32.300 19.490 51.790 

APRIL 33.683 * 33.683 

MAY 33.133 * 33.133 

JUNE 22.267 2.930 25.197 

JULY 29.833 * 29.833 

AUGUST 34.683 * 34.683 

SEPTEMBER 17.633 * 17.633 

OCTOBER 11.745 57.220 68.965 

NOVEMBER 19.522 35.280 54.802 

DECEMBER 29.667 * 29.667 

 

(*The ratio of BOD5:TKN:TP = 100:7:1.2 is already achieved so there is no need to add 

nutrients externally.) 

 

Orthophosphates 

In the other hand, the same calculations have been used to know the Orthophosphates 

flowrates:  

 

 

 

 

𝑇𝑃 𝑙𝑜𝑎𝑑 (
𝑘𝑔

𝑑𝑎𝑦
) = 𝑇𝑃 𝑡𝑜 𝑎𝑑𝑑 (

𝑚𝑔

𝐿
) ·

1 𝑘𝑔

106𝑚𝑔
·
2,16 · 105 𝐿

1 𝑑𝑎𝑦
 

𝑂𝑟𝑡𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒𝑠 𝑙𝑜𝑎𝑑 (
𝑘𝑔

𝑑𝑎𝑦
) = 𝑇𝑃 𝑙𝑜𝑎𝑑 (

𝑘𝑔

𝑑𝑎𝑦
) ·

1 𝑘𝑔 𝑂𝑟𝑡𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒𝑠

0,33 𝑘𝑔 𝑃
 

Equation 9: Calculation of the monthly phosphorous load. 

Equation 10: Ortophosphates monthly load calculation (17) 

𝑇𝑃 𝑁𝑒𝑒𝑑𝑒𝑑 (
𝑚𝑔

𝐿
) = 𝐴𝑣𝑟𝑔 𝐵𝑂𝐷 (

𝑚𝑔

𝐿
) / 83.33 

𝑇𝑃 𝑡𝑜 𝑎𝑑𝑑 (
𝑚𝑔

𝐿
) = 𝑇𝑃 𝑁𝑒𝑒𝑑𝑒𝑑 (

𝑚𝑔

𝐿
) − 𝑇𝑃 (

𝑚𝑔

𝐿
) 

Equation 7: TP Needed in every month 

Equation 8: TP to add in every month 
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The final values of orthophosphates monthly loads are shown in the last column of Table 

16. However, phosphorous is not considered in ASM1 model so there is not a change in 

the inlet parameters in the simulation like urea. 

 
Table 16: Orthophosphates monthly load for every month. 

MONTH 
Avrg. BOD5 

(mg/L) 

Avg. P needed 

(mg/L) 

TP to add 

(mg/L) 

TP Load 

(kg/day) 

Ortophosphates 

Load (kg/day) 

JANUARY 1314.17 15.77 9.984 2.157 6.535 

FEBRUARY 915.25 10.98 4.952 1.070 3.241 

MARCH 725.42 8.71 3.550 0.767 2.324 

APRIL 670.19 8.04 * * * 

MAY 583.56 7.00 0.046 0.010 0.030 

JUNE 628.33 7.54 1.279 0.276 0.837 

JULY 453.33 5.44 * * * 

AUGUST 390.96 4.69 * * * 

SEPTEMBER 341.17 4.09 * * * 

OCTOBER 1280.31 15.36 9.321 2.013 6.101 

NOVEMBER 960.05 11.52 6.369 1.376 4.169 

DECEMBER 422.11 5.07 * * * 

(*The ratio of BOD5:TKN:TP = 100:7:1.2 is already achieved so there is no need to add 

nutrients externally.) 

6.3.2.2 Pseudo-Dynamic Simulation Final Results 

By changing the inlet SNH in every month (as represented in Table 15) and running all the 

twelve simulations, in the following Chart 2 are displayed the monthly outlet 

concentrations achieved from the legal required parameters (COD and TSS). All the rest 

of the parameters obtained in the outlet are shown in Appendix 8.3. 

