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Abstract

There are several paths that lead to the Black-Scholes formula. This project dis-
cusses two of them.

Chapters 2 and 3 depart from the discrete Cox-Ross-Rubinstein model of prices
and reveal the Black-Scholes formula for European calls and puts.

Chapters 4 and 5 go one step further by considering since inception the continu-
ous modelling of prices, in which a new concept of integral must be defined in order
to formulate the Black-Scholes hypotheses from a stochastical point of view.

The project ends up debating the uses of derivatives and the appropriateness of
the Black-Scholes model in the real world. Moreover, the annex contains Numerical
Methods that implement the models covered in this project.
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1 Introduction

1.1 A scheme of what is included in this project and how
it is structured

My initial intention was to explain the mathematical results that conform the basis
of discrete and continuous derivatives valuation models. My goal was to establish an
analogy between the discrete theory rationale and the continuous theory rationale
so that one could be better understood thanks to the other, and viceversa.

Thus, in Chapters 2 and 3 not only the CRR model - the discrete modelling
of the evolution of the price of the underlying asset - is explained, but also the
computation of the prices of European calls and puts - the valuation of derivatives.

By contrast, the reader will notice that in Chapters 4 and 5 only the continu-
ous modelling of the evolution of the price of the underlying asset is discussed. I
considered that the rigorous definition of the stochastic integral was of paramount
importance in order to make a proper introduction of continuous modelling. Due to
the established limit of number of pages, I had to leave continuous valuation models
out of discussion. Because of the mentioned considerations, the stochastic integral
became the main topic of this project.

1.2 Derivatives: usefulness and benefits

A derivative is a financial instrument that derives its performance from the per-
formance of an underlying asset and that is created by means of a legal contract
between two parties: the buyer and the seller of the contract.

Derivatives resemble insurance in the sense that both allow for the transfer of
risk from the buyer to the seller of the contract, and/or viceversa. This transferred
risk from one party to the other is usually the value of the underlying asset of the
derivative, although it can also be some variable that is a function of the value of
the underlying asset. Common derivatives underlyings are equities, fixed-income se-
curities, currencies, and commodities, but may also be interest rates, credit, energy,
weather, and even other derivatives.

There are two general classes of derivatives:

1. Forward commitments

They force the two parties to transact in the future at a previously agreed-on
price. Forward contracts, futures contracts and swaps are the three types of forward
commitment.

2. Contingent claims

They provide the right but not the obligation to buy (call) or sell (put) the underly-
ing at a pre-determined price. The choice of buying or selling versus doing nothing
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depends on a particular random outcome. The primary contingent claim is called
an option.

Derivatives allow market participants to practice more effective risk management.

Definition 1.1. Risk management is the dynamic and ongoing process by which an
organisation or an individual defines the level of risk it wishes to take, measures the
level of risk it is taking and adjusts the latter to equal the former1

In the pre-derivatives era, it was compulsory to engage in transactions in the
underlyings if one wanted to set his actual level of risk to the desired level of
risk. The problem was that such transactions typically had high transaction costs.
Thanks to derivatives, one can trade the risk without trading the underlying itself.

Moreover, the advent of derivatives brought several benefits:

1. Information discovery

One of the characteristics of derivatives is their relatively high degree of leverage,
which translates into less capital required to take a position in the derivatives mar-
ket. Hence, information can flow into the derivatives market before it gets into the
spot market.

Moreover, the price of an option, as will be shown in subsequent sections of
this project, reflects two characteristics of the option (exercise price and time to
expiration), three characteristics of the underlying (price, volatility and cash flows
it might pay) and one general macroeconomic factor (risk-free rate). The only
factor among those mentioned which is not easy to identify is volatility. Using the
Black-Scholes model and some easily programmable non-linear solver, volatility that
market participants are indeed using in their trade executions can be inferred. This
volatility, called implied volatility, measures the expected risk of the underlying.

2. Operational Advantages

A derivatives market has lower transaction costs than the transaction costs of the
underlyings. In addition, a derivatives market typically has greater liquidity than
the underlying spot markets and short positions (simultaneous borrowing and sell-
ing) are easy to be taken.

3. Market efficiency

Competition, the relatively free flow of information and ease of trading tend to bring
prices back in line with fundamental values. When prices deviate from fundamental
values, derivative markets offer less costly ways to exploit the mispricing, which
makes the financial markets function more effectively.

1Quoted from [8].
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But how does a derivatives market work? How can the price of derivatives be
ascertained? This is the pricing issue. Furthermore, how does the selling party
cover itself from the potential losses that the contract entails? This is the hedging
issue.

Forwards and futures are in essence the same financial instrument; the difference
between the two only lies in how the contract is entered into by the parties: either
through a futures exchange or through an over-the-counter (OTC) market partici-
pant. Swaps can be thought of as strings of futures or forward contracts, meaning
that a swap can be decomposed into a series of forwards -if the swap contract is
entered into through an OTC market participant- or into a series of futures -if the
swap contract is entered into through a futures exchange-.

Likewise, a forward contract or a futures contract can be thought of as the
simultaneously buying of a call option and selling of a put option. Therefore, the
study of how futures, forwards and swaps can be priced and hedged is implicit in
the study of how call and put options can be priced and hedged and that, indeed,
is the focus of this project.
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2 The Cox-Ross-Rubinstein model

This chapter is based on [14], the notes of the subject Modelització taught in the
Mathematics degree of the University of Barcelona by Dr. Josep Vives i Santa-
Eulàlia.

2.1 Definition of the model

Assume a market model with only two assets:

1. A riskless asset that evolves in a deterministic manner S0.

2. A risky asset S, that evolves stochastically.

Assume time is discrete and finite, i.e. T := {1, 2, ..., N} , N ∈ N. Assume a
constant interest rate r ≥ 0 so that:

S0 =
{
S0
t = (1 + r)t, t ∈ T

}
, S0

0 := 1

Assume the price of the risky asset can only go up or down at each step in time
at a rate u ≥ 0 for up moves or at a rate d ≤ r2 for down moves so that:

St ∈ {(1 + d) · St−1, (1 + u) · St−1} ,∀t ∈ T, S0 ∈ R+

Defining the random variable Tt = St
St−1

, we can define the market model

(Ω,F ,F,P), where:

• Ω =
{

(1 + d)N , (1 + d)N−1 · (1 + u), ..., (1 + d) · (1 + u)N−1, (1 + u)N
}

.

• F = {Ft, t ∈ T} with Ft := σ {S0, T1, T2, ..., TN}.

• F = FN .

• P is a probability measure over Ω such that:

P (T1 = x1, T2 = x2, ..., TN = xN) > 0,∀ (x1, ..., xN) ∈ Ω.

2.2 Viability and completeness of the model

We will begin this chapter with some definitions and some well-known results.

Definition 2.1. A portfolio is a set of risky assets together with a riskless asset.

2d does not have to be negative in order to cause a down move. Any value of d under r provokes
a down move.
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Definition 2.2. An investment strategy is a series of random vectors

φn =
{

(φ0
n, φ

1
n, ..., φ

d
n) ∈ Rd+1, n ∈ T\{0}

}
where, for every i ∈ {0, 1, ..., d}, φin is Fn−1-measurable.

Definition 2.3. The value of a portfolio at the end of day n is

Vn(φ) = φn × Sn

where Sn =
(
S0
n, S

1
n, ..., S

d
n

)
and × refers to the dot product in Rd+1.

The discounted value of the portfolio is

Ṽn(φ) = φn ×
Sn

(1 + r)n
= φn × S̃n,

and we refer to S̃n as the discounted price of the asset.

Definition 2.4. An autofinanced strategy is an investment strategy such that

φn × Sn = φn+1 × Sn

Definition 2.5. We say that φ is an admissible investment strategy if

Vn(φ) > 0,∀n ∈ T.

Definition 2.6. We say that an autofinanced and admissible investment strategy
φ is an arbitrage opportunity if V0(φ) = 0 and VN(φ) > 0 with strictly positive
probability.

Definition 2.7. We say that a market is feasible if there exist no arbitrage oppor-
tunities in that market.

Definition 2.8. We say that a probability measure P∗ is equivalent to P if

P(A) = P∗(A),∀A ∈ F

We will refer to this relationship between P and P∗ as P ∼∗ P∗.

Theorem 2.9. The first fundamental theorem of asset pricing asserts that:

A finite market is feasible if and only if there exists a probability measure P∗ ∼∗ P
such that the discounted prices of the risky assets S̃i, i = 1, ..., d, are martingales.

Theorem 2.10. The second fundamental theorem of asset pricing asserts that:

A feasible market is complete if and only if there exists a unique risk-neutral
probability measure P∗.

A proof of the first and second fundamental theorems of asset pricing can be
found in [14].
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Proposition 2.11. The CRR model does not admit arbitrage opportunities if and
only if d < r < u.

Proof. We first prove that if the CRR model does not admit arbitrage opportunities
then d < r < u. We will demonstrate this result by assuming that d < r < u is
false and concluding that the CRR model does admit arbitrage opportunities.

¬ (d < r < u)⇒ (d > r) ∨ (r > u)

1. Case d > r

Assume we borrowed S0 and we bought the risky asset. Then, for every t ∈ T, the
value of our portfolio would be Vt := St−S0 · (1 + r)t. In the worst scenario, i.e. in
the case that the price of the risky asset fell at each t ∈ T, the value of our portfolio
would be S0 · (1 + d)t − S0 · (1 + r)t. By hypothesis, d > r ⇒ 1 + d > 1 + r ⇒
(1 + d)t > (1 + r)t ⇒ S0 · (1 + d)t − S0 · (1 + r)t =: Vt > 0. In particular, VN > 0,
so there exist arbitrage opportunities in the CRR model.

2. Case r > u

Assume we short sold the risky asset, i.e. we borrowed the risky asset and sold it.
Because in the market model only exist two assets, the risky asset and the riskless
asset, we would invest the proceeds of this short selling in the riskless asset. The
value of our portfolio at each t ∈ T would in this case be Vt := S0 · (1 + r)t−St. In
the worst scenario, the price of the risky asset would go up at each step t ∈ T and we
would have to buy it in order to honor our borrowing contract by returning the risky
asset to the counterpart from whom we borrowed the risky asset. In this scenario,
the value of our portfolio would be S0 · (1 + r)t − S0 · (1 + u)t. By hypothesis,
r > u⇒ 1+r > 1+u⇒ (1 + r)t > (1 + u)t ⇒ S0 · (1 + r)t−S0 · (1 + u)t =: Vt > 0.
In particular, VN > 0, so there exist arbitrage opportunities in the CRR model.

We now turn to prove that if d < r < u then arbitrage opportunities do not exist in
the CRR model. By hypothesis, r ∈ (d, u). Let us define the following application:

P∗ : {1 + d, 1 + u} → [0, 1]

1 + u 7→ P∗ (Tt = 1 + u) =: p∗ =
r − d
u− d

1 + d 7→ P∗ (Tt = 1 + d) =: 1− p∗ =
u− r
u− d

Let T1, T2, ..., TN be iid random variables, i.e. independent and identically dis-
tributed random variables, with Bernouilli law, with parameter p∗, over {1+d, 1+u}.

T1, T2, ..., TN ⇒ E∗[Tt|Ft−1] = E∗[Tt] := (1 + d) · P∗ (Tt = 1 + d)

+ (1 + u) · P∗ (Tt = 1 + u) = (1 + d) · r − d
u− d

+ (1 + u) · u− r
u− d

= 1 + r, ∀t ∈ T
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⇒ 1+r = E∗[Tt|Ft−1], ∀t ∈ T⇒ 1 = E∗
[
Tt ·

1

1 + r
|Ft−1

]
= E∗

[
St
St−1

· 1

1 + r
|Ft−1

]

= E∗

[
St
St−1

· (1 + r)t−1

(1 + r)t
|Ft−1

]
= E∗

[
St

(1+r)t

St−1

(1+r)t−1

|Ft−1

]
= E∗

[
S̃t

S̃t−1

|Ft−1

]
,

∀t ∈ T⇒ E∗
[
S̃t|Ft−1

]
= S̃t−1, ∀t ∈ T

⇒ S̃ is a P∗-martingale

Hence, P∗ satisfies the hypotheses of the first fundamental theorem of asset pricing.
Therefore, the CRR model does not admit arbitrage opportunities.

�

In the CRR model, viability implies completeness. We demonstrate this result
in the following proposition.

Proposition 2.12. If d < r < u and S̃ is a P-martingale, then P = P∗, P∗ denoting
the risk-neutral probability.

Proof. By hypothesis, S̃ is a P-martingale. This implies by definition that

E
[
S̃t|Ft−1

]
= S̃t−1 ∀t ∈ T⇒ E[Tt|Ft−1] = 1 + r ∀t ∈ T, as we have already shown

in the proof of Proposition 2.11.

On the one hand,

E [Tt|Ft−1] = (1 + d) · P (Tt = 1 + d|Ft−1) + (1 + u) · P (Tt = 1 + u|Ft−1)

by definition of E [ · |Ft−1]. We already have ascertained that E [Tt|Ft−1] = 1 + r.

On the other hand, P (Tt = 1 + d|Ft−1)+P (Tt = 1 + u|Ft−1) = 1 because P( · |Ft−1)
is a probability measure over {1+d, 1+u}. Therefore, we can consider the following
system of equations:{

(1 + d) · P (Tt = 1 + d|Ft−1) + (1 + u) · P (Tt = 1 + u|Ft−1) = 1 + r

P (Tt = 1 + d|Ft−1) + P (Tt = 1 + u|Ft−1) = 1

The solution of that system of equations is P∗ (Tt = 1 + u|Ft−1) =: p∗ = r−d
u−d and

P∗ (Tt = 1 + d|Ft−1) =: 1 − p∗ = u−r
u−d independently of t ∈ T, i.e. ∀t ∈ T. In order

to prove the desired result of this Proposition, the only remaining fact that needs
to be demonstrated is the independence of Ti and Tj, j 6= i, ∀i, j ∈ T.

Let us remind the definition of conditional expectation: Given a set A ∈ F such
that P(A) > 0 and a random variable X, E [X|A] := E[X·1A]

P(A)
. From this definition

stems the following result: because E [X|A] ∈ R,

E [X|A] · P(A) = E [E [X|A] · 1A] = E [X · 1A] ,
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which we use fixing X = 1{Tt=1+u} and X = 1{Tt=1+d}.{
E
[
E
[
1{Tt=1+d}|A

]
· 1A

]
= E

[
1{Tt=1+d} · 1A

]
,∀A ∈ F

E
[
E
[
1{Tt=1+u}|A

]
· 1A

]
= E

[
1{Tt=1+u} · 1A

]
,∀A ∈ F

Particularly, this result holds for F = Ft−1:{
E
[
E
[
1{Tt=1+d}|Ft−1

]
· 1A

]
= E

[
1{Tt=1+d} · 1A

]
,∀A ∈ Ft−1

E
[
E
[
1{Tt=1+u}|Ft−1

]
· 1A

]
= E

[
1{Tt=1+u} · 1A

]
,∀A ∈ Ft−1

Moreover, we have already proved that

E
[
1{Tt=1+u}|Ft−1

]
= P∗ (Tt = 1 + u|Ft−1) =: p∗ and

E
[
1{Tt=1+d}|Ft−1

]
= P∗ (Tt = 1 + d|Ft−1) =: 1− p∗,

so: {
E [(1− p∗) · 1A] = (1− p∗) · E [1A] = E

[
1{Tt=1+d} · 1A

]
,∀A ∈ Ft−1

E [p∗ · 1A] = p∗ · E [1A] = E
[
1{Tt=1+u} · 1A

]
,∀A ∈ Ft−1

⇒

{
(1− p∗) · P(A) = P({Tt = 1 + d} ∩ A), ∀A ∈ Ft−1

p∗ · P(A) = P({Tt = 1 + u} ∩ A),∀A ∈ Ft−1

We now proceed to prove by induction the independence of Ti and Tj, j 6= i,
∀i, j ∈ T:

1. Case N = 2

On one hand, if {T2 = 1 + u} and A ∈ {{T1 = 1 + u}, {T1 = 1 + u}}, then:

P({T2 = 1 + u} ∩ A) = p∗ · P(A) =

{
(p∗)2, if A={T1 = 1 + u}
p∗ · (1− p∗), if A = {T1 = 1 + d}

Hence, T1 and T2 are independent.

On the other hand, if {T2 = 1 + d} and A ∈ {{T1 = 1 + u}, {T1 = 1 + u}}, then:

P({T2 = 1 + d} ∩ A) = (1− p∗) · P(A) =

{
(1− p∗)2, if A={T1 = 1 + d}
p∗ · (1− p∗), if A={T1 = 1 + u}

Hence, T1 and T2 are independent.

