Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture

A Maldonado-Alameda1,3, A M Lacasta2, J Giro-Paloma1, J M Chimenos1 and J Formosa1,e

1 Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain. Ph: +34-934037244.
2 Departament de Física Aplicada, Universitat Politècnica de Catalunya, Av. Dr. Marañón 44-50, 08028 Barcelona, Spain.
E-mail: alex.maldonado@ub.edu

Abstract. The high environmental impact generated by using of Ordinary Portland Cement (OPC) has lead to the search for alternative materials in the field of civil and building engineering. In addition, there is a tendency to develop cements from industrial by-products, thus reducing pollution and emissions generated by their production. One of the best positioned cements to compete with OPC is Magnesium Phosphate Cement (MPC). The present work studies different dosages of MPC mortars formulated with low-grade MgO by-product (sustainable MPC) incorporating Microencapsulated Phase Change Materials (MPCM) and air entraining additive (AEA) as admixtures (Thermal Sustainable MPC) to improve the thermal behaviour of the material. The aim is developed a new eco-friendly material that leads to reducing energy consumption in buildings. The study is focused on the physical, thermal, and mechanical characterization of TS-MPC mortars to assess their potential use as a thermal prefabricated panel. The results allow to relate the amount of the MPCM and the additive percentage with the thermal and mechanical properties of the TS-MPC. Furthermore, is important to highlight the influence of MPCM not only in the thermal behaviour but also on the increase of the porosity. The experimental results show that the addition of both additives contributes substantially to the improvement of the thermal behaviour of the mortars and converts them on a suitable material to reduce thermal oscillations in buildings.

1. Introduction

The energy demand and the resource extractive activity are some of the environmental issues that have generated major interest in modern society [1,2]. Their consumption patterns, population growth, and economic development have led to an increase of energy consumption and waste generation, with the consequent appearance of problems such as increasing greenhouse gases (GHG), global warming, and depletion of natural resources.

In the framework of building, energy consumption is also very high and has a big impact in both economy and environment. Pérez-Lombard et al. [3] highlighted the global contribution from buildings towards energy consumption has raised up between 20 % and 40 %, depending on the country or building use, outstripping other important sectors like industry and transportation. Among this quantity of consumed energy, around 50 % is due to the use of heating, ventilating, and air conditioning (HVAC) systems to keep the thermal comfort and to improve the quality of life in buildings [3]. Moreover, in terms of material resources consumption, the building sector consumes around 24 % of raw materials extracted from the lithosphere [4]. Thus, it also means that resource extractive activity caused by building material industry generates large amounts of CO2 and requires high quantity of energy. The ordinary Portland Cement (OPC), together with steel, is the most demanded material and, consequently, its environmental and Iglobal emissions [5] and consumes 2 % of global energy demand [6]. Hence, those studies show the needed to move towards a more sustainable economic and social model based on avoiding excessive and uncontrolled
consumption of energy and available material resources. Besides, it is important to potentiate some aspects such as recyclability and the valorisation of waste generated by the industry, towards a circular economy. One of the available solutions from the materials engineering field is the design and use of eco-friendly building materials and systems, as the developed and investigated material in the present research work.

This research contributes into the development of eco-friendly building materials with new data on Magnesium Phosphate Cements (MPC) and Microencapsulated Phase Change Materials (MPCM). MPC is an acid-base cement that is part of the family of Chemically Bonded Phosphate Ceramics (CBPC). The main reaction product of MPC is a crystal, named, magnesium potassium phosphate hexahydrate, MgK₃PO₄·6H₂O or K–struvite [7]. Due to its quick setting and early high strength, the main MPC applications have been defined in the field of dentistry [8], stabilisation and encapsulation of hazardous and toxic wastes [8-10], and finally rapid repairing of roads, flooring, and concrete bridges [12,13]. However, in recent years, there is a tendency to expand their applications in other fields such as building. Apart from MPC properties, one reason of the great interest generated by this material is the ecological and environmental benefits that provides when compared with OPC [14]. The energy consumed to produce 1000 kg of OPC is approximately 5 GJ and the amount of CO₂ generated reaches 900 kg [7]. Nevertheless, in the study of Wagh [15] is showed that CO₂ emissions generated by the MPC production are reduced up to 40% compared with OPC. This same study also highlights the process of producing MPC requires four times less amount of heat than the production of OPC. In addition, for the MPC formulation, it has been used a low-grade magnesium oxide (LG-MgO) obtained as a by-product from the calcination process of natural magnesite (MgCO₃) from the production of magnesia (MgO). The MPC formulated through the use of LG-MgO has been successfully already obtained in other studies [16–18]. Hence, LG-MgO potentiates its sustainable and environmental criteria, valorising an industrial by-product, and reducing natural resource extraction activities for the pure MgO production; on this manner, it is named sustainable MPC (sust-MPC) mortars [18]. The second material used in this study is MPCM which allows maintaining the thermal comfort in buildings because of its physical properties [19–21]. MPCM has been successfully incorporated in several construction materials such as lime, gypsum, and concrete, in order to reduce the energy consumption and CO₂ emissions generated by the use of HVAC systems and to improve energy efficiency in buildings [19–21]. During the phase change process, Phase Change Materials (PCM) has the tendency to leak to the surface of the matrices in which they are contained. However, the leakage process can be avoided by an encapsulation process, producing MPCM. Therefore, the mixture between sust-MPC and MPCM will expand their range of applications, mainly for thermal purposes; consequently, in this research work, this kind of formulations has been named thermal sustainable MPC (TS-MPC).