 

 
Chart 2: Outlet COD and TSS in the outlet of the dynamic simulation of the WWTP. 
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As it can be seen in Chart 2, the concentration of COD and TSS have never reached the 

maximum legal required values of 125 mg/L and 35 mg/L. each. Since the ASM1 model 

and simulation do not work with BOD5, it is not possible to know whether the legal limit 

of 25 mg/L has been exceeded in the tested period. However, as it is seen in the outlet 

concentration values in Appendix 8.3, the biodegradable fractions of the COD (Xs and Ss) 

have almost been eliminated. The remaining COD in the outlet stream comes from the 

non-biodegradable soluble fraction (Si) which is not involved with the concentration of 

BOD5 and cannot be removed from the wastewater by biological processes. This fraction 

cannot be extracted by settling and purging either because it is dissolved. 

 

The main weakness from the dynamic simulation has been the excess of nitrates in the 

outlet stream of treated water related to the external dosing of nutrients, as it is seen in 

the following  Table 17. 

 
 Table 17: Nitrates concentration in the outlet stream of the WWTP 

 

As it is seen in  Table 17, the SNO concentration exceeds 15 mg/L in January, March and 

December and exceeds 10 mg/L also in July and August. These two values of 10 mg/L and 

15 mg/L of nitrates are key because these are the legal concentration limit of Nitrogen 

(which include TKN, nitrites and nitrates) by the “Council Directive 91/271/EEC concerning 

urban waste-water treatment”(9). 15 mg/L of nitrogen is the limit from WWTP treating 

water from 10,000 to 100,000 inhabitants and 10 mg/L of nitrogen is the one from WWTP 

for more than 100,000 inhabitants in sensitive regions. 
 

According to what is explained in BOE-A-2009-2347, referring to the Inspection report of 

the Management of the Tax for private use or special use of the local public domain (14), 

the current WWTP is located in an area where no regulations on nitrogen concentration 

are applied. However, this nitrate excess could be prevented by implementing an 

automated control that regulates the amount of nutrients to add by detecting the COD 

that is entering the AS process at every moment. 

  

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

SNO (mg/L) 21.079 0.712 17.877 5.258 1.008 0.195 12.794 14.07 0.052 0.102 6.539 20.735 
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7. Conclusions 

Urban wastewater influenced by wine industry has chemical characteristics that widely 

vary depending on the harvest period that is occurring. Vintage period (set between 

August and October in the North Hemisphere and between February and April in the 

South Hemisphere) always produces the most difficult water to treat due to the 

important increase in the wastewater organic load. Because of this, the worst-case 

scenario of water treatment in this urban WWTP designed is in October, when there is 

an average inlet flowrate of 144 m3/day and COD concentration of 2592.53 mg/L. 

 

The organic load from the wine industry that is added to the urban wastewater is mainly 

easily biodegradable (in form of sugars, organic acids and alcohols). Consequently, the 

COD fractioning during vintage periods significantly differs in comparison with a standard 

urban wastewater. Readily and slowly biodegradable COD fractions (Ss and Xs) widely 

increase due to this load. 

 

During high organic load months, a scarcity of biologically required nitrogen and 

phosphorous appears in the water to be treated. This should be solved by external 

addition of nutrients, which could be calculated with the starting minimum ratio of 

BOD5:TKN:TP=100:5:1.  

 

The ASM1 model has allowed to obtain a pre-design of the AS system that could treat 

216 m3/day of worst-case scenario wastewater effectively, by implementing an aerobic 

reactor of 248,8 m3 in the system.  

 

With the results of the ASM1 pre-design and with the starting nutrient ratio, the worst-

case scenario simulation of the system has been carried out but the minimum legal 

requirements for the outlet water have not been fulfilled. As a solution, the nutrient ratio 

has been raised into BOD5:TKN:TP=100:7:1.2 which successfully achieved the legal 

requirements by incrementing the TKN concentration. 

 

The monthly flowrates of urea and orthophosphates have been obtained with the new 

optimal nutrient ratio. With this data it has been possible to perform a pseudo-dynamic 

simulation of an entire year in the AS process. It has effectively treated the water under 

the maximum legal concentrations of BOD5, COD and TSS for all twelve months. 
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8. Appendix 