2. We assume that Ti and Tj are independent , j 6= i,∀i, j 6 N−1. We will show
that, under this hypothesis, Ti and Tj are independent , j 6= i, ∀i, j 6 N .
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Observe that if Ti and Tj are independent , j 6= i, ∀i, j 6 N − 1 and

A =
N−1⋂
k=1

{Tk} ∈ FN−1

then

P(A) =
N−1∏
k=1

P({Tk}|Fk−1),

where

P({Tk}|Fk−1) =

{
p∗, if {Tk} = {Tk = 1 + u}
1− p∗, if {Tk} = {Tk = 1 + d}

On one hand, if {TN = 1 + d} and A ∈ FN−1, then:

P({TN = 1 + d} ∩ A) = (1− p∗) · P(A) = (1− p∗) ·
N−1∏
k=1

P({Tk}|Fk−1)

Hence, T1, T2, ..., TN are independent.

On the other hand, if {TN = 1 + d} and A ∈ FN−1, then:

P({TN = 1 + u} ∩ A) = (p∗) · P(A) = (p∗) ·
N−1∏
k=1

P({Tk}|Fk−1)

Hence, T1, T2, ..., TN are independent.

⇒ P = P∗, P∗ being the risk-neutral probability. �

2.3 Valuation of European options according to the model

We have so far proved that it makes sense to consider financial derivatives in the
CRR along with its hedging strategy as long as d < r < u. We now turn to give
a closed formula for the price of a European call and a European put in the CRR
model.

At any time t ∈ T, the value of a European call with expiry date N and strike
price K, which we will denote C(t, St), is its payoff profile G = (SN −K)+ at the
value of money at date t, i.e.:

C(t, St) =
S0
t

S0
N

· E∗
[
(SN −K)+|Ft

]
.

Hence:

C(t, St) =
S0

0 · (1 + r)t

S0
0 · (1 + r)N

· E∗
[
(SN −K)+|Ft

]
=

1

(1 + r)N−t

9



·E∗
(St · N∏

i=t+1

Ti −K

)+

|Ft

 =
1

(1 + r)N−t
·
N−t∑
j=0

(
St · (1 + d)N−t−j · (1 + u)j −K

)+

·
(
N − t
j

)
·
(
u− r
u− d

)N−t−j
·
(
r − d
u− d

)j
Define j∗(St) as the minimum of up moves that makes the payoff profile be positive
at date N having fixed St. Then:

C(t, St) =
1

(1 + r)N−t−j
· 1

(1 + r)j
·

N−t∑
j=j∗(St)

St · (1 + d)N−t−j · (1 + u)j ·
(
N − t
j

)

·
(
u− r
u− d

)N−t−j
·
(
r − d
u− d

)j
− 1

(1 + r)N−t
·

N−t∑
j=j∗(St)

K ·
(
N − t
j

)
·
(
u− r
u− d

)N−t−j

·
(
r − d
u− d

)j
= St ·

N−t∑
j=j∗(St)

(1 + d)N−t−j

(1 + r)N−t−j
· (1 + u)j

(1 + r)j
·
(
N − t
j

)
·
(
u− r
u− d

)N−t−j

·
(
r − d
u− d

)j
− K

(1 + r)N−t
·

N−t∑
j=j∗(St)

(
N − t
j

)
·
(
u− r
u− d

)N−t−j
·
(
r − d
u− d

)j
Observe that if

p̄ =
(1 + u) · (r − d)

(1 + r) · (u− d)
,

then:

C(t, St) = St · P (Bin (N − t, p̄) > j∗ (St))−
K · P (Bin (N − t, p∗) > j∗ (St))

(1 + r)N−t

Once this closed formula has been proved for the price at every t ∈ T of a European
Call, it is easy to derive a similar closed formula for the price of a European Put at
every t ∈ T by making use of the Call-Put Parity:{

Call-Put Parity: C(t, St)− P (t, St) = St − K

(1+r)N−t

C(t, St) = St · P (Bin (N − t, p̄) > j∗ (St))− K

(1+r)N−t
· P (Bin (N − t, p∗) > j∗ (St))

⇒ P (t, St) =
K · P (Bin (N − t, p∗) 6 j∗ (St)− 1)

(1 + r)N−t

−St · P (Bin (N − t, p̄) 6 j∗ (St)− 1)
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2.4 Building hedging portfolios for the selling of European
options according to the model

Finally, we give a recursive function that can be implemented as a numerical method
in a program with the objective of finding the hedge strategy at each step t ∈ T.

Definition 2.13. An investment strategy is a series of random vectors φt :=
{(φ0

t , φ
1
t ) ∈ R2, t ∈ T} such that φit is Ft−1-measurable for every i = 1, 2.

φ0
t denotes the quantity of riskless asset in our portfolio at step t, whereas φ1

t denotes
the quantity of risky asset in our portfolio at step t.

Forcing the hedging portfolio to have the same value as the European call at
each step t ∈ T:

φ0
t · (1 + r)t + φ1

t · St = C(t, St),

we can find φ0
t and φ1

t by solving the following system:{
φ0
t · (1 + r)t + φ1

t · (1 + d) · St−1 = C(t, (1 + d) · St−1)

φ0
t · (1 + r)t + φ1

t · (1 + u) · St−1 = C(t, (1 + u) · St−1)

⇒ φ1
t =

C(t, (1 + u) · St−1)− C(t, (1 + d) · St−1)

(u− d) · St−1

Due to the Autofinancing property of φt:

Vt−1(φ) = φ0
t · (1 + r)t−1 + φ1

t · St−1 ⇒ φ0
t =

Vt−1(φ)− φ1
t · St−1

(1 + r)t−1

A program written in C++ that prices and builds the hedging strategy of dif-
ferent European derivatives can be found in 8.1.1.
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3 From the Cox-Ross-Rubinstein model to the

Black-Scholes formula

3.1 Adapting a time-continuous price process to the Cox-
Ross-Rubinstein model

Let S = {St, t ∈ [0, T ]} be the price process in continuous time of the risky asset.
Let r > 0 be the fixed interest rate. Fix N ∈ N as well.

We discretise the continuous time interval [0, T ] in N + 1 time-points ti := i·T
N

,
for i = 0, 1, ..., N . Accordingly, the continuous price process S is also discretised
defining Si = S(ti) for i = 0, 1, ..., N .

We assume that at every time step of length T
N

, only two changes are possible for
a certain price: either increase or decrease in the same relative amount regulated
by a fixed parameter σ. I.e:

1 + dN =
1 + r · T

N

e
σ√
N

,

1 + uN =

(
1 + r · T

N

)
· e

σ√
N

Therefore, we have got S = {Si = S(ti), 0 6 i 6 N} modelled with a CRR
satisfying:

dN =
1 + r T

N

e
σ√
N

− 1 6 r
T

N
=: rN <

(
1 + r

T

N

)
· e

σ√
N − 1 =: uN

Consider de independent and identically distributed random variables TN0 , T
N
1 ,

..., TNN with Bernouilli law on{
1 + r · T

N

e
σ√
N

,

(
1 + r · T

N

)
· e

σ√
N

}

and with parameter

pN := P
({
TNi = 1 + uN

})
=
rN − dN
uN − dN

=
1− 1

e
σ√
N

e
σ√
N − 1

e
σ√
N

,∀i ∈ {0, 1, ..., N}

TNi ∈

{
1 + r · T

N

e
σ√
N

,

(
1 + r · T

N

)
· e

σ√
N

}
,∀i ∈ {0, 1, ..., N} ⇒ TNi

1 + r T
N

∈
{

1

e
σ√
N

, e
σ√
N

}

⇒ log

(
TNi

1 + r T
N

)
∈
{
− σ√

N
,
σ√
N

}
⇒ XN

i := log

(
TNi

1 + r T
N

)
∈
{
− σ√

N
,
σ√
N

}
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Hence, XN
0 , X

N
1 , ..., X

N
N is a series of independent and identically distributed random

variables with Bernouilli law on
{
− σ√

N
, σ√

N

}
with parameter

pN :=
1− 1

e
σ√
N

e
σ√
N − 1

e
σ√
N

Observe that:

Sn = S0 ·
n∏
i=0

TNi ⇒
Sn(

1 + r T
N

)n = S0 ·
∏n

i=0 T
N
i(

1 + r T
N

)n = S0 ·
n∏
i=0

TNi(
1 + r T

N

)
⇒ log

(
Sn(

1 + r T
N

)n
)

= log

(
S0 ·

n∏
i=0

TNi(
1 + r T

N

))⇒ log(Sn)− log

(
1 + r

T

N

)n

= log(S0)+
n∑
i=0

log

(
TNi(

1 + r T
N

))⇒ log(Sn) = log(S0)+
n∑
i=0

XN
i +n · log

(
1 + r

T

N

)
,

∀n ∈ {0, 1, ..., N}. Particularly, it holds for n = N , therefore:

log(SN) = log(S0) +
N∑
i=0

XN
i +N · log

(
1 + r

T

N

)
,

Our intention is to discover the law of log(SN) when N →∞. Because
∑N

i=0 X
N
i is

the only random variable in the above equation, we begin ascertaining the behaviour
of its expectation and variance when N →∞.

3.2 Law of logSN when N →∞

Lemma 3.1. E(XN
j ) = σ√

N
· (2pN − 1), and V ar

[
XN
j

]
= σ2

N
· 4 · pN · (1− pN),

∀j ∈ {0, 1, ..., N}

Proof. For every j ∈ {0, 1, ..., N},

E(XN
j ) =

σ√
N
· pN +

−σ√
N
· (1− pN) =

σ√
N
· (2pN − 1)

For every j ∈ {0, 1, ..., N},

V ar
[
XN
j

]
= E

[(
XN
j − E(XN

j )
)2
]

= E
[(
XN
j

)2 − 2 ·XN
j · E(XN

j ) +
(
E(XN

j )
)2
]

= E

[(
XN
j

)2 − 2 ·XN
j ·

σ√
N
· (2pN − 1) +

(
σ√
N
· (2pN − 1)

)2
]

13



= E
[(
XN
j

)2
]
− 2 · σ√

N
· (2pN − 1) · E

[
XN
j

]
+

(
σ√
N
· (2pN − 1)

)2

=

(
σ√
N

)2

·pN +

(
−σ√
N

)2

·(1− pN)−2 ·
(

σ√
N
· (2pN − 1)

)2

+

(
σ√
N
· (2pN − 1)

)2

=
σ2

N
· pN −

σ2

N
· pN +

σ2

N
− σ2

N
· (2pN − 1)2 =

σ2

N
·
[
1− (2pN − 1)2]

=
σ2

N
·
[
1− (4pN

2 − 4pN + 1)
]

=
σ2

N
· 4 · pN · (1− pN)

Therefore:

E(XN
j ) =

σ√
N
· (2pN − 1), and V ar

[
XN
j

]
=
σ2

N
· 4 · pN · (1− pN)

�

Lemma 3.2.

E

[
N∑
i=0

XN
i

]
= σ ·

√
N · (2pN − 1)

and

V ar

(
N∑
j=0

XN
j

)
= σ2 · 4 · pN · (1− pN)

Proof. Because of the linearity of the expectation,

E

[
N∑
i=0

XN
i

]
=

N∑
i=0

E(XN
j ) = N · E(XN

j )

Similarly,

V ar

[
N∑
i=0

XN
i

]
=

N∑
i=0

V ar(XN
j ) = N · V ar(XN

j ),

because XN
0 , X

N
1 , ..., X

N
N , are independent. �

Lemma 3.3. pN −−−→
N→∞

1
2

Proof. By definition,

pN =
1− 1

e
σ√
N

e
σ√
N − 1

e
σ√
N

Due to the fact that both e
σ√
N , e

−σ√
N −−−→

N→∞
e0, we are interested in studying the

Taylor expansion of pN(x) := 1−e−x
ex−e−x around x = 0.
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The Taylor expansions of ex, e−x, 1 − e−x and ex − e−x around x = 0 are, re-
spectively,

1 + x+
x2

2
+O(x3),

1− x+
x2

2
+O(x3),

x− x2

2
+O(x3) and

2x+O(x3)

Therefore:

pN(x) :=
1− e−x

ex − e−x
=
x− x2

2
+O(x3)

2x+O(x3)

pN = pN

(
σ√
N

)
=

σ√
N
−
(

σ√
N

)2
2

+O

((
σ√
N

)3
)

2 σ√
N

+O

((
σ√
N

)3
) =

σ√
N
− 1

2
σ2

N
+O

(
1

N
√
N

)
2 σ√

N
+O

(
1

N
√
N

)

=

1√
N
1√
N

·
σ − 1

2
σ2
√
N

+O
(

1
N

)
2σ +O

(
1
N

) =
σ − 1

2
σ2
√
N

+O
(

1
N

)
2σ +O

(
1
N

) −−−→
N→∞

1

2

�

Proposition 3.4.

lim
N→∞

V ar

(
N∑
j=0

XN
j

)
= σ2

Proof. As we have already proved in Lemma 3.1, V ar
(∑N

j=0X
N
j

)
= σ2 · 4 · pN ·

(1− pN). Applying Lemma 3.3:

V ar

(
N∑
j=0

XN
j

)
= σ2 · 4 · pN · (1− pN) −−−→

N→∞
σ2 · 4 · 1

2
·
(

1− 1

2

)
= σ2

�

Proposition 3.5.

lim
N→∞

E

(
N∑
j=0

XN
j

)
=
−σ2

2

Proof. We have already proved in Lemma 3.2 that

E

[
N∑
i=0

XN
i

]
= σ ·

√
N · (2pN − 1)
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By definition of pN ,

E

[
N∑
i=0

XN
i

]
= σ ·

√
N · (2pN − 1) = σ ·

√
N ·

(
2 · pN

(
σ√
N

)
− 1

)

= σ ·
√
N ·

(
2 · pN

(
σ√
N

)
− 1

)
= σ ·

√
N ·

(
2 ·

σ − 1
2
σ2
√
N

+O
(

1
N

)
2σ +O

(
1
N

) − 1

)

= σ ·
√
N ·

(
2σ − σ2

√
N
− 2σ +O

(
1
N

)
2σ +O

(
1
N

) )
= σ ·

√
N ·

−σ2
√
N

+O
(

1
N

)
2σ +O

(
1
N

)
=

√
N ·

(
−σ2
√
N

+O
(

1
N

))
2σ+O( 1

N )
σ

=
−σ2 +O

(
1

N
√
N

)
2 +O

(
1
N

) −−−→
N→∞

−σ2

2

�

Corollary 3.6.

log(SN)
L−→ N

(
logS0 + rT − σ2

2
, σ2

)
Proof. Because Propositions 3.4 and 3.5 we can state that

lim
N→∞

E

(
N∑
j=0

XN
j

)
=
−σ2

2

and

lim
N→∞

V ar

(
N∑
j=0

XN
j

)
= σ2

The Central Limit Theorem ensures that(
N∑
j=0

XN
j

)
L−→ N

(
−σ2

2
, σ2

)
Therefore,

log(SN) = log(S0) +
N∑
i=0

Xi +N · log

(
1 + r

T

N

)
L−→ N

(
logS0 + rT − σ2

2
, σ2

)
�
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3.3 The Black-Scholes formula

Consider the price P
(N)
0 of a put option with expiry date T and strike price K:

P
(N)
0 = E

[(
K(

1 + r T
N

)N − S0e
∑N
j=0X

N
j

)+]

Let us define YN :=
∑N

j=0X
N
j for a better reading. Recall that in the previous

section we proved that YN → Y ∼ N
(
−σ2

2
, σ2
)

Definition 3.7.