The main goal of the present study is the evaluation of the potential use of an air-entraining agent (AEA) and MPCM as admixtures on sust-MPC to improve their thermal behaviour, as well as to use this material as a passive conditioning system. Porosity and density of different dosages of TS-MPC have been evaluated to relate them to their thermal and mechanical properties. Furthermore, the influence of MPCM amount on the thermal conductivity and the thermal cycles behaviour of TS-MPC have been also studied.

2. Experimental Details

2.1. Materials
In the present study, a by-product of LG-MgO supplied by Magnesitas Navarras S.A. and a food grade monopotassium phosphate (MKP) supplied by J. Norken S.L. were used for the TS-MPC formulation. These two commercial products were characterized elsewhere by Formosa et. al. [16]. In addition, MPC and AEA were used as admixtures. The MPCM used was Micronal® DS 5008X from BASF company, which consist in a paraffin with a phase change temperature of 23°C and a melting enthalpy value of 135 kJ·kg⁻¹. The commercial AEA used was Centrament Air 207 from MC Bauchemie company.

2.2. Samples Preparation
The TS-MPC mortars were prepared by mixing LG-MgO, MKP, MPCM, tap water, and the AEA according to the designed formulations as shown in Table 1. For each formulation, LG-MgO, MKP, and MPCM were added and weighed successively into the mixer, maintaining the same amount of solid (3 kg). On the other hand, tap water and the additive were mixed to be subsequently introduced into the mixer with the rest of the components. The mixture was first mechanically stirred at low speed during 120 s, and then at high speed during 60 s, with 60 s as intermediate stop between both. Later, the mixture was poured into moulds and compacted in three steps by using a vibrating table, during 10 s for the first and second step and
5 s for the third one. Among each steps the vibration was stopped during 60 s. The moulds were introduced into a humidity chamber at 25°C ± 1°C for 24 hours (relative humidity of 95% ± 5%). Finally, the specimens were unmoulded and cured at 20°C ± 1°C (relative humidity of 10% ± 5%) until constant weight, up to 7 days. For each formulation, it has been obtained three prism shaped specimens of 40 x 40 x 160 mm and three plate shaped specimens of 150 x 150 x 35 mm. The plate shaped specimens were used for thermal conductivity, thermal cycling test, and bulk density and porosity measurements at the age of 7, 8, and 10 days, respectively. For the bulk density and the porosity, the specimens were cut in order to obtain three samples of 40 x 75 x 35 mm. Furthermore, Modulus of Elasticity (MOE) and flexural and compressive strength were determined in the prism shaped specimens at the age of 7-21-28 and 28 days, respectively. The measurements were performed per triplicate for each formulation.

Table 1. Mixture composition of sust-MPC mortars studied.

<table>
<thead>
<tr>
<th>Reference</th>
<th>LG-MgO/C (wt%)</th>
<th>MKP/C (wt%)</th>
<th>W/C (wt%)</th>
<th>MPCM/C (wt%)</th>
<th>AEA/C (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0AD-0PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2AD-0PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5AD-0PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0AD-5PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2AD-5PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5AD-5PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0AD-10PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2AD-10PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>5AD-10PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>0AD-15PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>2AD-15PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5AD-15PCM</td>
<td>60</td>
<td>40</td>
<td>34</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

2.3. Property measurements

2.3.1. Thermal conductivity and thermal cycling test

The thermal conductivity was determined by using a Quickline-30 Thermal Properties analyser equipment. The analyser comes after a dynamic measurement method, based on the ASTM standard D5930, using a surface probe placed in a planar area of the shaped plate sample. The used probe has a measuring range of 0.3 to 2.0 W·m⁻¹·K⁻¹. For each plate, three measurements at different temperatures (12°C, 20°C, and 29°C) were measured per triplicate at the age of 7 days, and then the average value of the thermal conductivity was determined. The selected values represent the upper and lower temperatures of the MPCM phase change, as well as at room temperature (around the phase change).