8.1 Nutrient Ratio 

The following tables have been used to analyze in Chapter 6.1.2.1 the nutrients from the 

influent data given. 
Table 18: 2016 Nutrient Analysis 

 
Table 19: 2015 Nutrient Analysis 

MONTH BOD5 TKN TP BOD5/TKN BOD5/TP 

JANUARY 1145 46.0 5.14 24.92 222.76 

FEBRUARY 906 50.3 9.45 18.01 95.87 

MARCH 499 1.9 4.32 258.42 115.45 

APRIL 933 63.2 7.39 14.77 126.30 

MAY 460 60.2 9.07 7.65 50.72 

JUNE 1050 46.6 7.06 22.53 148.73 

JULY 350 43.4 2.89 8.06 121.11 

AUGUST 439 55.4 7.47 7.93 58.74 

SEPTEMBER 235 33.6 6.47 6.99 36.32 

OCTOBER 1039 39.4 7.74 26.41 134.26 

NOVEMBER 818 44.8 4.22 18.27 193.95 

DECEMBER 275 37.5 4.26 7.33 64.55   
MAXIMUM RATIO 20 100 

 
Table 20: 2014 Nutrient Analysis 

MONTH BOD5 TKN TP BOD5/TKN BOD5TP 

JANUARY 1238 39.2 6.37 31.61 194.27 

FEBRUARY 793 60.2 3.07 13.18 258.56 

MARCH 1163 43.4 5.32 26.82 218.72 

APRIL 548 68.9 16.50 7.95 33.18 

MONTH BOD5 TKN TP BOD5/TKN BOD5/TP 

JANUARY 1560 43.0 5.85 36.28 266.67 

FEBRUARY 1047 40.4 5.58 25.92 187.68 

MARCH 515 48.6 5.83 10.60 88.34 

APRIL 530 31.4 4.70 16.90 112.71 

MAY 146 34.3 3.44 4.25 42.34 

JUNE 573 36.3 5.54 15.77 103.34 

JULY 580 52.3 9.57 11.09 60.61 

AUGUST 421 47.2 9.07 8.91 46.39 

SEPTEMBER 379 24.9 5.27 15.20 71.82 

OCTOBER 1222 20.6 4.43 59.31 276.11 

NOVEMBER 1305 29.1 6.37 44.93 204.89 

DICEMBER 641 138.0 23.40 4.65 27.41   
MAXIMUM RATIO 20 100 
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MONTH BOD5 TKN TP BOD5/TKN BOD5TP 

MAY 1145 47.8 8.36 23.95 136.96 

JUNE 263 40.3 6.19 6.52 42.44 

JULY 430 61.7 10.30 6.97 41.75 

AUGUST 313 35.7 8.09 8.78 38.75 

SEPTEMBER 410 24.7 6.69 16.60 61.29 

OCTOBER 1580 37.3 5.97 42.42 264.88 

NOVEMBER 758 22.0 4.87 34.49 155.54 

DECEMBER 350 57.8 5.65 6.06 61.95   
MAXIMUM RATIO 20 100 
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8.2 AS Process Design Calculations 

The following pre-design parameters of the AS systems have been obtained with the 

ASM1 Model equations and with the influent values of the worst-case scenario from 

Table 3: Vintage wastewater parameters and their average values from 2014 to 2016  

8.2.1 SRT Calculation 

Solid Retention Time estimation has been done by picking the recommended one in the 

ATV-DVWK-A 131E standards. Previously, a calculation of the BOD load has been made 

to decide whether to use 5 or 4 days of SRT (as the Table 21 shows). 

 

 
 

As it is seen in Table 21 the final SRT for the design of the AS without nitrification is 5 

days. However, the minimum SRT has been calculated before to ensure that these 5 days 

of final SRT can be reached. Minimum SRT is obtained with the following equation from 

the ASM1 model: 

 
Equation 12: Calculation of the minimum SRT (ASM1 Model) 

 

𝐶𝑑 , 𝐵𝑂𝐷5 (
𝑘𝑔

𝑑𝑎𝑦
) = 𝐷𝑎𝑖𝑙𝑦 𝐵𝑂𝐷 𝑙𝑜𝑎𝑑 = 1280.31

𝑚𝑔 𝐵𝑂𝐷5

𝐿
· 216,000

𝐿

𝑑𝑎𝑦
·

1 𝑘𝑔

106 𝑚𝑔

= 276.55
𝑘𝑔

𝑑
 

𝜇𝐻,𝑚𝑎𝑥 · (
𝑆𝑠

𝑆𝑠 + 𝐾𝑠
) =

1

𝜃𝑥 ,𝑚𝑖𝑛
+ 𝐾𝑑 

Equation 11: BOD load calculation with the ATV Standards 

Table 21: Recommended SRT for an AS process by the ATV-DVWK-A 131E standards. 
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The minimum SRT of 0,36 days confirms the design SRT of 5 days. 