ϕ : R→ R

y 7→ ϕ (y) :=

(
K

erT
− S0e

y

)+

Observation: ϕ is continuous and ϕ(y) 6 K
erT
∀y ∈ R

Lemma 3.8.
lim
N→∞

P
(N)
0 = lim

N→∞
E [ϕ (YN)]

Proof.
P

(N)
0 = E [ϕ (YN)] + P

(N)
0 − E [ϕ (YN)]

Notice that:∣∣∣P (N)
0 − E [ϕ (YN)]

∣∣∣ =

∣∣∣∣∣E
[(

K(
1 + r T

N

)N − S0e
YN

)+]
− E [ϕ (YN)]

∣∣∣∣∣
=

∣∣∣∣∣E
[(

K(
1 + r T

N

)N − S0e
YN

)+]
− E

[(
K

erT
− S0e

YN

)+
]∣∣∣∣∣

=

∣∣∣∣∣E
[(

K(
1 + r T

N

)N − S0e
YN

)+

−
(
K

erT
− S0e

YN

)+
]∣∣∣∣∣ 6

∣∣∣∣∣E
[

K

1 + r T
N

N
− K

erT

]∣∣∣∣∣
= K ·

∣∣∣∣∣E
[

1

1 + r T
N

N
− 1

erT

]∣∣∣∣∣ −−−→N→∞
K ·

∣∣∣∣E [ 1

erT
− 1

erT

]∣∣∣∣ = 0

⇒
∣∣∣P (N)

0 − E [ϕ (YN)]
∣∣∣ −−−→
N→∞

0⇒ lim
N→∞

P
(N)
0 = lim

N→∞
E [ϕ (YN)]

�

Proposition 3.9.
E [ϕ (YN)] −−−→

N→∞
E [ϕ (Y )]
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Proof. Because limN→∞ P
(N)
0 = limN→∞E [ϕ (YN)], ϕ is bounded, ϕ is continuous

and YN → Y ∼ N
(
−σ2

2
, σ2
)

, under the hypotheses of Portmanteau Theorem we

have that
E [ϕ (YN)] −−−→

N→∞
E [ϕ (Y )]

A proof of Portmanteau Theorem can be found in [2]. �

Corollary 3.10. The Black-Scholes formula for a European put with expiry date
T and strike price K is:

P0 := lim
N→∞

P
(N)
0 =

K

erT
· Φ (d+)− S0 · Φ (d−)

where Φ denotes the cumulative distribution function of a standard normal distri-
bution, and d+ and d− are:

d+ :=
1

σ
· log

(
K

S0

)
− rT

σ
+
σ

2

d− := d+ − σ

Proof. Thanks to Proposition 3.9, we know that

P0 := lim
N→∞

P
(N)
0 = lim

N→∞
E [ϕ (YN)] = E [ϕ (Y )]

We focus on the computation of E [ϕ (Y )]:

E [ϕ (Y )] =

∫ ∞
−∞

ϕ(y) · fY (y)dy =

∫ ∞
−∞

(
K

erT
− S0e

y

)+

· 1√
2πσ2

· e
−
(
y−

(
−σ2
2

))2

2σ2 dy

=

∫ ∞
−∞

(
K

erT
− S0e

y

)+

· 1√
2πσ2

· e
−
(
y+σ

2

2

)2

2σ2 dy

Standardising variable Y , we come up with the change of variables u =
y+σ2

2

σ(
⇒ y = σu− σ2

2

)
and dy = σdu. Notice that −∞ < y < ∞ ⇒ −∞ < u < ∞.

Therefore:

E [ϕ (Y )] =

∫ ∞
−∞

(
K

erT
− S0e

σu−σ
2

2

)+

· 1√
2πσ2

· e
−
(
σu−σ

2

2 +σ
2

2

)2

2σ2 σdu

=

∫ ∞
−∞

(
K

erT
− S0e

σu−σ
2

2

)+

· 1√
2π
· e
−(σu)2

2σ2 du

=

∫ ∞
−∞

(
K

erT
− S0e

σu−σ
2

2

)+

· 1√
2π
· e
−u2
2 du
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In order to remove the ( · )+ function from the integral, we discuss for which u ∈ R
the inequality (

K

erT
− S0e

σu−σ
2

2

)+

> 0

is satisfied:(
K

erT
− S0e

σu−σ
2

2

)+

> 0 ⇐⇒ K

erT
> S0e

σu−σ
2

2 ⇐⇒ K

S0erT
> eσu−

σ2

2

⇐⇒ log

(
K

S0erT

)
> log

(
eσu−

σ2

2

)
⇐⇒ log

(
K

S0

)
− log

(
erT
)
> σu− σ2

2

⇐⇒
log
(
K
S0

)
− log

(
erT
)

+ σ2

2

σ
> u ⇐⇒ 1

σ
log

(
K

S0

)
− rT

σ
+
σ

2
> u

Hence:

E [ϕ (Y )] =

∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞

(
K

erT
− S0e

σu−σ
2

2

)
· 1√

2π
· e
−u2
2 du

=

∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞

K

erT
· 1√

2π
· e
−u2
2 du−

∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞
S0e

σu−σ
2

2 · 1√
2π
· e
−u2
2 du

=
K

erT
·
∫ 1

σ
log
(
K
S0

)
− rT

σ
+σ

2

−∞

1√
2π
· e
−u2
2 du−

∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞
S0e

σu−σ
2

2 · 1√
2π
· e
−u2
2 du

Observe that the left hand side integral satisfies∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞

1√
2π
· e
−u2
2 du =

∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞
φ(u)du,

φ being the distribution function of a standardised normal distribution. Therefore,∫ 1
σ

log
(
K
S0

)
− rT

σ
+σ

2

−∞
φ(u)du = Φ(d+),

Φ being the density function of a standardised normal distribution and d+ :=
1
σ
· log

(
K
S0

)
− rT

σ
+ σ

2
.

On the other hand, in order to solve the right hand integral, we must realize that

eσu−
σ2

2 · e
−u2
2 = e−

u2

2
+uσ−σ

2

2 = e
−(u−σ)2

2

Standardising variable u using the change of variables u = v+ σ, dv = du forces us
to adapt the upper limit of integration because

−∞ < u <
1

σ
log

(
K

S0

)
− rT

σ
+
σ

2
⇒ −∞ < v <

1

σ
log

(
K

S0

)
− rT

σ
+
σ

2
− σ
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=
1

σ
log

(
K

S0

)
− rT

σ
− σ

2
=: d−

Hence:

E [ϕ (Y )] =
K

erT
Φ(d+)−

∫ 1
σ

log
(
K
S0

)
− rT

σ
−σ

2

−∞

1√
2π
· e
−v2
2 dv =

K

erT
Φ(d+)− S0Φ(d−)

⇒ P0 := lim
N→∞

P
(N)
0 =

K

erT
· Φ (d+)− S0 · Φ (d−)

�

Corollary 3.11. The Black-Scholes formula for the price of a European call with
expiry date T and strike price K is

C0 = S0 · Φ (−d−)− K

erT
· Φ (−d+)

Proof. Because the Black-Scholes formula for a European put has to be consistent
with Call-Put Parity, we know that:

C0 = P0 + S0 −
K

erT
=

K

erT
· Φ (d+)− S0 · Φ (d−) + S0 −

K

erT

⇒ C0 =
K

erT
· (Φ(d+)− 1)− S0 · (Φ(d−)− 1) = S0 · (1− Φ(d−))− K

erT
· (1− Φ(d+))

Finally, thanks to the 1 − Φ(x) = Φ(−x), ∀x ∈ R, property of the cumulative
distribution function of a standardised normal distribution, we have:

C0 = S0 · Φ (−d−)− K

erT
· Φ (−d+).

�

A program written in C++ that uses the Black-Scholes formula to compute the
implied volatility σ of the market can be found in 8.1.2.
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4 Stochastic calculus

4.1 The Wiener process and the Brownian motion process

Let (Ω,F ,Ft>0,P) be a filtered probability space, i.e.:

• Let t ∈ [0,∞).

• Let Ω be the set of all possible continuous paths of the evolution of prices of
a particular risky asset.

• F = {Ft, t ∈ [0,∞],Ft σ-algebra of Ω and F = F∞}.

• Let P be a probability measure over Ω.

The motivation of considering continuous-time models comes from the fact that, in
practice, the price changes in the market are so frequent that a discrete-time model
can barely follow the moves. On the other hand, the most widely used model is the
continuous-time Black-Scholes model, which leads to more explicit computations
than the discrete-time models.

We shall begin defining the Brownian motion process since it is the core concept of
the Black-Scholes model and appears in most financial asset models.

Definition 4.1. A Brownian motion process is a real-valued, continuous stochastic
process (Wt)t>0, with independent and stationary increments. In other words:

W : [0,∞)× Ω→ R
(t, ω) 7→ W (t, ω)

is a Brownian motion process if it satisfies:

• it is continuous: P a.s. the map s 7→ W (s, ω) is continuous.

• it has independent increments: if s 6 t, W (t, ω)−W (s, ω) is independent of
Fs = σ (W (u, ω), u 6 s).

• it has stationary increments: if s 6 t, then W (t, ω)−W (s, ω) and
W (t− s, ω)−W (0, ω) have the same probability law.

The previous definition contains properties of the behaviour of the evolution of
prices in the markets that a trader can observe in his screen at work. This definition
induces the distribution of the process W (t, ω), but the result is difficult to prove
and the reader ought to consult the book by Gikhman and Skorokhod (1969) for a
proof of the following theorem.

Theorem 4.2. If W is a Brownian motion process, then W (t, ω) −W (0, ω) is a
normal random variable with mean rt and variance σ2t, where r and σ are constant
real numbers.
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This theorem establishes the grounds of another definition of the Brownian mo-
tion process, more friendly to handle in the technical details of the upcoming sec-
tions.

Definition 4.3.

W : [0,∞)× Ω→ R
(t, ω) 7→ W (t, ω)

is a Brownian motion process relative to F if and only if for every ω ∈ Ω:

• W (0, ω)
a.s.
= 0 and W (t, ω) is Ft-measurable.

• W (t, ω)−W (s, ω) is independent of Fs, s 6 t ∀s, t ∈ [0,∞).

• W (t, ω)−W (s, ω) ∼ N(0, t− s), ∀s, t ∈ [0,∞).

Moreover, the following definition of Wiener process is closely related to Defini-
tion 4.3..

Definition 4.4.

W : [0,∞)× Ω→ R
(t, ω) 7→ W (t, ω)

is a Wiener process relative to F if and only if for every ω ∈ Ω:

• W (0, ω)
a.s.
= 0 and W (t, ω) is Ft-measurable.

• E [W (t, ω)|Fs] = W (s, ω) ∀s < t, s, t ∈ [0,∞). I.e., W is a martingale with
respect to P.

• E
[
(W (t, ω))2] <∞ ∀t ∈ [0,∞).

• E
[
(W (t, ω)−W (s, ω))2] = t− s, ∀s 6 t, s, t ∈ [0,∞).

• For every fixed ω ∈ Ω, t 7→ W (t, ω) is continuous.

In fact, the following theorem states that we can use Definition 4.3. and Defini-
tion 4.4. interchangeably:

Theorem 4.5. W is a Wiener process relative to (Ft)t, t ∈ [0,∞) if and only if W
is a Brownian motion process relative to (Ft)t, t ∈ [0,∞).

Proof. The details of this proof can be found in a series of theorems, propositions
and remarks in [12]. �
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4.2 Properties of the Wiener process

In order to reach a better understanding of the concept of Wiener process, we will
show some of its properties. New concepts have to be introduced so that the Wiener
process’ properties can be better explained:

Definition 4.6. For any [a, b] ⊂ [0,∞), (πn)n is a series of partitions of [a, b] such
that, for every n ∈ N, πn = {t0, t1, ..., tn} satisfies a = t0 < t1 < ... < tn = b and

Π := max
j=0, ..., n−1

{tj+1 − tj} −−−→
n→∞

0.

In some parts of this chapter we will require every πn to be an equi-spaced partition,
i.e., if πn = {t0, t1, ..., tn} then tj+1 − tj = b−a

n
∀j ∈ {0, 1, ..., n − 1}. If such

assumption is needed, we will explicitly mention that πn are equi-spaced.

Definition 4.7. Consider, for any t ∈ [0,∞), a series of partitions (πn)n of the
interval [0, t] and

V[0,t]

[
(W (tk, ω))k6n

]
:=

n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)|

If the limit limπ→0

(
V[0,t]

[
(W (tk, ω))k6n

])
exists, we define it as the V ariation of

process W along the interval [0, t] and we call it V ariationt(W ):

V ariationt(W ) := lim
Π→0

(
V[0,t]

[
(W (tk, ω))k6n

])
Notice that V ariationt(W ), if it exists, is a stochastic process too. We will show

that a Wiener process has infinite variation.

Definition 4.8. Consider, for any t ∈ [0,∞), a series of partitions (πn)n of the
interval [0, t] and

V 2
[0,t]

[
(W (tk, ω))k6n

]
:=

n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2

If the limit limπ→0

(
V 2

[0,t]

[
(W (tk, ω))k6n

])
exists, we define it as the Quadratic

V ariation of process W along the interval [0, t] and we call it [W,W ]t:

[W,W ]t := lim
Π→0

(
V 2

[0,t]

[
(W (tk, ω))k6n

])
Lemma 4.9. Let t ∈ [0,∞) and let πn be a partition of the interval [0, t] for every
n ∈ N. For every n ∈ N, if W is a Wiener process, then:

E

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
= 0
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Proof. For every n ∈ N,
n−1∑
j=0

(tj+1 − tj)

is a telescoping sum. Therefore,

n−1∑
j=0

(tj+1 − tj) = tn − t0,

πn is a partition of the interval [0, t] for every n ∈ N, then 0 = t0 and tn = t implying

n−1∑
j=0

(tj+1 − tj) = tn − t0 = t

E

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
= E

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − (tj+1 − tj)

]
and because the expectation is a linear function this is equal to:

=
n−1∑
j=0

E
[
(W (tj+1, ω)−W (tj, ω))2]− E (tj+1 − tj)

W Wiener process ⇒ E
[
(W (tj+1, ω)−W (tj, ω))2] = tj+1−tj,∀j ∈ {0, 1, ..., n−1}

Because tj+1, tj ∈ R and are not random variables, E (tj+1 − tj) = tj+1− tj. There-
fore:

E

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
=

n−1∑
j=0

[tj+1 − tj − (tj+1 − tj)] = 0

�

Lemma 4.10. Let t ∈ [0,∞) and let πn be a partition of the interval [0, t] for every
n ∈ N. For every n ∈ N, if W is a Wiener process, then:

V ar

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
= E

(n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

)2


Proof. This lemma is a direct implication of Lemma 4.9.

�

Lemma 4.11. Let t ∈ [0,∞) and let πn be a partition of the interval [0, t] for every
n ∈ N. For every n ∈ N, if W is a Wiener process then:

V ar

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
=

n−1∑
j=0

V ar
[
(W (tj+1, ω)−W (tj, ω))2]
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Proof.

W Wiener process ⇒ Brownian motion process ⇒ ∀s, s′, t, t′ ∈ [0,∞], s 6 t,

s′ 6 t′, s 6= s′ and t 6= t′,W (t, ω)−W (s, ω) and W (t′, ω)−W (s′, ω) are independent

⇒ ∀s, s′, t, t′ ∈ [0,∞], s 6 t, s′ 6 t′, s 6= s′ and t 6= t′, (W (t, ω)−W (s, ω))2 and

(W (t′, ω)−W (s′, ω))
2

are independent ⇒ ∀s, s′, t, t′ ∈ [0,∞], s 6 t, s′ 6 t′, s 6= s′

and t 6= t′, and ∀a, b ∈ R, (W (t, ω)−W (s, ω))2 − a and (W (t′, ω)−W (s′, ω))
2 − b

are independent ⇒ ∀s, s′, t, t′ ∈ [0,∞], s 6 t, s′ 6 t′, s 6= s′ and t 6= t′,∀a, b ∈ R :

V ar
[
(W (t′, ω)−W (s′, ω))

2 − a+ (W (t′, ω)−W (s′, ω))
2 − b

]
= V ar

[
(W (t′, ω)−W (s′, ω))

2 − a
]

+ V ar
[
(W (t′, ω)−W (s′, ω))

2 − b
]

Applying this result recursively:

V ar

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − (tj+1 − tj)

]

=
n−1∑
j=0

V ar
[
(W (tj+1, ω)−W (tj, ω))2 − (tj+1 − tj)

]
Finally, because adding a constant does not change the variance:

V ar

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
=

n−1∑
j=0

V ar
[
(W (tj+1, ω)−W (tj, ω))2]

�

Proposition 4.12. For every t ∈ [0,∞),

W Wiener process ⇒ [W,W ]t = t in the L2 sense

Proof. Let πn be a partition of the interval [0, t] for every n ∈ N.

[W,W ]t = t in the L2 sense ⇐⇒ E

(n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

)2
 −−−→

n→∞
0

E

(n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

)2


Lemma 4.10
= V ar

[
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

]
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Lemma 4.11
=

n−1∑
j=0

V ar
[
(W (tj+1, ω)−W (tj, ω))2]

Therefore, if we define Yj := W (tj+1, ω)−W (tj, ω) ∀j = 0, 1, ..., n−1 we know that:

E

(n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

)2
 −−−→

n→∞
0 ⇐⇒

n−1∑
j=0

V ar(Yj
2) −−−→

n→∞
0

Applying the definition of variance in V ar(Yj
2), we know that:

V ar(Yj
2) = E

[(
Yj

2 − E
(
Yj

2
))2
]

= E
[
Yj

4 − 2Yj
2E
(
Yj

2
)

+
(
E
(
Yj

2
))2
]

= E(Yj
4)−

(
E
(
Yj

2
))2

W Wiener process ⇒ Yj := W (tj+1, ω)−W (tj, ω) ∼ N(0, tj+1 − tj)⇒ E(Yj) = 0

⇒ V ar(Yj) = E(Yj
2) = tj+1 − tj

Therefore:
V ar(Yj

2) = E(Yj
4)− (tj+1 − tj)2

Yj ∼ N(0, tj+1 − tj) =⇒ E(Yj
4) = 3(tj+1 − tj)2

⇒ V ar(Yj
2) = 3(tj+1 − tj)2 − (tj+1 − tj)2 = 2(tj+1 − tj)2

Hence:

E

(n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 − t

)2
 −−−→

n→∞
0 ⇐⇒

n−1∑
j=0

2(tj+1 − tj)2 −−−→
n→∞

0

n−1∑
j=0

2(tj+1 − tj)2 6 2 max
j=0, ..., j=n−1

{tj+1 − tj}
n−1∑
j=0

(tj+1 − tj) = 2Πt −−−→
n→∞

0.