The shaped plate specimens were subjected to sudden temperature changes to evaluate the thermal inertia of the TS-MPC mortars. The plate was first thermally stabilized in a fridge at 12°C during 24 h, and then introduced into an oven at 40°C. After 3 hours, the sample was once again introduced into the fridge during 3 more hours. This cycling procedure aims to simulate real environmental variations during the day and night (e.g. Mediterranean climate). The surface and internal temperature data of the sample were collected during this complete cycle, by using thermocouples and a thermal data-logger. Thermal cycling tests were performed one day after measuring the thermal conductivity (i.e. at the age of 8 days).

2.3.2. Bulk density and porosity

Specimens used for thermal cycling tests were conditioned to determine bulk density (ρ) and porosity (ϕ) (cut and dried at 40°C during 24 h). Hence, both properties were studied for a better understanding of thermal and mechanical properties of the TS-MPC mortars (i.e. at the age of 10 days). The values were determined according to the Spanish standard UNE 83-312-90 based on the Archimedes Principle.

2.3.3. Modulus of Elasticity, flexural and compressive strength

MOE measurements were carried out through a non-destructive test following the standard UNE-EN 12504-4. Tests were carried out by means of acoustic waves’ application in the longitudinal direction of shaped-prism specimens. Then, the wave delay time along the length of each specimen was measured with a C368 Matest equipment. The results from tests were obtained assuming that the expressions used in the estimation of MOE were valid at both isotropic and homogeneous media [17].
The compressive (σ_c) and flexural strength (σ_f) tests at 28 curing days of the TS-MPC mortars were determined according to UNE-EN 196-1 using an Incotecnic MULTI-R1 equipment. A progressive load until fracture was applied in both cases, with a loading rate of 240 kg·s$^{-1}$ and 5 kg·s$^{-1}$ for compressive and flexural strength, respectively. Regarding σ_c test, it was first measured the maximum applied load for each of the three prism shaped specimens and then σ_c was determined. In the case of σ_f test, each of the two halves obtained in the flexural test was used; hence, 6 values of maximum applied load were determined.

3. Results and discussion

3.1. Thermal conductivity and thermal cycling test

Figure 1 depicts the thermal conductivity trend of TS-MPC mortars, measured at 12°C, 20°C, and 29°C, as a function of MPCM and AEA added. As expected, the results show an inverse relation between the added admixtures amount and the thermal conductivity obtained. As expected, in the sust-MPC (0% MPCM) thermal conductivity increases as increasing the temperature. Furthermore, the increase of the MPCM amount per unit volume implies a decrease of K-struvite cementitious matrix quantity. Hence, as the MPCM used in this research are mainly composed of heptadecane and octadecane [22], and their thermal conductivity is lower than the K-struvite [23–25], this addition leads to a decrease in the thermal conductivity of the TS-MPC mortars as it is shown in Figure 1. Regarding thermal conductivity at 29°C in TS-MPC mortars, its value was lower than those at 20°C, due to liquids’ thermal conductivity is lower than solids.

![Figure 1. Thermal conductivity of TS-MPC mortars at 12°C, 20°C, and 29°C as a function of weight ratio of MPCM added. (a) 0% AEA, (b) 2% AEA, and (c) 5% AEA.](image)

As it can be observed in Figure 3a, an increase of the porosity produced by increasing the amount of admixtures has a positive effect on the thermal conductivity decrease of TS-MPC mortars because air into pores hinder the heat transfer. Through these tests a greater understanding of the relationship between the admixtures amount and the thermal inertia were obtained Figure 2 depicts the room temperature (RT) where was the plate and the internal temperature of shaped plate specimen during a complete heating-cooling cycle for each formulation. Regarding the thermal inertia of the TS-MPC mortars, the effect of MPCM and AEA can be analysed by observing the shape of the obtained curves. In the first case, the increase of MPCM quantity involves an increase of latent heat storage capability, which means a greater thermal inertia on the TS-MPC mortars. This phenomenon is specially observed when the mortar temperature is around 23°C (e.g. Figure 2c). At this temperature takes place the solid–liquid phase change of the paraffin contained in the microcapsules (MPCM) [26]. After approximately one hour of the heating
and cooling cycle, it can be observed that there is a substantial difference in temperature among mortars containing and not containing MPCM. On the other hand, the increase on the amount of MPCM and AEA leads to an increase in the porosity, which involves in turn a decrease of the thermal diffusivity. This behaviour suggests that the porosity counteracts the effect of increasing the thermal inertia produced by increasing the amount of MPCM.

![Figure 2](image)

Figure 2. Thermal cycling test of TS-MPC mortars as a function of weight ratio of MPCM added. (a) 0% AEA, (b) 2% AEA, and (c) 5% AEA.