 

8.2.2 COD in the Effluent 

A calculation of the theorical concentration of outlet COD has been performed to ensure 

that the chosen SRT is the correct to treat the water to a concentration lower than the 

legal limit (legal limit viewed in Table 1: Legal concentration requirements for wastewater 

disposal in the EU.). The equation used from the ASM1 model has been the following one: 

 

 

 
 

 
 

If the obtained concentration of readily biodegradable COD (SS,OUT ) sums with the 

concentration of soluble non-biodegradable COD (Si) in the inlet* we have a 

concentration of COD in the outlet of 31.11 mg COD/L. This concentration of COD in the 

outlet is lower in than the legal limit viewed in Table 1 of 125 mg COD/L, which means 

that the SRT used will be enough to treat the water. 

- Ks (Half-saturation coefficient for heterotrophs at 10ºC) = 20 mg COD/L 

- Kd (Heterotrophic decay rate at 10ºC) = 0.2 day-1 

- 𝜇𝐻,𝑚𝑎𝑥  (Heterotrophic maximum specific growth rate at 10ºC) = 3 day-1 

- 𝑆𝑆,𝑂𝑈𝑇  (Readily biodegradable COD in the outlet) = mg COD/L 

- 𝜃𝑥  (SRT) = 5 days 

𝑆𝑆,𝑂𝑈𝑇 =
20

𝑚𝑔 𝐶𝑂𝐷
𝐿

 (1 + 0,2 𝑑−1 · 5 𝑑)

3 𝑑−1 · 5 𝑑 − (1 − 0,2 𝑑−1 · 5 𝑑)
= 3.077

𝑔 𝐶𝑂𝐷

𝐿
= (

𝑚𝑔 𝐶𝑂𝐷

𝐿
) 

Equation 13: Readily biodegradable COD (Ss) in the outlet calculation. 

- Ks (Half-saturation coefficient for heterotrophs at 10ºC) = 20 mg COD/L 

- Kd (Heterotrophic decay rate at 10ºC) = 0.2 day-1 

- 𝜇𝐻,𝑚á𝑥  (Heterotrophic max. specific growth rate at 10ºC) = 3 day-1 

- 𝑆𝑠 (Readily biodegradable COD in the inlet) = 2203.65 mg/L =2203.65 mg COD/L 

- 𝜃𝑥 ,𝑚𝑖𝑛  = Minimum SRT (days) 
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*The concentration of soluble non-biodegradable COD (Si) is the same in the inlet and 

in the outlet because it can’t be oxidized by the biomass and cannot be settled and then 

removed in form of sludge. 

 

8.2.3 HRT and Volume of the Reactor 

With the ASM1 model, it is possible to know the Hidraulic Retention Time (HRT) of the 

reactor only if a value of heterotrophic biomass (XBH) is estimated. Because of this, a 

concentration of heterotrophic biomass of 3200 mg COD/L has been estimated in the 

aerobic reactor for the worst-case scenario. In addition, a concentration of heterotrophic 

biomass of 6400 mg COD/L has also been estimated in the settler (XBH,R). 

 

The HRT of the reactor is calculated with the following equation  

 

 
 

 
 

 
 

The volume of the reactor can be obtained by multiplying the HRT with the design 

flowrate of the WWTP: 

 

 
 

- Q (WWTP Flowrate) = 216 m3/d = 2166,000 L/day 

- V (Reactor Volume) = m3 

𝐻𝑅𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 𝑌𝐻 ·
𝜃𝑥
𝑋𝐵𝐻

·  
𝑆𝑠

(1 + 𝜃𝑥 · 𝑘𝑑)
−

𝐾𝑠

𝜃𝑥 · 𝜇𝐻,𝑚á𝑥 − (1 + 𝜃𝑥 · 𝑘𝑑)
  

- Ks (Half-saturation coefficient for heterotrophs at 10ºC) = 20 mg COD/L 

- Kd (Heterotrophic decay rate at 10ºC) = 0.2 day-1 

- 𝜇𝐻,𝑚𝑎𝑥  (Heterotrophic maximum specific growth rate at 10ºC) = 3 day-1 

- 𝜃𝑥  (SRT) = 5 days 
- 𝑌𝐻  (Heterotrophic yield) = 0.67 mg cell COD formed (mg COD oxidized)-1 