�

Proposition 4.13. For every t ∈ [0,∞),

W Wiener process ⇒ V ariationt(W ) =∞

Proof. Consider a Wiener process W . For every t ∈ [0,∞), let (πn)n be a series
of partitions of [0, t], n ∈ N. Suppose V ariationt(W ) < ∞. We will reach a
contradiction.

V ariationt(W ) := lim
Π→0

n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)| <∞

⇒ sup
πn

(
n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)|

)
<∞
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W Wiener process ⇒ for every ω ∈ Ω, t̃ 7→ W (t̃, ω) is continuous on t̃ ∈ [0, t] for
every t ∈ [0,∞].

t̃ 7→ W (t̃, ω) is continuous on t̃ ∈ [0, t] for every t ∈ [0,∞] and [0, t] is a bounded
interval ⇒ W (t̃, ω) is uniformly continuous on [0, t]

⇒ max
j=0,...,n−1

{W (tj+1, ω)−W (tj, ω)} −−−→
Π→0

0

n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 is less than

max
j=0,...,n−1

{W (tj+1, ω)−W (tj, ω)}
n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)|

sup
πn

(
n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)|

)
<∞⇒

n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)| <∞

for every n ∈ N. Together with the already proved fact that

max
j=0,...,n−1

{W (tj+1, ω)−W (tj, ω)} −−−→
Π→0

0

we get:

max
j=0,...,n−1

{W (tj+1, ω)−W (tj, ω)}
n−1∑
j=0

|W (tj+1, ω)−W (tj, ω)| −−−→
Π→0

0

Therefore:
n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 −−−→
Π→0

0

But we have already proved in Proposition 4.12 that

n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 −−−→
Π→0

t in the L2 sense

⇒ ∃ some partition πnk such that

n−1∑
j=0

(W (tj+1, ω)−W (tj, ω))2 −−−−−−−−−−−−−−−−→
maxj=0,...,n−1{tkj+1−tkj}→0

t

Having reached a contradiction, we know that it cannot be true that V ariationt(W )
<∞. Hence,

V ariationt(W ) =∞

�
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Proposition 4.14. For every t ∈ [0,∞), almost all paths of W are not differen-
tiable at t.

Proof. Fix t ∈ [0,∞). Consider the set A defined as:

A := {ω ∈ Ω : s 7→ W (s, ω) has derivative at t}

We will show that P(A) = 0.

Let us define Akn, for k ∈ N:

Akn :=

{
ω ∈ Ω : for ε s.t. 0 < ε <

1

n
, n ∈ N,−k

√
ε 6

W (t+ ε, σ)−W (t, σ)√
ε

6 k
√
ε

}
Observe that, W Wiener process⇒ W (t+ε, σ)−W (t, σ) ∼ N(0, t+ε−t) = N(0, ε).

Therefore, W (t+ε,σ)−W (t,σ)√
ε

∼ N(0, 1). Hence, P(Akn) = Φ(k
√
ε) − Φ(−kε), where Φ

denotes the cumulative distribution function of a standardised normal distribution.
Recall that Φ(−x) = 1− Φ(x) ∀x ∈ R, then:

P(Akn) = 2Φ(k
√
ε)− 1 = Φ(k

√
ε)− Φ (−kε) 6 2Φ

(
k√
n

)
− 1

⇒ P(Akn) 6 2Φ

(
k√
n

)
− 1 −−−→

n→∞
2Φ (0)− 1 = 2 · 1

2
− 1 = 0⇒ P(Akn) −−−→

n→∞
0

But it is P(A) that we want to compute:

σ ∈ A⇒ s 7→ W (s, σ) has derivative at t

⇒ ∃ lim
ε→0

W (t+ ε, σ)−W (t, σ)

ε

⇒ for ε s.t. 0 < ε <
1

n
, n ∈ N, ∃k ∈ R such that − k 6 W (t+ ε, σ)−W (t, σ)

ε
6 k

⇒ for ε s.t. 0 < ε <
1

n
, n ∈ N, ∃k ∈ R such that

−k
√
ε 6

W (t+ ε, σ)−W (t, σ)√
ε

6 k
√
ε

⇒ ∃k ∈ N such that σ ∈ Akn ⇒ A ⊂
∞⋃
k=1

∞⋃
n=1

Akn

A ⊂
∞⋃
k=1

∞⋃
n=1

Akn ⇒ P(A) 6 P

(
∞⋃
k=1

∞⋃
n=1

Akn

)
=
∞∑
k=1

[
P

(
∞⋃
n=1

Akn

)]
Observe that, for any k, n ∈ N Akn+1 ⊂ Akn because:

ω ∈ Akn+1 ⇒
−k√
n+ 1

< −k
√
ε 6

W (t+ ε, ω)−W (t, ω)√
ε

6 k
√
ε <

k√
n+ 1
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⇒ −k√
n
< −k

√
ε 6

W (t+ ε, ω)−W (t, ω)√
ε

6 k
√
ε <

k√
n
⇒ ω ∈ Akn ⇒ Akn+1 ⊂ Akn

Akn+1 ⊂ Akn ⇒
(
Akn
)c ⊂ (Akn+1

)c ⇒ ∞⋃
n=1

Akn =

(
∞⋂
n=1

(
Akn
)c)c

⇒ P

(
∞⋃
n=1

Akn

)
= P

((
∞⋂
n=1

(
Akn
)c)c)

= 1− lim
n→∞

(
1− P

(
Akn
))

= lim
n→∞

P
(
Akn
)

= 0

P(A) 6
∞∑
k=1

[
P

(
∞⋃
n=1

Akn

)]
= 0⇒ P(A) = 0

�

Theorem 4.15. If W is a Wiener process, W (t, ω) and eσ·W (t,ω)− 1
2
·σ2·t are martin-

gales with respect to FWt , the natural filtration of W .

Proof. We will deal first with W (t, ω). Let 0 < s < t. Because FWt is the natural
filtration of W , we know that W (s, ω) is FWs -measurable. Therefore,

E
(
W (t, ω)|FWs

)
−W (s, ω) = E

(
W (t, ω)−W (s, ω)|FWs

)
W is a Wiener process⇒W is a Brownian motion process⇒ W (t, ω)−W (s, ω) and
FWs are independent.Therefore, E

(
W (t, ω)−W (s, ω)|FWs

)
= E (W (t, ω)−W (s, ω))

W Brownian motion process ⇒ W (t, ω)−W (s, ω) ∼ N(0, t− s)

⇒ E (W (t, ω)−W (s, ω)) = 0

E (W (t, ω)−W (s, ω)) = E
(
W (t, ω)−W (s, ω)|FWs

)
= 0

⇒ E
(
W (t, ω)|FWs

)
= W (s, ω)

Hence, W (t, ω) is a martingale with respect to its natural filtration.

We turn to deal with eσ·W (t,ω)− 1
2
·σ2·t:

E
[
eσ·W (t,ω)− 1

2
·σ2·t|FWs

]
= E

[
eσ·W (t,ω)− 1

2
·σ2·t+σW (s,ω)−σW (s,ω)|FWs

]
= E

[
eσ·W (t,ω)−σW (s,ω)eσW (s,ω)− 1

2
·σ2·t|FWs

]
Because W (s, ω) is FWs -measurable, eσW (s,ω)− 1

2
·σ2·t is also FWs -measurable. There-

fore:

E
[
eσ·W (t,ω)− 1

2
·σ2·t|FWs

]
= eσW (s,ω)− 1

2
·σ2·t · E

[
eσ·W (t,ω)−σW (s,ω)|FWs

]
W is a Wiener process ⇒ W is a Brownian motion process ⇒ W (t, ω) −W (s, ω)
and FWs are independent. Therefore:

eσW (s,ω)− 1
2
·σ2·t · E

[
eσ·W (t,ω)−σW (s,ω)|FWs

]
= eσW (s,ω)− 1

2
·σ2·t · E

[
eσ[W (t,ω)−W (s,ω)]

]
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W is a Wiener process ⇒ W is a Brownian motion process ⇒ W (t, ω)−W (s, ω)

∼ N(0, t− s)⇒ σ (W (t, ω)−W (s, ω)) ∼ N(0, σ2 (t− s))

σ (W (t, ω)−W (s, ω)) ∼ N(0, σ2 (t− s)) =⇒ E
(
eσ(W (t,ω)−W (s,ω))

)
= e

1
2
·σ2·(t−s)

Finally:

E
[
eσ·W (t,ω)− 1

2
·σ2·t|FWs

]
= eσW (s,ω)− 1

2
·σ2·t · E

[
eσ[W (t,ω)−W (s,ω)]

]
= eσW (s,ω)− 1

2
·σ2·t · e

1
2
·σ2·(t−s) = eσW (s,ω)− 1

2
·σ2·s

⇒ eσ·W (t,ω)− 1
2
·σ2·t is a martingale with respect to the natural filtration of W .

�

4.3 The stochastic integral

Let W = (Ω,F , (Ft)t, (Wt)t,P) be a Wiener process. In this subsection we want to
give meaning to ∫ T

0

X(s, w)dW (s, w),

where (X(s, w))06s6T is a stochastic process enjoying certain properties.

4.3.1 Elementary processes

Let (πn)n be a series of partitions of the time interval [0, T ] such that for every
n ∈ N πn = {0 = t0, t1, ..., tn = T}, 0 = t0 < t1 < ... < tn = T .

Let (Xi)i<n be a series of random variables such that for every n ∈ N and
∀i = 0, ..., n− 1 the random variable

Xi : Ω→ R
ω 7→ Xi(ω)

is Fti-measurable. This fact deserves a special highlight: once the time ti has
occurred, the value Xi(ω) is known and is a real value.

Definition 4.16. A stochastic process

X : [0, T ]× Ω→ R
(t, ω) 7→ X(t, ω)

is an elementary process if and only if

X(t, ω) =
n−1∑
i=0

Xi(ω)1[ti,ti+1)(t)

where Xi is a Fti-measurable random variable for every i = 0, ..., n− 1
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Notice that an elementary process is right-continuous.

Definition 4.17. Let X and X ′ be stochastic processes.

X∼∗∗X ′ ⇐⇒
∫ T

0

|X(s, ω)−X ′(s, ω)|dsa.s.
= 0

Proposition 4.18. ∼∗∗ is an equivalence relation

Proof. For any X, Y and Z stochastic processes,∫ T

0

|X(s, ω)−X(s, ω)|ds = 0
a.s.
= 0⇒ X∼∗∗X

If we assume that X∼∗∗Y , then:

0
a.s.
=

∫ T

0

|X(s, ω)− Y (s, ω)|ds =

∫ T

0

|Y (s, ω)−X(s, ω)|ds⇒ Y∼∗∗X

If we assume that X∼∗∗Y and Y∼∗∗Z, then:

0 6
∫ T

0

|X(s, ω)− Z(s, ω)|ds =

∫ T

0

|X(s, ω)− Y (s, ω)− Z(s, ω) + Y (s, ω)|ds

6
∫ T

0

|X(s, ω)− Y (s, ω)|ds+

∫ T

0

|Y (s, ω)− Z(s, ω)|dsa.s.
= 0 + 0

⇒
∫ T

0

|X(s, ω)− Z(s, ω)|dsa.s.
= 0⇒ X∼∗∗Z

�

Definition 4.19.

X([0, T ]) := {X progressively measurable stochastic process : X=(Ω,F ,(Ft)t,(Xt)06t6T ,P)}/∼∗∗

The objective of the definition of X([0, T ]) is to avoid considering two equivalent
stochastic processes in the sense of ∼∗∗ from now on. Even though an element of
X([0, T ]) is a class of equivalence, we will not use any special notation to refer to it.
I.e., we will refer to elements in X([0, T ]) with the notation of a stochastic process
and we will just keep in mind that each element is ”unique” in X([0, T ]) in the sense
of ∼∗∗.

Because every right-continuous process is progressively measurable, we know that
X([0, T ]) contains all elementary processes. A proof of such a result can be found
in [1].

Definition 4.20.

Mp ([0, T ]) :=

{
X ∈ X([0, T ]) such that E

(∫ T

0

|X(s, ω)|pds
)
<∞

}
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Proposition 4.21. Let X be an elementary process, i.e.:

X(t, ω) =
n−1∑
i=0

Xi(ω)1[ti,ti+1)(t)

Then:
X ∈Mp ([0, T ]) ⇐⇒ E (|Xi|p) < +∞, ∀i ∈ {0, 1, ..., n− 1}

In particular,

X ∈M2 ([0, T ]) ⇐⇒ Xi is square-integrable ∀i ∈ {0, 1, ..., n− 1}

Proof.

X ∈Mp ([0, T ]) ⇐⇒ E

(∫ T

0

|X(s, ω)|pds
)
<∞

E

(∫ T

0

|X(s, ω)|pds
)

= E

(∫ T

0

∣∣∣∣∣
n−1∑
i=0

Xi(ω)1[ti,ti+1)(s)

∣∣∣∣∣
p

ds

)

= E

(
n−1∑
i=0

|Xi(ω)|p · (ti+1 − ti)

)
=

n−1∑
i=0

E (|Xi(ω)|) · (ti+1 − ti)

Therefore:

X ∈Mp ([0, T ]) ⇐⇒
n−1∑
i=0

E (|Xi(ω)|) · (ti+1 − ti) < +∞

⇐⇒ E (|Xi|p) < +∞, ∀i ∈ {0, 1, ..., n− 1}

�

Definition 4.22.

Ep ([0, T ]) := {X ∈Mp ([0, T ]) such that X is an elementary process}

4.3.2 Stochastic integral of an elementary process

Definition 4.23. Let X ∈ E2 ([0, T ]) be an elementary process and W be a Wiener
process. Then:∫ T

0

X(t, ω)dW (t, ω) :=
n−1∑
i=0

X(ti, ω) · [W (ti+1, ω)−W (ti, ω)]

is the stochastic integral of X with respect to W .

Notice that
∫ T

0
X(t, ω)dW (t, ω) is itself a random variable, and not a stochastic

process.
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Lemma 4.24. Let X ∈ E2 ([0, T ]) and W a Wiener process. Then, for every
a, b ∈ [0, T ], a < b, consider the stochastic integral of X with respect to W in the
interval [a, b]. Then:

1.

E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

= 0

2.

E

((∫ b

a

X(t, ω)dW (t, ω)

)2

|Fa

)
= E

(∫ b

a

(X(t, ω))2dt|Fa
)

In particular,

E

((∫ b

a

X(t, ω)dW (t, ω)

)2
)

= E

(∫ b

a

(X(t, ω))2dt

)
Proof. We will first deal with 1. Let X be an elementary process, i.e.

X(t, ω) =
n−1∑
i=o

Xi(ω)1[ti,ti+1)(t)

where each random variable Xi is Fti-measurable.