3.2. Bulk density and porosity

The bulk density and porosity were determined to analyse the thermal and mechanical behaviour of the TS-MPC mortars because these properties are strongly linked. As illustrated in Figure 3, the effect of increasing the amount of admixtures added in the sust-MPC mortars leads to a variation on the values of these two above mentioned properties. First, the low MPCM density [27] compared to the MPC mortars contributes to the decrease of the material bulk density. On the other hand, increasing the amount of AEA causes an increase of porosity, as depicted in Figure 3a, which in turn helps to decrease the bulk density (Figure 3b). Furthermore, the trend observed in Figure 3a not only demonstrates that AEA satisfies its main objective of increase porosity but also validates that MPCM also contributes.

![Figure 3](image)

Figure 3. Porosity (a) and Bulk density (b) of TS-MPC mortars as a function of weight ratio of MPCM and AEA added.
3.3. Modulus of Elasticity, flexural and compressive strength

MOE of the mortars after 7, 21, and 28 days are shown in Figure 4. Results are related to porosity and bulk density of TS-MPC shown in Figure 3, respectively. An increase of the porosity leads to a decrease of bulk density, which involves less compactness of TS-MPC mortar and lower MOE. When compactness decreases, the ultrasound wave propagation through the material decreases as well as the stiffness [17]. Likewise, the results reveal that MOE increases when the curing time increases. This phenomenon is due to the crystallization, which takes place on the cement matrix of mortars [28,29]. The crystallization effect is more noticeable on formulations without AEA because their porosity is lower as well as a higher densification of the mortar is allowed. Finally, it is important to highlight the effect of MPCM addition, because a higher quantity leads to a lower MOE value. This behaviour is due to the lower MOE value of the microcapsules [22] compared with the K-struvite cementitious matrix.

![Figure 4. Modulus of elasticity at different days of curing of TS-MPC mortars as a function of weight ratio of MPCM and AEA added. (a) 7 days, (b) 21 days, and (c) 28 days.](image)

The flexural strength of TS-MPC mortars was measured after 28 days, and the results are illustrated in Figure 5a. As it was expected, the addition of admixtures leads to a decrease in the mechanical properties. This trend is because of the mortars porosity effect on the admixtures. The increase of porosity caused by the MPCM and the AEA involves a decrease in flexural strength. The flexural strength remains practically constant for mortars without AEA, because the microcapsules decrease the stiffness, as it was reported in the previous section, and reduce the negative effect of the porosity generated for the AEA addition (see Figure 3a).

The compressive strength of the TS-MPC mortars measured after 28 days is illustrated in Figure 5b. As for the flexural strength, the addition of admixtures decreases the compressive strength, although according to the results these values can be useful for certain building applications. The compressive mechanism promotes the closing of cavities and a reduction on the speed of cracks propagation [30,31]. Therefore, TS-MPC mortars as a porous material showed proper compressive strength values for the thermal passive system purposed.
4. Conclusions

In this paper, an experimental investigation of sus-IPC mortars containing MPCM and AEA are presented. Results corroborate that it is possible to formulate sus-IPC with magnesium by-product incorporating an AEA and MPCM as admixture improving thermal properties for the energy consumption reduction in HVAC systems. This implies the revalorization of the by-product and allows promoting aspects such as sustainability and reduction of CO₂ emissions due to the reduction of mining activity of pure MgO. Moreover, the study of bulk density and porosity allows determining the influence of the admixtures content in the TS-IPC mortars. An increase of the amounts of admixtures involves lower bulk density and higher porosity. In addition, the increase in content of MPCM and AEA reduces the thermal conductivity. Furthermore, the heat storage capacity of the TS-IPC mortars is significantly improved with the addition of MPCM. Besides, MOE evaluation of each formulation at different ages shows that the value is increased over time, due to the densification and crystallization of K-struvite cementitious matrix. The content variation of MPCM and AEA in the TS-IPC dosages has a negative effect on the mechanical properties, which shows a downward trend when admixtures amounts increase. This behaviour is attributed to an increase of porosity and a density decrease. Moreover, the TS-IPC thermal behaviour suggests the possibility to be used it as a part of a thermal passive conditioning system in order to reduce the consumption of HVAC systems. The future authors’ investigations will be focused on the study of stability of MPCM on sus-IPC matrix.

Acknowledgements

The authors would like to thank Magnesitas Navarras, S.A. for supporting and financing this research project. We also want to thank J. Norken, S.L. for supplying monopotassium phosphate. The work is partially funded by the Spanish government ENE2015-64117-C5-2-R. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement nºPIRSES-GA-2013-610692 (INNOSTORAGE). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups DIOPMA (2014 SGR 1543) and GICITED (2014 SGR 1298).

References