- 𝑆𝑠 (Readily biodegradable COD in the inlet) = 2203.65 mg/L =2203.65 mg COD/L 

- 𝐻𝑅𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟  (Hidraulic Retention Time of the reactor) = days 

- 𝑋𝐵𝐻  (Heterotrophic Biomass in the aerobic reactor) = 3200 mg COD/L 

𝐻𝑅𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 1,15 𝑑𝑎𝑦𝑠 = 27,64 ℎ𝑜𝑢𝑟𝑠 

𝑉 = 𝑄 · 𝐻𝑅𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 216,000
𝐿

𝑑𝑎𝑦
· 1,15 𝑑𝑎𝑦𝑠 = 248803 𝐿 = 248.8 𝑚3 

Equation 14: Calculation of the HRT with the ASM1 Model. 
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8.2.4 Food/Microorganisms Ratio 

The food to microorganism (F/M) ratio is one of the most important design parameters 

of activated sludge systems because a good balance between substrate consumption and 

biomass generation prevents the microorganisms to die or to suffer bulking or foaming 

in the biomass. The equation to get the value of F/M ratio is the following one: 

 

 
 

 

 
 

The efficiency of an activated sludge process can be defined by its F/M ratio, and for 

conventional activate sludge systems cannot be over 1,4 in high organic wastewaters to 

prevent the growth of filamentous bacteria, which will not settle easily due to its long 

tails. (18) 

 

8.2.5 Recirculation and Purge ratio 

The recirculation and purge ratio have been calculated with the following Equation 16 

from the biomass mass balance in the activated sludge system. The flowrate of settled 

water that is going to be purged from the recirculation has been obtained with the 

following equation: 

 

 

 
 

𝐹

𝑀
=
𝑄 · (𝑆𝑆 − 𝑆𝑆,𝑂𝑈𝑇)

𝑉 · 𝑋𝐵𝐻
 

𝐹

𝑀
= 0.598 

- 𝑋𝐵𝐻  (Heterotrophic Biomass in the aerobic reactor) = 3200 mg COD/L 

- 𝑋𝐵𝐻,𝑊  (Heterotrophic Biomass in the recirculation) = 6400 mg COD/L  

Equation 15: Food/Microorganisms ratio equation using the readily biodegradable COD 

- 𝑋𝐵𝐻  (Heterotrophic Biomass in the aerobic reactor) = 3200 mg COD/L 

- 𝑆𝑆,𝑂𝑈𝑇  (Readily biodegradable COD in the outlet) = 3.077 mg COD/L 

- 𝑆𝑠 (Readily biodegradable COD in the inlet) = 2203.65 mg/L =2203.65 mg COD/L 

- V (Reactor Volume) = 248,8 m3 = 248,800 L 

- Q (AS inlet Flowrate) = 216 m3/d = 2166,000 L/day 

Equation 16: Purge flowrate equation with the ASM1 mass balance. 

𝑄𝑤 =
𝑋𝐵𝐻 · 𝑉

𝑋𝐵𝐻,𝑊 · 𝜃𝑥
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As it was said in Appendix 8.2.3, the initial estimation of the concentration of 

heterotrophic biomass in the secondary settler is the double of the concentration in the 

aerobic reactor. Obviously, the concentration of heterotrophic biomass from the 

recirculation stream will be the same, as it comes out from the settler. 

 

 
 

 
 

This 24.88 m3/day is the flowrate of water which is high concentrated in biomass and that 

would flow out of the AS process. 

 

The recirculation flowrate is obtained by multiplying the inlet flowrate with the following 

recirculation factor. 

 

- XBH (Heterotrophic Biomass in the aerobic reactor) = 3200 mg COD/L 

 

 

 

 
 

 
 

 
 

The final flowrate of settled water that returns to the influent is 166.239 m3/day. 