By definition of stochastic integral of an elementary process:

E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

= E

(
n−1∑
i=0

X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fa

)
E[·|Fa] is linear
=========⇒ E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

=
n−1∑
i=0

E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fa]

Due to one of the properties of conditional expectation, because

a 6 ti ⇒ Fa ⊂ Fti∀i ∈ {0, 1, ..., n− 1}

⇒ E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fa]

= E [E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fti ] |Fa]

Because X(ti, ω) is Fti-measurable, we know that

E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fti ] = X(ti, ω) · E [W (ti+1, ω)−W (ti, ω)|Fti ]
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Because W is a Wiener process, it is also a Brownian motion process and therefore
W (ti+1, ω)−W (ti, ω) is independent of Fti . Then:

E [W (ti+1, ω)−W (ti, ω)|Fti ] = E [W (ti+1, ω)−W (ti, ω)]

Because W is a Wiener process, W (ti+1, ω)−W (ti, ω) ∼ N(0, ti+1 − ti). Then:

E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fti ] = E [W (ti+1, ω)−W (ti, ω)] = 0

Hence:
E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fa]

= E [E [X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fti ] |Fa] = E [0|Fa] = 0

E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

=
n−1∑
i=0

E (X(ti, ω) · [W (ti+1, ω)−W (ti, ω)] |Fa) =
n−1∑
i=0

0 = 0

We turn to prove 2. By definition of stochastic integral of X with respect to W :

E

((∫ b

a

X(t, ω)dW (t, ω)

)2

|Fa

)

= E

(n−1∑
i=0

X(ti, ω) · [W (ti+1, ω)−W (ti, ω)]

)2

|Fa


= E

(
n−1∑
i=0

X(ti, ω) [W (ti+1, ω)−W (ti, ω)]
n−1∑
i=0

X(ti, ω) [W (ti+1, ω)−W (ti, ω)]|Fa

)

= E

(
n−1∑
i,j=0

(X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa

)
and because E [ · |Fa] is linear:

=
n−1∑
i,j=0

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa)

We break the summation with index j in three summations in the following manner:

n−1∑
i,j=0

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa)

=
n−1∑
i=0

i−1∑
j=0

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa)
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+
n−1∑
i=0

E
(
(X(ti, ω))2 · [W (ti+1, ω)−W (ti, ω)]2|Fa

)
+

n−1∑
i=0

n−1∑
j=i+1

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa)

Notice that a 6 ti, tj ⇒ Fa ⊂ Fti and Fa ⊂ Ftj . Further: if ti < tj ⇒ Fti ⊂ Ftj
and if tj < ti ⇒ Ftj ⊂ Fti . Therefore, in the summation

n−1∑
i=0

i−1∑
j=0

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa) ,

Ftj ⊂ Fti holds. Analogously, in the summation

n−1∑
i=0

n−1∑
j=i+1

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa) ,

Fti ⊂ Ftj holds. Hence:

If i < j and Xi is Fi-measurable⇒ Xi is Fj-measurable andXj is Fj-measurable.
Moreover, at time tj the values of X(ti, ω), X(tj, ω) ,W (ti+1, ω) and W (ti, ω) are
already known, so:

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa)

= E
[
E
(
(X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Ftj

)
|Fa
]

= E
[
X(ti, ω) ·X(tj, ω) · [W (ti+1, ω)−W (ti, ω)]E

(
W (tj+1, ω)−W (tj, ω)|Ftj

)
|Fa
]

W Wiener process ⇒ W is a Brownian motion process ⇒ W (tj+1, ω)−W (tj, ω) and

Ftj are independent ⇒ E
(
W (tj+1, ω)−W (tj, ω)|Ftj

)
= E (W (tj+1, ω)−W (tj, ω))

W Brownian motion process ⇒ W (tj+1, ω)−W (tj, ω) ∼ N(0, tj+1 − tj), so

E (W (tj+1, ω)−W (tj, ω)) = 0

This is the reason why

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa) = 0

Analogously, if j < i

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa) = 0

holds. Finally:

n−1∑
i,j=0

E ((X(ti, ω) · [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) · [W (tj+1, ω)−W (tj, ω)])|Fa)
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=
n−1∑
i=0

i−1∑
j=0

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa)

+
n−1∑
i=0

E
(
(X(ti, ω))2 · [W (ti+1, ω)−W (ti, ω)]2|Fa

)
+

n−1∑
i=0

n−1∑
j=i+1

E ((X(ti, ω) [W (ti+1, ω)−W (ti, ω)])(X(tj, ω) [W (tj+1, ω)−W (tj, ω)])|Fa)

= 0 +
n−1∑
i=0

E
(
(X(ti, ω))2 · [W (ti+1, ω)−W (ti, ω)]2|Fa

)
+ 0

=
n−1∑
i=0

E
(
(X(ti, ω))2 · [W (ti+1, ω)−W (ti, ω)]2|Fa

)
=: E

(∫ b

a

(X(t, w))2dt|Fa
)

by the definition of stochastic integral of an elementary process and the linearity of
conditional expectation.

�

Equip E2 ([0, T ]) with the inner product < ·, · > defined as:

< ·, · > : E2 ([0, T ])× E2 ([0, T ])→ R

(X, Y ) 7→< X, Y >:= E

(∫ b

a

X(t, ω) · Y (t, ω)dt

)
So that the norm

‖X‖E2([0,T ]) :=
√
< X,X >, ∀X ∈ E2 ([0, T ])

can be defined. Consequently, a distance in E2 ([0, T ]) can be defined too:

dE2([0,T ]) (X, Y ) := ‖X − Y ‖E2([0,T ]), ∀X, Y ∈ E
2 ([0, T ])

Equip L2 (Ω) with the inner product << ·, · >> defined as:

<< ·, · >> : L2 (Ω)× L2 (Ω)→ R
(X, Y ) 7→<< X, Y >>:= E (X · Y )

So that the norm

‖X‖L2(Ω) :=
√
<< X,X >>, ∀X ∈ L2 (Ω)

can be defined. Consequently, a distance in L2 (Ω) can be defined too:

dL2(Ω) (X, Y ) := ‖X − Y ‖L2(Ω), ∀X, Y ∈ L
2 (Ω)

Recall that, if X ∈ E2 ([0, T ]), then
∫ T

0
X(t, ω)dW (t, ω) ∈ L2 (Ω).

The previous Lemma is of paramount importance because it establishes an isometry
between the metric spaces

(
E2 ([0, T ]) , dE2([0,T ])

)
and

(
L2 (Ω) , dL2(Ω)

)
. Indeed:
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Corollary 4.25. The map∫ T

0

· dW (t, ω) :
(
E2 ([0, T ]) , dE2([0,T ])

)
→
(
L2 (Ω) , dL2(Ω)

)
X 7→

∫ T

0

X(t, ω)dW (t, ω)

is an isometry.

Proof. ∥∥∥∥∫ T

0

X(t, ω)dW (t, ω)

∥∥∥∥
L2(Ω)

= E

((∫ T

0

X(t, w)dW (t, w)

)2
)

= E

(∫ b

a

(X(t, w))2dt

)
= ‖X‖E2([0,T ])

�

Later on we will show that this isometry can be extended to the wholeM2 ([0, T ]).

4.3.3 Stochastic integral of a stochastic process

We need an approximation result that states that an Mp-process can be suitably
approximated by elementary processes.

Let (πn)n be a series of equi-spaced partitions of [0, T ].

Definition 4.26. Let f ∈Mp([0, T ]). We define:

Gnf(t, ω) :=
n−1∑
i=0

fi(ω) · 1[ti,ti+1)(t)

where:

fi(ω) :=

{
0, if i = 0

1
ti+1−ti ·

∫ ti
ti−1

f(s, ω)ds = 1
T−0
n

·
∫ ti
ti−1

f(s, ω)ds = n
T
·
∫ ti
ti−1

f(s, ω)ds, if i 6= 0

Observe that fi is a Fti-measurable random variable. I.e., once ti has occurred, we
do know the real value fi(ω). Therefore, Gnf(t, ω) is Fti-measurable too.

Lemma 4.27. If f ∈Mp ([0, T ]), then:

1. ∫ T

0

|Gnf(s, ω)|pds 6
∫ T

0

|f(s, ω)|pds.

2. Gnf ∈Mp ([0, T ]).
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In particular, Gnf ∈ Ep ([0, T ]).

Proof. Let f ∈Mp ([0, T ]) and consider Gnf(t, ω) :=
∑n−1

i=0 fi(ω) · 1[ti,ti+1)(t).∫ T

0

|Gnf(s, ω)|pds =
n−1∑
j=0

∫ tj+1

tj

|Gnf(s, ω)|pds

=
n−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣
n−1∑
i=0

fi(ω) · 1[ti,ti+1)(t)

∣∣∣∣∣
p

ds =
n−1∑
j=0

∫ tj+1

tj

|fj(ω)|pds

For every j = 0, 1, ..., n− 1, fj(ω) does not depend on s. Therefore:

n−1∑
j=0

∫ tj+1

tj

|fj(ω)|pds =
n−1∑
j=0

|fj(ω)|p
∫ tj+1

tj

ds =
n−1∑
j=0

|fj(ω)|p · (tj+1 − tj)

=
T

n
·
n−1∑
j=0

|fj(ω)|p =
T

n
·
n−1∑
j=0

∣∣∣∣nT
∫ ti

ti−1

f(s, ω)ds

∣∣∣∣p
Because x 7→ |x|p is a convex function, Jensen’s inequality applies and:

T

n
·
n−1∑
j=0

∣∣∣∣nT
∫ ti

ti−1

f(s, ω)ds

∣∣∣∣p =
T

n
·
n−1∑
j=0

n

T

∫ ti

ti−1

|f(s, ω)|pds

=
n−1∑
j=0

∫ ti

ti−1

|f(s, ω)|pds =

∫ T

0

|f(s, ω)|pds

Hence: ∫ T

0

|Gnf(s, ω)|pds 6
∫ T

0

|f(s, ω)|pds

⇒ E

(∫ T

0

|Gnf(s, ω)|pds
)
6 E

(∫ T

0

|f(s, ω)|pds
)

f ∈Mp ([0, T ])⇒ E

(∫ T

0

|f(s, ω)|pds
)
< +∞

⇒ E

(∫ T

0

|Gnf(s, ω)|pds
)
< +∞⇒ Gnf ∈Mp ([0, T ])

Gnf satisfies the definition of elementary process, therefore Gnf ∈ Ep ([0, T ]).

�

Lemma 4.28.

f continuous on t⇒ lim
n→∞

∫ T

0

|Gnf(s, ω)− f(s, ω)|pds = 0
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Proof. f continuous on t and [0, T ] compact ⇒ f is uniformly continuous on [0, T ].
Fix ε > 0, f being uniformly continuous on [0, T ] means that ∃n ∈ N big enough
such that for s, s′ ∈ [0, T ], |s− s′| 6 2T

n
⇒ |f(s)− f(s′)| 6 ε.

Consider the function

(∫ ·
0

|f(s, ω)|pds
) 1

p

: [0, T ]→ [0,∞)

t 7→
(∫ t

0

|f(s, ω)|pds
) 1

p

(∫ t
0
|f(s, ω)|pds

) 1
p

is continuous because the integral is a continuous function

and f is continuous by hypothesis, moreover [0, T ] is compact⇒
(∫ t

0
|f(s, ω)|pds

) 1
p

is uniformly continuous on [0, T ] ⇒ ∃t1 > 0 close enough to 0 so that(∫ t1

0

|f(s, ω)|pds
) 1

p

6 ε

⇒
∫ t1

0

|f(s, ω)|pds 6 εp

For any i ∈ {0, 1, ..., n− 1}, |[ti−1, ti)
⋃

[ti, ti+1)| = 2T
n

because πn is an equi-spaced
partition for evey n ∈ N.

Let u ∈ [ti−1, ti) and s ∈ [ti, ti+1). Then:

|u− s| 6 2T

n

f uniformly continuous on [0,T ]
==================⇒ |f(s, ω)− f(u, ω)| 6 ε(*)

Gnf(s, ω) = fi(ω) =

∫ T
0
f(s, ω)ds

ti − ti−1

=
limN→∞

ti−ti−1

N

∑N
k=1 f(ti−1 + k ti−ti−1

N
, ω)

ti − ti−1

= lim
N→∞

∑N
k=1 f(ti−1 + k ti−ti−1

N
, ω)

N
, which is the average of f on [ti−1, ti)

⇒ f(ti−1, ω) 6= lim
N→∞

∑N
k=1 f(ti−1 + k ti−ti−1

N
, ω)

N
= Gnf(s, ω) 6 f(ti, ω)

Gnf(s, ω) 6 f(ti, ω)⇒ Gnf(s, ω)− f(s, ω) 6 f(ti, ω)− f(s, ω)

⇒ |Gnf(s, ω)− f(s, ω)| 6 |f(ti, ω)− f(s, ω)|
(*)
=⇒ |Gnf(s, ω)− f(s, ω)| 6 |f(ti, ω)− f(s, ω)| < ε

⇒ |Gnf(s, ω)− f(s, ω)|p 6 |f(ti, ω)− f(s, ω)|p < εp

39



Observe that if t ∈ [0, t1) ⇒ Gnf(t, ω) :=
∑n−1

i=0 fi(ω) · 1[ti,ti+1)(t) = f0 := 0.
Therefore: ∫ T

0

|Gnf(s, ω)− f(s, ω)|pds =

∫ t1

0

|Gnf(s, ω)− f(s, ω)|pds

+

∫ T

t1

|Gnf(s, ω)− f(s, ω)|pds =

∫ t1

0

|−f(s, ω)|pds+

∫ T

t1

|Gnf(s, ω)− f(s, ω)|pds

We have already shown that
∫ t1

0
|f(s, ω)|pds 6 εp and |Gnf(s, ω)− f(s, ω)|p 6 εp.

Hence:∫ t1

0

|f(s, ω)|pds+

∫ T

t1

|Gnf(s, ω)− f(s, ω)|pds 6 εp +

∫ T

t1

εpds = εp · (1 + T − t1)

⇒
∫ T

0

|Gnf(s, ω)− f(s, ω)|pds 6 εp · (1 + T − 0) −−→
ε→0

0

Finally, because ε→ 0 ⇐⇒ n→∞:∫ T

0

|Gnf(s, ω)− f(s, ω)|pds −−−→
n→∞

0

�

This lemma can be proved to hold for a general stochastic process f ∈Mp ([0, T ]).
Such a result stems from the fact that continuous stochastic processes are dense in
Mp ([0, T ]). A full prove is not provided in this text, but it can be found in [13].

Lemma 4.29.

∀p ∈ N, p > 1, ∀a, b ∈ R, |a| · |b|p + |b| · |a|p 6 |a|p+1 + |b|p+1

Proof. Induction on p.

If p = 1:
|a| · |b|1 + |b| · |a|1 = 2|a| · |b| 6 |a|1+1 + |b|1+1

⇐⇒ 0 6 |a|2 + |b|2 − 2|a| · |b| = (|a| − |b|)2

Let us make the following hypothesis of induction: assume |a| · |b|n + |b| · |a|n
6 |a|n+1 + |b|n+1 holds ∀n 6 p− 1. We will prove:

|a| · |b|p + |b| · |a|p 6 |a|p+1 + |b|p+1

Because the above inequality is symmetric, we can assume that |a| 6 |b| without
loss of generality.

I.H.: |a| · |b|p−1 + |b| · |a|p−1 6 |a|p + |b|p

⇒ |a| · |b| ·
(
|a| · |b|p−1 + |b| · |a|p−1) 6 |a| · |b| · (|a|p + |b|p)
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⇒ |a|2 · |b|p + |b|2 · |a|p 6 |a| · |b|p+1 + |b| · |a|p+1

⇒ |a|2 · |b|p − |a| · |b|p+1 6 |b| · |a|p+1 − |b|2 · |a|p

⇒ |a| ·
(
|a||b|p − |b|p+1) 6 |b| (|a|p+1 − |b||a|p

)
|a|6|b|
===⇒ |a||b|p − |b|p+1 6 |a|p+1 − |b||a|p

⇒ |a| · |b|p + |b| · |a|p 6 |a|p+1 + |b|p+1

�

Lemma 4.30.

∀p ∈ N, p > 1,∀a, b ∈ R, |a− b|p 6 2p−1(|a|p + |b|p)

Proof. Induction on p.

If p = 1:

|a− b|1 6 21−1
(
|a|1 + |b|1

)
= |a|+ |b|,which is a triangle inequality

Let us make the following hypothesis of induction: assume |a− b|n 6 2n−1(|a|n + |b|n)
holds ∀n 6 p. We will prove:

|a− b|p+1 6 2p
(
|a|p+1 + |b|p+1)

Consider |a− b|p+1: |a− b|p+1 = |a− b| · |a− b|p. By hypothesis of induction:

|a− b| · |a− b|p 6 21−1
(
|a|1 + |b|1

)
· 2p−1(|a|p + |b|p) =

= 2p−1 ·
(
|a|p+1 + |b|p+1 + |a| · |b|p + |b| · |a|p

)
6 2p−1 ·

(
|a|p+1 + |b|p+1 + |a|p+1 + |b|p+1) because of Lemma 4.29

Therefore:
|a− b|p+1 6 2p

(
|a|p+1 + |b|p+1)

�

Proposition 4.31.

X ∈Mp ([0, T ])⇒ ∃(GnX)n ⊂ Ep ([0, T ]) such that:

lim
n→∞

E

(∫ T

0

|X(s, ω)−GnX(s, ω)|pds
)

= 0

Moreover, the elementary processes GnX can be chosen in such a way that

n 7→
∫ T

0

|GnX(s, ω)|pds

is increasing.
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Proof. Let X ∈Mp ([0, T ]). Consider (GnX)n ⊂ Ep ([0, T ]).

Consider
∫ T

0
|X(s, ω)−GnX(s, ω)|pds and apply Lemma 4.30 on it:∫ T

0

|X(s, ω)−GnX(s, ω)|pds 6
∫ T

0

2p−1 (|X(s, ω)|p + |GnX(s, ω)|p) ds

We already know that
∫ T

0
|GnX(s, ω)|pds 6

∫ T
0
|X(s, ω)|pds, therefore:

2p−1

(∫ T

0

|X(s, ω)|pds+

∫ T

0

|GnX(s, ω)|pds
)

6 2p−1

(∫ T

0

|X(s, ω)|pds+

∫ T

0

|X(s, ω)|pds
)

= 2p
∫ T

0

|X(s, ω)|pds

X ∈Mp ([0, T ])⇒ 2pE

(∫ T

0

|X(s, ω)|pds
)
< +∞

⇒ E

(∫ T

0

|X(s, ω)−GnX(s, ω)|pds
)
< +∞

In Lemma 4.28 we have already shown that limn→∞
∫ T

0
|Gnf(s, ω)− f(s, ω)|pds = 0.