- V (Reactor Volume) = 248,8 m3 = 248,800 L 

- 𝜃𝑥  (SRT) = 5 days 
- 𝑄𝑤  (AS purge Flowrate) = L/day 

𝑄𝑤 = 24880.26
𝐿

𝑑𝑎𝑦
= 24.88

𝑚3

𝑑𝑎𝑦
 

𝑄𝑟𝑠 = 𝑄 · 𝑅 = 216
𝑚3

𝑑𝑎𝑦
· 0.7696 = 166.239

𝑚3

𝑑𝑎𝑦
 

- 𝑄𝑟𝑠  (WWTP recirculation Flowrate) = m3/day 

- 𝑄 (AS inlet Flowrate) = m3/day 

Equation 17: Recirculation factor equation with the ASM1 biomass mass balance 

- 𝑋𝐵𝐻,𝑅  (Heterotrophic Biomass in the settler) = 6400 mg COD/L  

- 𝜃𝑥  (SRT) = 5 days 
- 𝐻𝑅𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟  (Hidraulic Retention Time of the reactor) = 1.15 days 

- R (Recirculation Factor) 
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8.2.6 Sludge Production 

Sludge production (Px) is obtained by applying the kinetic reactions shown in the ASM1 

Model. There is going to be more or less production depending on the observed 

heterotrophic yield. The observed heterotrophic yield is obtained with the following 

equation of kinetic parameters. 

 

 
 

 

 

 

The observed heterotrophic yield is going to be lower than the theoretical one (set in 

0,67 mg cellular COD/mg COD oxidized) due to the low weather temperature in the 

WWTP and due to the short SRT of 5 days.  

 

The total sludge production per hour and liter is the following: 

 

 
 

 
 

 
 

 

𝑌𝐻,𝑂𝐵𝑆 =
𝑌𝐻

(1 + 𝑘𝑑 · 𝜃𝑥)
 

- Kd (Heterotrophic decay rate at 10ºC) = 0.2 day-1 

- 𝜃𝑥  (SRT) = 5 days 
- 𝑌𝐻  (Heterotrophic yield) = 0.67 mg cellular COD formed (mg COD oxidized)-1 

- 𝑌𝐻,𝑂𝐵𝑆  (Observed Heterotrophic yield) = mg cellular COD formed (mg COD 

oxidized)-1 

- 𝑆𝑆,𝑂𝑈𝑇  (Readily biodegradable COD in the outlet) = 3,077 mg COD/L 

- 𝑆𝑠 (Readily biodegradable COD in the inlet) = 2203.65 mg/L = 2203.65 g COD/m3 

- Q (WWTP inlet Flowrate) = 216 m3/d = 2166,000 L/day 

Equation 18: Observed heterotrophic yield equation with the ASM1 Model 

Equation 19: Sludge production equation with the ASM1 Model 

𝑃𝑥 = 𝑝𝑥 · 𝑄 = 737,19 
𝑚𝑔 𝐶𝑂𝐷

𝐿
· 216000

𝐿

𝑑𝑎𝑦
·

1 𝑘𝑔

1 · 106 𝑚𝑔
= 159.23

𝑘𝑔 𝐶𝑂𝐷

𝑑𝑎𝑦
  

𝑌𝐻,𝑂𝐵𝑆 =
𝑌𝐻

(1 + 𝑘𝑑 · 𝜃𝑥)
= 0.335

𝑔 𝑐𝑒𝑙𝑙 𝐶𝑂𝐷 𝑓𝑜𝑟𝑚𝑒𝑑

𝑔 𝐶𝑂𝐷 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑
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This value of sludge production is not used during the simulation of the AS. However, this 

is a very important factor if a rigorous design of the settler is done. It is also a key factor 

to design a posttreatment of the purged sludge like thickening or dewatering. 

8.2.7 Oxygen Demand 

The oxygen demand has been calculated by applying the oxygen mass balance in the 

ASM1 model. Its value is not also used in the simulation, but it is needed if the final design 

of the aerobic reactor in case it would be required. 

 

 
 

 

 
 

When the oxygen consumption rate is obtained, it needs to be multiplied with the volume 

to know the oxygen rate the reactor needs to carry on the aerobic functions well. 

 

 
 

 
 

 

𝑟𝑆𝑂 =
𝑑𝑆𝑂
𝑑𝑡

= (
1 − 𝑌𝐻
𝑌𝐻

)𝜇𝑚𝑎𝑥 ,𝐻 ·
𝑆𝑆

𝐾𝑆 + 𝑆𝑆
· 𝑋𝐵𝐻 + 𝑘𝑑 · 𝑋𝐵𝐻  

𝑂𝑅 = 𝑟𝑠𝑜 · 𝑉 

- V (Reactor Volume) = 248,8 m3 = 248,800 L 

- OR (Oxygen Rate) = mg/day 

𝑂𝑅 = 𝑟𝑠𝑜 · 𝑉 = 1270.45 
𝑚𝑔 𝑂2 

𝐿 · 𝑑𝑎𝑦
· 248,000 𝐿 ·

1 𝑘𝑔

1 · 106 𝑚𝑔
= 316,09 𝑘𝑔 

𝑘𝑔 𝑂2 

𝑑𝑎𝑦
 

Equation 20: Oxygen consumption rate with the ASM1 oxygen mass balance. 