Hence, the hypotheses of the Dominated Convergence Theorem are satisfied and we
can assert that

lim
n→∞

E

(∫ T

0

|X(s, ω)−GnX(s, ω)|pds
)

= 0

Realise that G2nf = G2n(G2n+1f) since G2n+1f has an implicit partition of [0, T ]
that is finer than that of G2nf ’s. Therefore, the elementary process GnX can be
chosen in such a way that

n 7→
∫ T

0

|GnX(s, ω)|pds

is increasing. �

In Corollary 4.25 we saw that the stochastic integral of elementary processes is
an isometry. Now the previous lemma has showed that elementary processes are
dense in Mp ([0, T ]), so that the isometry can be extended to the whole Mp ([0, T ]),
thus defining the stochastic integral for every X ∈Mp ([0, T ]).

Definition 4.32. Let X ∈ M2 ([0, T ]) and (GnX)n ⊂ E2 ([0, T ]) approximating X
in the sense of Proposition 4.31. We define:∫ T

0

X(t, ω)dW (t, ω) := lim
n→∞

∫ T

0

GnX(t, ω)dW (t, ω) in the L2 (Ω) sense

That is,
∫ T

0
GnX(t, ω)dW (t, ω) is defined as the random variable that satisfies

lim
n→∞

E

[(∫ T

0

X(t, ω)dW (t, ω)−
∫ T

0

GnX(t, ω)dW (t, ω)

)2
]

= 0
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Lemma 4.33.
∫ T

0
X(t, ω)dW (t, ω) for an arbitrary process X ∈M2 ([0, T ]) is well

defined.

Proof. Two results have to be proven in order to prove the lemma:

1. The existence of limn→∞
∫ T

0
GnX(t, ω)dW (t, ω) in L2 (Ω).

2. If two elementary processes approximate X in the sense of Proposition 4.31,
then these two elementary processes approximate each other in the sense of
Proposition 4.31.

We will first deal with 1.

Let X ∈M2 ([0, T ]) and let (GnX)n ⊂ E2 ([0, T ]) be such that

lim
n→∞

E

(∫ T

0

|X(s, ω)−GnX(s, ω)|pds
)

= 0

That is, GnX −→ X in M2 ([0, T ]). Let us define I(GnX :=
∫ T

0
GnX(t, ω)dW (t, ω).

We want to prove that the sequence (I(GnX))n converges in L2 (Ω).

GnX −→ X in M2 ([0, T ])⇒ (GnX)n is a Cauchy series in M2 ([0, T ])

⇒ ∃N ∈ N sucht that for n,m > N, dM2([0,T ]) (GnX,GmX) −−−−→
n,m→∞

0

dM2([0,T ]) (GnX,GmX) = ‖GnX −GmX‖M2([0,T ])

= E

(∫ T

0

(GnX(t, w)−GmX(t, w))2dt

)

= E

((∫ T

0

GnX(t, w)−GmX(t, w)dW (t, w)

)2
)

= ‖GnX −GmX‖L2(Ω)

Therefore:
dL2(Ω) (GnX,GmX) −−−−→

n,m→∞
0

⇒ (I(GnX))n is a Cauchy series in L2 (Ω)

⇒ ∃ lim
n→∞

∫ T

0

GnX(t, ω)dW (t, ω) in L2 (Ω)

We turn now to prove 2..

Let (Xn)n, (Yn)n ⊂ E2 ([0, T ]) such that

lim
n→∞

E

(∫ T

0

|X(s, ω)−Xn(s, ω)|pds
)

= 0

and

lim
n→∞

E

(∫ T

0

|X(s, ω)− Yn(s, ω)|pds
)

= 0
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Then:

lim
n→∞

E

(∫ T

0

|X(s, ω)−Xn(s, ω)|pds
)

+ lim
n→∞

E

(∫ T

0

|X(s, ω)− Yn(s, ω)|pds
)

= lim
n→∞

E

(∫ T

0

|X(s, ω)−Xn(s, ω)|p + |X(s, ω)− Yn(s, ω)|pds
)

= 0

⇒ lim
n→∞

E

(∫ T

0

2p−1 (|X(s, ω)−Xn(s, ω)|p + |X(s, ω)− Yn(s, ω)|p) ds
)

= 0

By Lemma 4.30 we know that:

0 6 lim
n→∞

E

(∫ T

0

|X(s, ω)−Xn(s, ω)− (X(s, ω)− Yn(s, ω))|pds
)

= lim
n→∞

E

(∫ T

0

|Yn(s, ω)−Xn(s, ω)|pds
)

6 lim
n→∞

E

(∫ T

0

2p−1 (|X(s, ω)−Xn(s, ω)|p + |X(s, ω)− Yn(s, ω)|p) ds
)

= 0

⇒ lim
n→∞

E

(∫ T

0

|Yn(s, ω)−Xn(s, ω)|pds
)

= 0

�

Lemma 4.34. Let X ∈ M2 ([0, T ]) and W a Wiener process. Then, for every
a, b ∈ [0, T ], a < b, consider the stochastic integral of X with respect to W in the
interval [a, b]. Then:

1.

E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

= 0

2.

E

((∫ b

a

X(t, ω)dW (t, ω)

)2

|Fa

)
= E

(∫ b

a

(X(t, ω))2dt|Fa
)

In particular,

E

((∫ b

a

X(t, ω)dW (t, ω)

)2
)

= E

(∫ b

a

(X(t, ω))2dt

)
Proof. We will first deal with 1.

Let X ∈ M2 ([0, T ]) and (GnX)n ⊂ E2 ([0, T ]) approximating X in the sense of
Proposition 4.31. Because (GnX)n ⊂ E2 ([0, T ]), we know from Lemma 4.24. that

E

(∫ b

a

GnX(t, ω)dW (t, ω)|Fa
)

= 0
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holds. Moreover, in Lemma 4.33. we have demonstrated the existence in L2 (Ω) of

lim
n→∞

∫ T

0

GnX(t, ω)dW (t, ω) =:

∫ b

a

X(t, ω)dW (t, ω)

Therefore:

E

(∫ b

a

GnX(t, ω)dW (t, ω)|Fa
)

= 0

⇒ lim
n→∞

E

(∫ b

a

GnX(t, ω)dW (t, ω)|Fa
)

= 0

Because E [ · |Fa] is continuous, we know that:

lim
n→∞

E

(∫ b

a

GnX(t, ω)dW (t, ω)|Fa
)

= E

(
lim
n→∞

∫ b

a

GnX(t, ω)dW (t, ω)|Fa
)

Hence:

E

(∫ b

a

X(t, ω)dW (t, ω)|Fa
)

= 0

We now turn to focus on 2.

Let X ∈ M2 ([0, T ]) and (GnX)n ⊂ E2 ([0, T ]) approximating X in the sense of
Proposition 4.31. Because (GnX)n ⊂ E2 ([0, T ]), we know from Lemma 4.24. that

E

((∫ b

a

GnX(t, ω)dW (t, ω)

)2

|Fa

)
= E

(∫ b

a

(GnX(t, ω))2dt|Fa
)

⇒ lim
n→∞

E

((∫ b

a

GnX(t, ω)dW (t, ω)

)2

|Fa

)
= lim

n→∞
E

(∫ b

a

(GnX(t, ω))2dt|Fa
)

Concentrate on the left hand side term of the last equality. Because E [ · |Fa] is
linear, we know that:

lim
n→∞

E

((∫ b

a

GnX(t, ω)dW (t, ω)

)2

|Fa

)

= E

(
lim
n→∞

(∫ b

a

GnX(t, ω)dW (t, ω)

)2

|Fa

)
∫ b

a

GnX(t, ω)dW (t, ω)
L2(Ω)−−−→
n→∞

∫ b

a

X(t, ω)dW (t, ω)

⇒
(∫ b

a

GnX(t, ω)dW (t, ω)

)2
L1(Ω)−−−→
n→∞

(∫ b

a

X(t, ω)dW (t, ω)

)2

⇒ lim
n→∞

E

((∫ b

a

GnX(t, ω)dW (t, ω)

)2

|Fa

)
= E

((∫ b

a

X(t, ω)dW (t, ω)

)2

|Fa

)
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Concentrate now on the right hand side of the equality. Thanks to Proposition 4.31.
we can assume that (∫ b

a

(GnX(t, ω))2dt

)
n

is an increasing sequence. Therefore, Beppo Levi’s Theorem3 is applicable and

lim
n→∞

E

(∫ b

a

(GnX(t, ω))2dt|Fa
)

= E

(∫ b

a

(X(t, ω))2dt|Fa
)

Hence, the statement of the Lemma follows. �

4.3.4 The stochastic integral as a stochastic process and its martingale
property

Let X ∈ M2 ([0, T ]), then the restriction of X to [0, t], t 6 T , also belongs to
M2 ([0, t]) and we can consider its integral

∫ t
0
X(s, ω)dW (s, ω). Let the real-valued

process IX be defined as:

IX : [0, T ]× Ω→ R

(t, ω) 7→ IX(t, ω) :=

∫ t

0

X(s, ω)dW (s, ω)

Theorem 4.35. If X ∈M2 ([0, T ]), then IX is an Ft-square integrable martingale.

Proof. If s < t, thanks to Lemma 4.34:

E [IX(t, ω)− IX(s, ω)|Fs] = E

[∫ t

s

X(u, ω)dW (u, ω)|Fs
]

= 0

Because IX(s, ω) is Fs-measurable and together with the above equality we know
that

E [IX(t, ω)− IX(s, ω)|Fs] = E [IX(t, ω)|Fs]− IX(s, ω) = 0

⇒ E [IX(t, ω)|Fs] = IX(s, ω)

�

4.4 Stochastic differential equations, Itô processes and the
Itô formula

In this subsection we introduce the Itô formula, a key tool that makes computations
in stochastic calculus easier and which we will use in the following chapter when
dealing with the Black-Scholes model.

3A proof of Beppo Levi’s Theorem can be found in [1].
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Definition 4.36. Let W be a Wiener process. An R-valued stochastic process X is
an Itô process if it can be written as

X(t, ω) = X(0, ω) +

∫ t

0

K(s, ω)ds+

∫ t

0

H(s, ω)dW (s, ω) , P a.s. ∀t 6 T,

where:

• X(0, ω) is F0-measurable.

• (K(t, ω))06t6T and (H(t, ω))06t6T are Ft-adapted processes.

•
∫ t

0
|K(s, ω)| ds < +∞ P a.s.

•
∫ t

0
(H(s, ω))2ds < +∞ P a.s.

Because in the previous sections we have given meaning to the integral∫ t

0

H(s, ω)dW (s, ω),

the Itô process concept is well defined.

Definition 4.37. If X is an Itô process which can be written as

X(t, ω) = X(0, ω) +

∫ t

0

K(s, ω)ds+

∫ t

0

H(s, ω)dW (s, ω) , P a.s. ∀t 6 T,

we say that X admits the stochastic differential equation

dX(t, ω) = K(t, ω)dt+H(t, ω)dW (t, ω)

The equation dX(t, ω) = K(t, ω)dt + H(t, ω)dW (t, ω) lacks of mathematical
meaning because a Wiener process is almost nowhere differentiable. The equation
dX(t, ω) = K(t, ω)dt + H(t, ω)dW (t, ω) is just an abbreviation of the equation in
Definition 4.36.

Theorem 4.38. Let W be a Wiener process.

Let

f : R× R→ R
(t, x) 7→ f(t, x)

be such that f ∈ C1,2 (R× R). Let ft, fx and fxx denote, respectively, de derivative
of f with respect to t, the derivative of f with respect to x and the second derivative
of f with respect to x. Then:

f(t,W (t, ω)) = f(0,W (0, ω)) +

∫ t

0

fs(s,W (s, ω))ds+

∫ t

0

fx(s,W (s, ω))dW (s, ω)

+
1

2

∫ t

0

fxx(s,W (s, ω))d[W,W ]s,

where [W,W ] is the variation of the Wiener process S as defined in Definition 4.8.

Proof. A proof of this Theorem and other more generalised Itô Formula Theorems
can be found in [1]. �
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5 The role of the Stochastic Integral in the Black-

Scholes model

The model suggested by Black and Scholes to describe the behaviour of prices is a
continuous-time model with:

1. A riskless asset S0
t whose evolution through time is encapsulated in the dif-

ferential equation dS0
t = rS0

t dt, where r ∈ R+ is an instantaneous interest
rate.

2. A risky asset S(t, ω) that evolves according to the stochasctic differential
equation

dS(t, ω) = µS(t, ω)dt+ σdW (t, ω)

where µ, σ ∈ R and W is a Wiener process.

The idea behind the equation dS(t, ω) = µS(t, ω)dt+σdW (t, ω) is that the price of
the risky asset moves randomly around some linear tendency, so that σ stands for
the volatility of the risky asset. Note that such an assumption could not be made
without a formal definition of the stochastic integral.

Observe that ∫ t

0

|µS(s, ω)| ds < +∞ P a.s.

and ∫ t

0

(σS(s, ω))2ds < +∞ P a.s.

Therefore, it will make sense solving dS(t, ω) = µS(t, ω)dt+ σdW (t, ω).

These assumptions lead to a concrete formula for the evolution of the price of
the risky asset.

Theorem 5.1. The process

S : R× Ω→ R

(t, ω) 7→ S(t, ω) = S0e
µt−σ

2

2
t+σW (t,ω)

where S0 := S(0, ω), solves the stochastic differential equation

dS(t, ω) = µS(t, ω)dt+ σdW (t, ω)

Proof. Consider function f defined as

f : R× R→ R

(t, x) 7→ f(t, x) = S0e
µt−σ

2

2
t+σx
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f is infinitely differentiable with respect both variables x and t. Therefore, Itô
formula from Theorem 4.38 is applicable to f(t,W (t, ω)) = S(t, ω). We compute
first ft, fx and fxx:

ft(t, x) =

(
µ− σ2

2

)
f(t, x)

fx(t, x) = σf(t, x)

fxx(t, x) = σ2f(t, x)

Applying Itô’s formula:

f(t,W (t, ω)) = f(0,W (0, ω)) +

∫ t

0

fs(s,W (s, ω))ds+

∫ t

0

fx(s,W (s, ω))dW (s, ω)

+
1

2

∫ t

0

fxx(s,W (s, ω))d[W,W ]s.

In Proposition 4.12. we demonstrated that

[W,W ] = t in the L2 sense

⇒ S(t, ω) = S0 +

∫ t

0

(
µ− σ2

2

)
S(s, ω)ds+

∫ t

0

σS(s, ω)dW (s, ω)

+
1

2

∫ t

0

σ2S(s, ω)ds

⇒ S(t, ω) = S0 +

∫ t

0

(
µ− σ2

2
+
σ2

2

)
S(s, ω)ds+

∫ t

0

σS(s, ω)dW (s, ω)

⇒ S(t, ω) = S0 +

∫ t

0

µS(s, ω)ds+

∫ t

0

σS(s, ω)dW (s, ω)

⇒ S(t, ω) = S0e
µt−σ

2

2
t+σW (t,ω) solves dS(t, ω) = µS(t, ω)dt+ σdW (t, ω)

�

A proof of the uniqueness of that solution can be found in [5].
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6 Theory put into practice

6.1 Do the theoretical models fit the real world?

In their own abstract world, the theoretical models produce a perfect hedge of
derivatives. But the theoretical world of derivatives models differs the real world in
many aspects. We discus some of these differences in this section.

1. Jumps

The stochastic integral that has been defined in this project is based on the Wiener
process as its building block. As it has already been pointed out, the Wiener process
is characterised by having continuous paths. Therefore, the stochastic integral is
only defined over continuous processes.

The real world price changes exhibit systematic discontinuous jumps though.
Thus, hedging errors in using the models presented in this project will stem from
this difference.

Jumps could be captured by the models if discontinuous paths were blended
into the Wiener process. Such a merged process exists; the Poisson process. It
is said that the Wiener process is fit for modelling ”normal events” whereas the
Poisson process enables the possibility of modelling ”rare events”. The interested
reader may find in [9] a further discussion on the topic.

2. Discrete Trading

In the theoretical models, the hedging portfolio is assumed to be adjusted contin-
uously. In the real world, hedging portfolios are rebalanced in a discrete fashion,
thus existing some hedge error due to this difference.

On the one hand, even if a very powerful computer executed the trades in un-
noticeable short time lapses, the adjusting of the hedging portfolio would still be
discrete. On the other hand, in the real world, adjusting the hedging portfolio
comes with transaction costs, therefore continuous adjusting becomes an unfeasible
practice.

In [10], the author carries out a study based on real life numbers concluding that
the discrete trading difference entails no practical problem for a big derivatives firm.
More concretely, the conclusion is that, on-average (i.e., taking into account all the
hedging strategies that the firm simultaneously enters into instead of focusing on
each individual hedging strategy), discrete rebalancing of the hedging portfolios
corrects the hedge error made by implicitly assuming continuous adjusting in the
models.

3. Transaction Costs

In the theoretical models there exist no transaction costs. But in the real world
there are indeed transaction costs, namely 4:

4The four transaction costs and their explanation is quoted from [11].
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• Commissions: the fee that must be paid to a broker to execute an order.

• Market impact: the displacement of prices resulting from order arrival.

• Opportunity costs: the costs (which may be negative) of market price move-
ments due to forces other than the particular trade during the time elapsed
from the moment the decision to trade was made until the actual completion
of the trade.

• Miscellaneous other costs: this includes items such as transfer taxes and exe-
cution errors.

These transaction costs have not a negligible effect on the prices of derivatives.
Furthermore, they contribute to the uncertainty with respect to the ultimate outcome
of the hedging process, as sometimes the hedge will require relatively little adjustment
and therefore generate high transaction costs5.

One of the mentioned transaction costs, the taxes levied on trade executions,
brings back the philosophical discussion on whether the Tobin tax should be present
in hedging-related trade executions as they provoke more expensive derivatives
prices and, consequently, harm the efficiency of the derivatives market and, by
extension, society as a whole. Ultimately, the main problem is that it is difficult to
differenciate hedging versus speculative trade executions.

4. Volatility Misprediction

One of the inputs of the Black-Scholes model is volatility, which is an a priori
unknown variable. Even though the value of volatility is uncertain, some value
must be put into the model in order to function. There are two possible measures
of volatility that can be put into the model:

• Historical volatility: computed by means of linear regression or other statis-
tical methodology that uses the past data of the underlying.

• Implied volatility: computed by means of non-linear solvers applied to the
Black-Scholes model that take into account the actual in-the-market quoted
prices of derivatives sharing the same underlying and contract details.

On the one hand, because past behaviour of the markets is not a good forecast of
future behaviour of the markets, historical volatility may not be a good input in
the model.

On the other hand, implied volatility inherits al the Black-Scholes model assump-
tions that might be wrong, thus conveying a potentially wrong insight of future
volatility.

Difficulties in ascertaining the volatility input of the model produce hedging
errors as well as further uncertainty on the outcome of the hedge.

5Quoted from [11].
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6.2 Alternative hedging strategies

A way of avoiding the hedging errors mentioned in the previous section is, simply,
not building the hedging strategy that the theoretical model proposes. In this
section we briefly mention some possible hedging strategies that a derivatives firm
may adopt.

6.2.1 Common sense hedging: back-to-back dealing

This approach is straight-forward: the derivatives firm has a client asking for a
concrete derivative and the derivatives firm, before entering into the contract with
the client, looks for another counterparty willing to enter into that exact contract
but at a better price. If the details of the two derivatives contracts are exactly the
same except for their prices, the hedge is perfect and no complex mathematics have
had to be used.

6.2.2 Common sense hedging: parity relationships

This approach shares the same basic principle of back-to-back dealing, in the sense
that the derivatives firm has a client asking for a concrete derivative and the deriva-
tive firm, before entering into the contract with the client, looks for other counter-
parties from whom will get a perfect hedge at a better price. The difference between
back-to-back dealing and this strategy lies in the fact that the derivatives firm looks
for other counterparties (in plural) each willing to enter into a part of the contract.

This possibility of breaking the original contract into parts stems from parity
relations: sometimes the payoff of a contract can be decomposed into the payoffs
of two or more other contracts. The classical parity relation example is that of the
equivalence of the buying of a forward contract and a simultaneous buying of a call
option and selling of a put option.

Again, if the details of the different contracts involved match in all terms except
for the prices, the hedge is perfect and no complex mathematics have had to be
used.

6.2.3 Taylor series hedging

Let V be the price of an arbitrary option. Assume the price of that arbitrary option
is determined by two variables: one being I (the reference index of the option), and
the other being σ (the implied volatility of the option).

Such a hypothetical option is therefore a function of these two variables, i.e.
V = f(I, σ), for some f : R2 → R that we will consider, for simplicity, infinitely
derivable on both variables I and σ.

Consider the Taylor series expansion of V = f(I, σ) around the actual (I0, σ0)
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at which the option is considered to be trading6:

∆V =
∂f(I, σ)

∂I
(I − I0) +

1

2

∂2f(I, σ)

∂I2
(I − I0)2 +

1

6

∂3f(I, σ)

∂I3
(I − I0)3 + ...

+
∂f(I, σ)

∂σ
(σ − σ0) +

1

2

∂2f(I, σ)

∂σ2
(σ − σ0)2 +

1

6

∂3f(I, σ)

∂σ3
(σ − σ0)3 + ...

Because the objective of a hedging strategy is being able to deliver the value of
the option at the expiry date, then a good hedge is one that is able to keep track
of every change ∆V .

The above formula conveys that one can keep track of ∆V by possessing a basket
of other options dependent on the same variables I and σ. We explain this in detail:

Suppose that we take a position in a basket of options and that this basket as a
whole has a price dependant on I and σ. Suppose that this dependency is captured
by function g : R2 → R so that g(I, σ) is the price of that basket of options. We
will again consider, for simplicity, that g is infinitely derivable on both variables I
and σ. Suppose the following equalities hold:

∂g(I, σ)

∂I
=
∂f(I, σ)

∂I
,
∂2g(I, σ)

∂I2
=
∂2f(I, σ)

∂I2
,
∂3g(I, σ)

∂I3
=
∂3f(I, σ)

∂I3
, ...

∂g(I, σ)

∂σ
=
∂f(I, σ)

∂σ
,
∂2g(I, σ)

∂σ2
=
∂2f(I, σ)

∂σ2
,
∂3g(I, σ)

∂σ3
=
∂3f(I, σ)

∂σ3
, ...

Then the basket of options keeps track of ∆V as is, therefore, a good hedge
strategy.

The non-mathematical explanation of the rationale behind this hedging strategy
is the following: if we are able to find a set of options that have the same sensibility
to the changes in I and σ, then we have found a good hedge.

In the previous two alternative strategies, a the derivatives firm looked for a new
counterparty who entered into a contract with the same exact details as the former
contract. This Taylor series strategy is easier to achieve as that contract must not
be the same, but just have the same sensibility to the changes in the variables I
and σ.

Because of their importance, the sensitivities

∂f(I, σ)

∂I
,
∂2f(I, σ)

∂I2
,
∂3f(I, σ)

∂I3

are called delta, gamma and omega, respectively.

Likewise, the sensitivities

∂f(I, σ)

∂σ
,
∂2f(I, σ)

∂σ2

are called vega and omega, respectively.

6I0 is observable in the market and σ0 is implicit in the quote of similar options.
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6.3 An example of target client of a derivatives firm

6.3.1 Dealing with the exposure to foreign exchange risk

Consider a business that periodically buys a commodity, processes it and then sells
a finished product to the market. The managers of the company know a priori
the N dates that the purchases of commodity will have to be made because the
company has closed contracts with several clients for this year. The company has
limited storing space for supplies, that is the reason why purchases have to be made
periodically.

In order to show how can foreign exchange risk arise, let us make three assump-
tions about this company: the price of the commodity it buys never changes, it
buys that commodity in the same currency as it sells its finished products and this
company finances its operations without the need of asking for loans nor any other
type of debt. Such a company faces several risks, namely7:

1. Non-financial risks:

(a) Legal risk: the risk of being sued over a transaction and the risk that the
terms of a contract will not be upheld by the legal system.

(b) Compliance risk: the risk derived from the matter of conforming to poli-
cies, laws, rules and regulations, as set by governments and authoritative
bodies.

(c) Model risk: the risk of a valuation error from improperly using a model,
by using the wrong model or using the right one incorrectly.

(d) Operational risk: the risk that arises from the people and processes that
the company combines to produce the output of the organisation.

(e) Solvency risk: the risk that the entity does not survive or succeed because
it runs out of cash, even though it might otherwise be solvent.

2. Financial risks:

(a) Credit risk: the risk of loss if one of its clients fails to pay an amount
owed on an obligation.

(b) Liquidity risk: the risk that stems from the lack of marketability of an
investment that cannot be bought or sold quickly enough to prevent or
minimise a loss.

Let us change one of the assumptions: assume that this company buys the
commodity in a foreign currency. Now this company faces a new financial risk:

Definition 6.1. Market risk is the risk derived from the uncertainties arising from
the movements in interest rates, stock prices, exchange rates and commodities8.

7Quoted from [7].
8Quoted from [7].
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In particular, if the foreign currency suddenly becomes expensive in terms of
the company’s local currency, the company’s costs rise. Of course, if that foreign
currency becomes cheap in terms of the company’s local currency, the company’s
costs decrease. This rising or decreasing of the costs and the management of that
company are completely unconnected. Still, a rise of costs can damage severely the
P&L of that company, so this problem must be tackled.

Derivatives offer an effective solution for this kind of business hazards. Many
derivatives would be fit for this company to avoid future foreign exchange uncer-
tainties. We mention two:

1. Buying a European call option on the foreign currency exchange rate with
expiry date one year from now and with N exercise dates.

The company buys the right but not the obligation of being able to exercise a
predetermined foreign exchange rate. Therefore, the danger of the foreign exchange
to rise is limited to this predetermined rate.

2. Buying a European call option on the foreign currency exchange rate with a
knock-out barrier with expiry date one year from now and with N exercise
dates.

The company has the same advantages as in the previous case but together with
one benefit and a disadvantage. The benefit is that the price of buying this option
is cheaper. The disadvantage is that if the level of the knock-out barrier is reached,
this company looses the protection that the derivative offers.
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7 Conclusions

On one hand, we have began studying the Cox-Ross-Rubinstein model, the discrete
model that assumes that prices of risky assets either go a little bit up or a little bit
down at each step. Once a certain number of steps have occurred, the model assigns
a probability to each discrete possible price, therefore allowing an expectation to
be computed with which the fair (risk-neutral) price of a derivative can be found.

Moreover, we have seen that if we shorten infinitely the time lapse between each
step, the valuation of European calls and puts (assuming that prices of risky assets
move according to the CRR model) is given by the Black-Scholes formula.

On the other hand, the Wiener process serves as a good model for random
continuous evolutions of prices of risky assets, but, as we have demonstrated, its
drawback is that it is not differentiable. This characteristic of the Wiener process
unveils the need of a different concept of integral. The stochastic integral allows
the definition of some “derivative of the Wiener process” with which stochastic
differential equations can be considered.

Finally, we have shown that the stochastic differential equation in which the price
of a risky asset moves with some random volatility around some linear tendency
(the stochastic differential equation that stems from the assumptions of the Black-
Scholes model) has a unique solution which is the model of the continuous evolution
of the prices of risky assets.
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8 Annex

8.1 Numerical methods

In this section, we study three of the many programs that [6] contains.

8.1.1 Pricing and hedging European options using the CRR model

This program prices European options using the CRR model and builds their asso-
ciated theoretical hedging strategy.

The principal idea that the author of [6] highlights when dealing with option
numerical method tasks is that programs should be built in a way such that adding
new components does not force the programmer to rearrange all the already written
code.

In order to reach that objective, the author of [6] argues that the code should
be casted in the style of object-oriented programming. The classes defined in the
program should reflect relationships between real entities; the binomial model and
European options in this case. If that principle is followed, not only the program
gives the desired output but it can also be expanded with new options without
interfering with existing files. We will explain how this is done in comments to
different parts of the code.

Listing 1: Main11.cpp
#include ”BinModel02 . h”
#include ” Options06 . h”
#include ”DoubDigitOpt . h”
#include ” St rang l e . h”
#include ” B u t t e r f l y . h”
#include <iostream>
#include <cmath>
using namespace std ;

int main ( )
{

BinModel Model ;

i f ( Model . GetInputData ( ) == 1) {
return 1 ;

}

Cal l Option1 ;
Option1 . GetInputData ( ) ;
BinLatt ice<double> RiskyDeltaHedgeCal l ;
BinLatt ice<double> Risk l e s sDe l taHedgeCa l l ;
cout << ”European c a l l opt ion p r i c e = ” <<
Option1 . PriceByCRR( Model , RiskyDeltaHedgeCall ,
R i sk l e s sDe l taHedgeCa l l ) << endl << endl ;
cout << ” RiskyDeltaHedgeCal l t r e e : ” << endl ;
RiskyDeltaHedgeCal l . Display ( ) ;

57



cout << ” Risk l e s sDe l taHedgeCa l l t r e e : ” << endl << endl ;
R i sk l e s sDe l taHedgeCa l l . Display ( ) ;

Put Option2 ;
Option2 . GetInputData ( ) ;
BinLatt ice<double> RiskyDeltaHedgePut ;
BinLatt ice<double> RisklessDeltaHedgePut ;
cout << ”European put opt ion p r i c e = ” <<
Option2 . PriceByCRR( Model , RiskyDeltaHedgePut ,
Risk lessDeltaHedgePut ) << endl << endl ;
cout << ”RiskyDeltaHedgePut t r e e : ” << endl ;
RiskyDeltaHedgePut . Display ( ) ;
cout << ” RisklessDeltaHedgePut t r e e : ” << endl << endl ;
Risk lessDeltaHedgePut . Display ( ) ;

DoubDigitOpt Option3 ;
Option3 . GetInputData ( ) ;
BinLatt ice<double> RiskyDeltaHedgeDoubDigitOpt ;
BinLatt ice<double> RisklessDeltaHedgeDoubDigitOpt ;
cout << ”European double−d i g i t a l opt ion p r i c e = ” <<
Option3 . PriceByCRR( Model , RiskyDeltaHedgeDoubDigitOpt ,
RisklessDeltaHedgeDoubDigitOpt ) << endl << endl ;
cout << ”RiskyDeltaHedgeDoubDigitOpt t r e e : ” << endl ;
RiskyDeltaHedgeDoubDigitOpt . Display ( ) ;
cout << ” RisklessDeltaHedgeDoubDigitOpt t r e e : ” << endl
<< endl ;
RisklessDeltaHedgeDoubDigitOpt . Display ( ) ;

S t rang l e Option4 ;
Option4 . GetInputData ( ) ;
BinLatt ice<double> RiskyDeltaHedgeStrangle ;
BinLatt ice<double> Risk l e s sDe l taHedgeSt rang l e ;
cout << ” St rang l e opt ion p r i c e = ” <<
Option4 . PriceByCRR( Model , RiskyDeltaHedgeStrangle ,
R i sk l e s sDe l taHedgeSt rang l e ) << endl << endl ;
cout << ” RiskyDeltaHedgeStrangle t r e e : ” << endl ;
RiskyDeltaHedgeStrangle . Display ( ) ;
cout << ” Ri sk l e s sDe l taHedgeSt rang l e t r e e : ” << endl
<< endl ;
R i sk l e s sDe l taHedgeSt rang l e . Display ( ) ;

B u t t e r f l y Option5 ;
Option5 . GetInputData ( ) ;
BinLatt ice<double> RiskyDeltaHedgeButter f ly ;
BinLatt ice<double> Risk l e s sDe l taHedgeBut t e r f l y ;
cout << ” B u t t e r f l y opt ion p r i c e = ” <<
Option5 . PriceByCRR( Model , RiskyDeltaHedgeButter f ly ,
R i sk l e s sDe l taHedgeBut t e r f l y )
<< endl << endl ;
cout << ” RiskyDeltaHedgeButter f ly t r e e : ” << endl ;
RiskyDeltaHedgeButter f ly . Display ( ) ;
cout << ” Ri sk l e s sDe l taHedgeBut t e r f l y t r e e : ”
<< endl << endl ;
R i sk l e s sDe l taHedgeBut t e r f l y . Display ( ) ;
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return 0 ;
}

• Comment on Listing 1:

Themain() function simply createsOption1, Option2, Option3, Option4 andOption5
and treats these objects by calling other functions of the program.

Listing 2: BinModel02.h
#ifndef BinModel02 h
#define BinModel02 h

class BinModel {
private :

double S0 ;
double U;
double D;
double R;

public :
// computing r i s k−neu t ra l p r o b a b i l i t y
double RiskNeutProb ( ) ;

// computing the s t o c k p r i c e at node n , i
double S( int n , int i ) ;

// Input t ing , d i s p l a y i n g and check ing model data
int GetInputData ( ) ;

double GetR ( ) ;
} ;

#endif

• Comment on Listing 2:

In this header file a new class of type BinModel is created. The objective of defining
this class is leaving out anything related to options in the binomial model and
making it to only consist of a market account and a stock.

Members of the BinModel class can either be private or public. The private
members of the class BinModel are only accessible in main() and other parts of the
program via this class. In contrast, public members of the class BinModel will be
accessible outside the class.