Equation 21: Oxygen required rate in the aerobic reactor. 

- Ks (Half-saturation coefficient (hsc) for heterotrophs at 10ºC) = 20 mg COD/L 

- Kd (Heterotrophic decay rate at 10ºC) = 0.2 day-1 

- 𝜇𝑚𝑎𝑥 ,𝐻  (Heterotrophic max. specific growth rate at 10ºC) = 3 day-1 

- 𝑌𝐻  (Heterotrophic yield) = 0.67 mg cell COD formed (mg COD oxidized)-1 

- 𝑆𝑠 (Readily biodegradable COD in the inlet) = 2203.65 mg/L =2203.65 mg COD/L 

- 𝑟𝑆𝑂 =
𝑑𝑆𝑂

𝑑𝑡
 (Oxygen consumption rate) = mg O2/L·day 
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8.3 Dynamic Simulation 

These are the parameters and concentration values of the mixture of inlet water and nutrients. These concentrations and flowrates are the average 

of the given values from 2014 to 2016. 

 
Table 22: Inlet stream concentrations and parameters from the dynamic simulation of the WWTP 

  

 
INLET 

FLOWRATE 
(m3/day) 

Si 

(mg/L) 
Ss (mg/L) 

So 

(mg/L) 
SNO 

(mg/L) 
SNH 

(mg/L) 
SND 

(mg/L) 
XI 

(mg/L) 
XS 

(mg/L) 
XBH 

(mg/L) 
XBA 

(mg/L) 
XP 

(mg/L) 
XND 

(mg/L) 

RECIRCULATION 
FLOWRATE 

(m3/day) 

JAN 97.000 60.751 698.638 0.000 2.915 75.140 5.278 45.563 713.826 0.000 0.000 0.000 3.942 99.534 

FEB 101.333 58.816 676.384 0.000 2.820 40.497 7.381 44.112 691.088 0.000 0.000 0.000 5.514 102.869 

MAR 113.000 48.730 560.391 0.000 9.012 51.790 6.144 36.547 572.574 0.000 0.000 0.000 4.590 111.848 

APR 99.000 38.007 437.076 0.000 1.257 33.683 6.515 28.505 446.577 0.000 0.000 0.000 4.866 101.073 

MAY 107.667 41.316 475.133 0.000 0.927 33.133 4.474 30.987 485.462 0.000 0.000 0.000 3.342 107.743 

JUN 119.333 43.379 498.859 0.000 1.348 25.197 5.883 32.534 509.704 0.000 0.000 0.000 4.395 116.722 

JUL 111.000 27.102 311.676 0.000 1.160 29.833 7.089 20.327 318.451 0.000 0.000 0.000 5.295 110.309 

AUG 131.333 24.269 279.096 0.000 0.930 34.683 3.571 18.202 285.163 0.000 0.000 0.000 2.667 125.958 

SEP 120.500 27.037 310.922 0.000 0.570 15.700 2.850 20.278 317.681 0.000 0.000 0.000 2.129 117.620 

OCT 144.000 31.110 2203.653 0.000 2.970 68.965 6.469 129.627 243.698 0.000 0.000 0.000 4.832 135.707 

NOV 143.333 17.144 1214.377 0.000 5.685 54.802 5.302 71.434 134.296 0.000 0.000 0.000 3.961 135.193 

DEC 114.000 32.802 377.228 0.000 1.853 29.667 15.065 24.602 385.428 0.000 0.000 0.000 11.254 112.618 
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These are the concentration values obtained inside the biological reactor after the simulation of every entire month indicated. Every monthly value 

obtained is used as the initial configuration for the following month. By doing this, a more realistic dynamic simulation is assured. 

 
Table 23: Reactor parameters at the end of every monthly simulation. 

 Si (mg/L) Ss (mg/L) So (mg/L) SNO (mg/L) SNH (mg/L) SND (mg/L) XI (mg/L) XS (mg/L) XBH (mg/L) XBA (mg/L) XP (mg/L) XND (mg/L) 

JAN 60.751 3.313 2.000 21.079 0.942 0.676 103.714 12.103 894.014 11.834 263.167 0.715 

FEB 58.816 3.436 2.000 0.712 0.950 0.697 103.661 12.442 897.808 3.449 260.463 0.744 

MAR 48.730 3.339 2.000 17.877 0.980 0.698 93.292 11.210 821.101 8.877 232.461 0.669 

APR 38.007 3.335 2.000 5.258 0.945 0.722 66.536 7.730 568.205 5.104 169.436 0.471 

MAY 41.346 3.422 2.000 1.008 0.965 0.686 76.605 9.214 665.343 3.432 192.046 0.546 

JUN 43.379 3.564 2.000 0.195 0.976 0.703 86.654 10.896 765.627 1.294 213.825 0.650 

JUL 27.102 3.339 2.000 12.794 0.975 0.774 51.923 6.136 448.826 7.009 131.335 0.385 

AUG 24.269 3.363 2.000 14.070 1.102 0.708 52.711 6.451 467.703 8.284 130.611 0.386 

SEP 27.037 3.690 2.000 0.052 0.755 0.682 54.953 9.706 480.117 0.205 136.328 0.408 

OCT 31.110 3.628 2.000 0.102 1.034 0.663 695.274 19.855 2210.821 1.758 579.956 1.616 

NOV 17.144 3.387 2.000 6.539 1.037 0.680 217.548 10.508 1213.699 8.634 321.915 0.865 

DEC 32.802 3.339 2.000 20.735 0.982 0.891 63.720 7.622 557.273 10.334 160.120 0.512 
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These are the outlet stream concentrations of the AS process. 

 
Table 24: Outlet stream concentration values of the WWTP. 

 
OUTLET 

FLOWRATE 
(m3/day) 

Si 

(mg/L) 
Ss 

(mg/L) 
So 

(mg/L) 
SNO 

(mg/L) 
SNH 

(mg/L) 
SND 

(mg/L) 
XI 

(mg/L) 
XS 

(mg/L) 
XBH 

(mg/L) 
XBA 

(mg/L) 
XP 

(mg/L) 
XND 

(mg/L) 
COD TSS 

JAN 72.120 60.751 3.313 2.000 21.079 0.942 0.676 0.519 0.061 4.470 0.059 1.316 0.004 70.488 4.818 

FEB 76.453 58.816 3.436 2.000 0.712 0.950 0.697 0.518 0.062 4.489 0.017 1.302 0.004 68.641 4.792 

MAR 88.120 48.730 3.339 2.000 17.877 0.980 0.698 0.466 0.056 4.106 0.044 1.162 0.003 57.903 4.376 

APR 74.120 38.007 3.335 2.000 5.258 0.945 0.722 0.333 0.039 2.841 0.026 0.847 0.002 45.427 3.064 

MAY 82.790 41.346 3.422 2.000 1.008 0.965 0.686 0.383 0.046 3.327 0.017 0.960 0.003 49.501 3.550 

JUN 94.453 43.379 3.564 2.000 0.195 0.976 0.703 0.433 0.054 3.828 0.006 1.069 0.003 52.334 4.044 

JUL 86.120 27.102 3.339 2.000 12.794 0.975 0.774 0.260 0.031 2.244 0.035 0.657 0.002 33.667 2.420 

AUG 106.453 24.269 3.363 2.000 14.070 1.102 0.708 0.264 0.032 2.339 0.041 0.653 0.002 30.961 2.497 

SEP 95.620 27.037 3.690 2.000 0.052 0.755 0.682 0.275 0.035 2.401 0.001 0.682 0.002 34.119 2.544 

OCT 119.120 31.110 3.628 2.000 0.102 1.034 0.663 1.976 0.099 11.054 0.009 2.900 0.008 50.776 12.029 

NOV 118.453 17.144 3.387 2.000 6.539 1.037 0.680 1.088 0.053 6.068 0.043 1.610 0.004 29.392 6.646 

DEC 89.120 32.802 3.339 2.000 20.735 0.982 0.891 0.319 0.038 2.786 0.052 0.801 0.003 40.136 2.997 
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