Observe that there are no variables mentioned in the parentheses that follow the
name of the functions in the class. The reason why these lines can be compiled is
that every member function of the class has access to variables specified as members
of the class. Note also that in this case all functions are public members, but this
need not be the general rule.
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Listing 3: BinModel02.cpp
#include ”BinModel02 . h”
#include <iostream>
#include <cmath>
using namespace std ;

double BinModel : : RiskNeutProb ( ) {
return (R − D) / (U − D) ;

}

double BinModel : : S ( int n , int i ) {
return S0 ∗ pow(1 + U, i )∗pow(1 + D, n − i ) ;

}

int BinModel : : GetInputData ( ) {
// en t e r ing data
cout << ” Enter S0 : ” ;
c in >> S0 ;
cout << ” Enter U: ” ;
c in >> U;
cout << ” Enter D: ” ;
c in >> D;
cout << ” Enter R: ” ;
c in >> R;
cout << endl ;

//making sure t ha t 0<S0 , −1<D<U, −1<R
i f ( S0 <= 0.0 | | U <= −1.0 | | D <= −1.0 | | U <= D | | R <=

−1.0) {
cout << ” I l l e g a l data ranges ” << endl ;
cout << ” Terminating program” << endl ;
return 1 ;

}

// check ing f o r a r b i t r a g e
i f (R >= U | | R <= D) {

cout << ” Arbi t rage e x i s t s ” << endl ;
cout << ” Terminating program” << endl ;
return 1 ;

}

cout << ” Input data checked ” << endl ;
cout << ”There i s no a r b i t r a g e ” << endl << endl ;

return 0 ;
}

double BinModel : : GetR ( ) {
return R;

}

• Comment on Listing 3:

Just like in Listing 2, the header of Listing 3, there are no declarations of parameters
passed to any member function whenever the parameters are members of the class.
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Listing 4: BinLattice02.h
#ifndef BinLatt i ce02 h
#define BinLatt i ce02 h

#include ”pch . h”
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std ;

template<typename Type> class BinLatt i ce {
private :

int N;
vector<vector<Type>> L a t t i c e ;

public :
void SetN ( int N ) {

N = N ;
L a t t i c e . r e s i z e (N+1);
for ( int n = 0 ; n <= N; n++) {

L a t t i c e [ n ] . r e s i z e (n+1);
}

}

void SetNode ( int n , int i , Type x ) {
L a t t i c e [ n ] [ i ] = x ;

}

Type GetNode ( int n , int i ) {
return L a t t i c e [ n ] [ i ] ;

}

void Display ( ) {
cout << s e t i o s f l a g s ( i o s : : f i x e d ) << s e t p r e c i s i o n ( 3 ) ;
for ( int n = 0 ; n <= N; n++) {

for ( int i = 0 ; i <= n ; i++) {
cout << setw (7) << GetNode (n , i ) ;
cout << endl ;

}
}

}
} ;

#endif

• Comment on Listing 4:

BinLattice is a class template with type parameter Type. Because a class template
can only be compiled after an object has been declared using the template with a
specific data type, there is no .cpp file corresponding to BinLattice02.h.

The BinLattice class consists of N+1 vectors whose components are vectors too.
This construction allows the program to build nodes. In these nodes, the strategy
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of how many shares and how much money in the account have to be kept at every
node will be stored.

Listing 5: Options06.h
#pragma once
#ifndef Options06 h
#define Options06 h
#include ”pch . h”

#include ”BinModel02 . h”
#include ” BinLatt i ce02 . h”

class EurOption {
private :

// s t e p s to exp i r y
int N;

public :
void SetN ( int N ) { N = N ; }
virtual double Payof f (double z ) = 0 ;
// p r i c i n g European opt ion
double PriceByCRR( BinModel Model ,
BinLatt ice<double>& x , BinLatt ice<double>& y ) ;

} ;

// computing c a l l payo f f
double Cal lPayo f f (double z , double K) ;

class Cal l : public EurOption {
private :

double K; // s t r i k e p r i c e
public :

void SetK (double K ) { K = K ; }
int GetInputData ( ) ;
double Payof f (double z ) ;

} ;

class Put : public EurOption {
private :

double K; // s t r i k e p r i c e

public :
void SetK (double K ) { K = K ; }
int GetInputData ( ) ;
double Payof f (double z ) ;

} ;

#endif

• Comment on Listing 5:

In Listing 5, the EurOption class is defined, referring to the entity of European
Options. Again, private members of the class can only be used by the rest of the
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program via the EurOption class. In contrast, public members can be used without
problem in the rest of the program.

All European Options have N steps to expiry and a payoff function. In this
program, European Options are priced using the CRR model, and their hedging
strategy is built under this model too. x and y will contain this hedging strategy.

In Listing 5 there are two subclasses of EurOption declared too: Call and Put.
These two subclasses have their own strike price K and their specific Payoff()
function attached to their class.

The crucial code line in this Listing is virtual double Payoff(double z) = 0;.
Because every different European Option has a different payoff function, the class
EurOption is built in such a way that the program will be able to differenciate
between different payoff functions of options inside the class. This job is possi-
ble because of this virtual function. Being declared as a virtual function in the
EurOption class makes it possible for Payoff() to recognise, at run time, when an
object of a subclass is passed to it via a pointer to the parent class: the version of
Payoff() belonging to that subclass is then executed.

Listing 6: Options06.cpp
#include ” Options06 . h”
#include ”BinModel02 . h”
#include ” BinLatt i ce02 . h”
#include <math . h>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std ;

double EurOption : : PriceByCRR( BinModel Model ,
BinLatt ice<double>& x , BinLatt ice<double>& y ) {
double q = Model . RiskNeutProb ( ) ;
vector<double> Pr ice (N + 1 , 0 ) ;
x . SetN (N) ;
y . SetN (N) ;
for ( int i = 0 ; i <= N; i++) {

Pr ice [ i ] = Payof f ( Model . S (N, i ) ) ;
}
for ( int n = N−1; n >= 0 ; n−−) {

for ( int i = 0 ; i <= n ; i++) {
x . SetNode (n , i , ( Pr i ce [ i +1]−Pr ice [ i ] ) /
( Model . S (n+1, i +1)−Model . S (n+1, i ) ) ) ;
y . SetNode (n , i , (1 / (pow(1 + Model . GetR ( ) , 1 ) ) )∗
( Pr i ce [ i ] − x . GetNode (n , i )∗Model . S (n+1, i ) ) ) ;
Pr i ce [ i ] = ( q∗Pr ice [ i + 1 ] + (1 − q )∗ Pr ice [ i ] ) /
(1 + Model . GetR ( ) ) ;

}
}
return Pr ice [ 0 ] ;

}

int Cal l : : GetInputData ( ) {
cout << ” Enter c a l l opt ion data : ” << endl ;
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int N = 0 ;
cout << ” Enter s t ep s to exp i ry N: ” ;
c in >> N;
SetN (N) ;
cout << ” Enter s t r i k e p r i c e K: ” ;
c in >> K;
cout << endl ;
i f (K < 0 | | N < 0) {

cout << ”Wrong data : n e i t h e r the s t r i k e p r i c e nor ”<<
” the number o f s t ep s to exp i ry can be negat ive ” << endl ;
return 1 ;

}
return 0 ;

}

double Cal l : : Payof f (double z ) {
i f ( z > K) {

return z − K;
}
return 0 . 0 ;

}

int Put : : GetInputData ( ) {
cout << ” Enter put opt ion data : ” << endl ;
int N = 0 ;
cout << ” Enter s t ep s to exp i ry N: ” ;
c in >> N;
SetN (N) ;
cout << ” Enter s t r i k e p r i c e K: ” ;
c in >> K;
cout << endl ;
i f (K < 0 | | N < 0) {

cout << ”Wrong data : n e i t h e r the s t r i k e p r i c e ”<<
”nor the number o f s t ep s to exp i ry can be negat ive ”
<< endl ;
return 1 ;

}
return 0 ;

}

double Put : : Payof f (double z ) {
i f ( z < K) {

return K − z ;
}
return 0 . 0 ;

}

• Comment on Listing 6:

This Listing contains the code that executes the CRR model price for an option.
Instead of using the closed formulas for calls and puts demonstrated in 2.3.,this
program uses an iterative process to compute prices such that can be used in a
EurOption general subclass. As the program computes that price, the hedging
strategy is being computed too and is saved in vectors x and y.
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Furthermore, the payoffs of Call and Put are coded in this Listing.

Listing 7: Strangle.h
#ifndef St rang l e h
#define St rang l e h
#include ”pch . h”
#include ” Options06 . h”
#include ”BinModel02 . h”

class St rang l e : public EurOption {
private :

double K1; // parameter 1
double K2; // parameter 2

public :
int GetInputData ( ) ;
double Payof f (double z ) ;

} ;

#endif

Listing 8: Strangle.cpp
#include ”BinModel02 . h”
#include ” Options06 . h”
#include ”DoubDigitOpt . h”
#include ” St rang l e . h”
#include <iostream>
using namespace std ;

int St rang l e : : GetInputData ( ) {
cout << ” Enter s t r a n g l e opt ion data ; ” << endl ;
int N;
cout << ” Enter s t ep s to exp i ry N: ” ;
c in >> N;
SetN (N) ;
cout << ” Enter parameter K1 : ” ;
c in >> K1;
cout << ” Enter parameter K2 : ” ;
c in >> K2;
cout << endl ;
return 0 ;

}

double St rang l e : : Payof f (double z ) {
i f ( z<=K1) {

return K1−z ;
}
i f (K2<z ) {

return z−K2;
}
return 0 ;

}
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Listing 9: DoubDigitOpt.h
#ifndef DoubDigitOpt h
#define DoubDigitOpt h
#include ”pch . h”
#include ” Options06 . h”
#include ”BinModel02 . h”

class DoubDigitOpt : public EurOption {
private :

double K1; // parameter 1
double K2; // parameter 2

public :
int GetInputData ( ) ;
double Payof f (double z ) ;

} ;

#endif

Listing 10: DoubDigitOpt.cpp
#include ”BinModel02 . h”
#include ” Options06 . h”
#include ”DoubDigitOpt . h”
#include <iostream>
using namespace std ;

int DoubDigitOpt : : GetInputData ( ) {
cout << ” Enter double−d i g i t a l opt ion data ; ” << endl ;
int N;
cout << ” Enter s t ep s to exp i ry N: ” ;
c in >> N;
SetN (N) ;
cout << ” Enter parameter K1 : ” ;
c in >> K1;
cout << ” Enter parameter K2 : ” ;
c in >> K2;
cout << endl ;
return 0 ;

}

double DoubDigitOpt : : Payof f (double z ) {
i f (K1<z && z<K2) {

return 1 . 0 ;
}
return 0 ;

}

Listing 11: Butterfly.h
#ifndef B u t t e r f l y h
#define B u t t e r f l y h
#include ”pch . h”
#include ” Options06 . h”
#include ”BinModel02 . h”
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class B u t t e r f l y : public EurOption {
private :

double K1; // parameter 1
double K2; // parameter 2

public :
int GetInputData ( ) ;
double Payof f (double z ) ;

} ;

#endif

Listing 12: Butterfly.cpp
#include ”BinModel02 . h”
#include ” Options06 . h”
#include ”DoubDigitOpt . h”
#include ” B u t t e r f l y . h”
#include <iostream>
using namespace std ;

int B u t t e r f l y : : GetInputData ( ) {
cout << ” Enter b u t t e r f l y opt ion data ; ” << endl ;
int N;
cout << ” Enter s t ep s to exp i ry N: ” ;
c in >> N;
SetN (N) ;
cout << ” Enter parameter K1 : ” ;
c in >> K1;
cout << ” Enter parameter K2 : ” ;
c in >> K2;
cout << endl ;
return 0 ;

}

double B u t t e r f l y : : Payof f (double z ) {
i f (K1<z && z<=(K1+K2)/2) {

return z − K1;
}
i f ( ( (K1+K2)/2)< z && z<=K2) {

return K2 − z ;
}
return 0 ;

}

• Comment on Listings 7, 8, 9, 10, 11 and 12:

These Listings show how the program can be expanded in order to add different
European options to be priced and hedged using the CRR model. Because the
program is built in an object-oriented manner, all that is needed is a .h file that
specifies that a new subclass of EurOption is built together with a .cpp in which
the specific Payoff() function is coded.
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8.1.2 Computing implied volatility using the Black-Scholes model

In this section we show a program that computes the implied volatility of a European
call. This can be done by assuming the Black-Scholes model holds, then looking at
the quoted prices of similar calls in the market and taking their price in the market
as an input to the Black-Scholes formula. I.e., instead of using the formula

C0 = S0 · Φ (−d−)− K

erT
· Φ (−d+)

with

d+ :=
1

σ
· log

(
K

S0

)
− rT

σ
+
σ

2

d− := d+ − σ

to compute C0, we use it to compute σ. In order to do so, the use of non-linear
solvers is required: the Bisection Method and the Newton-Raphson method.

Listing 13: EurCall.h
#ifndef EurCal l h
#define EurCal l h

class EurCall {
public :

double T, K;
EurCall (double T , double K ) { T = T ; K = K ; }
double d p lus (double S0 , double sigma , double r ) ;
double d minus (double S0 , double sigma , double r ) ;
double PriceByBSFormula (double S0 , double sigma , double r ) ;
double VegaByBSFormula (double S0 , double sigma , double r ) ;

} ;

#endif

• Comment on Listing 13:

This header file simply defines the EurCall class and its members.

Listing 14: EurCall.cpp
#include ” EurCall . h”
#include <cmath>
#include ”math . h”

double N(double x ) {
double gamma = 0.2316419 ;
double a1 = 0.319381530 ;
double a2 = −0.356563782;
double a3 = 1.781477937 ;
double a4 = −1.821255978;
double a5 = 1.330274429 ;
double pi = 4 .0∗ atan ( 1 . 0 ) ;
double k = 1 .0 / ( 1 . 0 + gamma∗x ) ;
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i f (x>=0.0) {
return 1 .0 − ( ( ( ( a5∗k+a4 )∗k+a3 )∗k+a2 )∗k+a1 )∗k∗
exp(−x∗x /2 .0 )/ s q r t ( 1 . 0∗ pi ) ;

}
else {

return 1.0− N(−x ) ;
}

}

double EurCall : : d p lus (double S0 , double sigma , double r ) {
return ( l og ( S0/K)+( r +0.5∗pow( sigma , 2 . 0 ) )∗T)/
( sigma∗ s q r t (T) ) ;

}

double EurCall : : d minus (double S0 , double sigma , double r ) {
return d p lus ( S0 , sigma , r ) − sigma ∗ s q r t (T) ;

}

double EurCall : : PriceByBSFormula (double S0 , double sigma ,
double r ) {
return S0 ∗ N( d p lus ( S0 , sigma , r ) ) − K ∗ exp(−r ∗T)∗
N( d minus ( S0 , sigma , r ) ) ;

}

double EurCall : : VegaByBSFormula (double S0 , double sigma ,
double r ) {
double pi = 4 .0∗ atan ( 1 . 0 ) ;
return S0 ∗ exp(−d p lus ( S0 , sigma , r )∗ d p lus ( S0 ,
sigma , r )/2)∗ s q r t (T) / s q r t ( 2 . 0∗ pi ) ;

}

• Comment on Listing 14:

This Listing contains the code of the public member functions defined in class
EurCall. The Black-Scholes formula for a Eurpean call demonstrated in 3.11.
is used. Notice that V egaByBSFormula is the derivative with respect to σ of
the formula in 3.11.. Another remarkable fact of these lines of code is that the
accumulated normal distribution function Φ is approximated by means of a rational
function and an exponential function so that Φ(x) for any x ∈ R can be executed
quickly.

Listing 15: Solver03.h
#ifndef So lve r03 h
#define So lve r03 h

template<typename Function>double SolveByBisect ( Function∗ Fct ,
double Tgt , double LEnd , double REnd, double Acc ) {
double l e f t = LEnd , r i g h t = REnd, mid = ( l e f t + r i g h t ) / 2 ;
double y l e f t = Fct−>Value ( l e f t ) − Tgt ,
y mid = Fct−>Value ( mid ) − Tgt ;

while ( mid − l e f t > Acc ) {
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i f ( ( y l e f t > 0 && y mid > 0) | | ( y l e f t < 0
&& y mid < 0) ) {
l e f t = mid ;
y l e f t = y mid ;

}
else {

r i g h t = mid ;
}
mid = ( l e f t + r i g h t ) / 2 ;
y mid = Fct−>Value ( mid ) − Tgt ;

}
return mid ;

}

template<typename Function> double SolveByNR ( Function∗ Fct ,
double Tgt , double Guess , double Acc ) {
double x prev = Guess ;
double x next = x prev − ( Fct−>Value ( x prev ) − Tgt ) /
Fct−>Deriv ( x prev ) ;

while ( x next − x prev > Acc | | x prev − x next > Acc ) {
x prev = x next ;
x next = x prev − ( Fct−>Value ( x prev ) − Tgt ) /
Fct−>Deriv ( x prev ) ;

}
return x next ;

}

#endif

• Comment on Listing 15:

This Listing implements the Bisection method and the Newton-Raphson method.
The attentive reader will have noticed that these methods have been implemented
in the form of templates. Because each option has a different Black-Scholes formula
(at least those options that do have a Black-Scholes formula), therefore each dif-
ferent option has a different derivative with respect to σ too. The fact that these
two functions are different for each option establishes the grounds for constructing
Bisection and Newton-Raphson lines of code that do not depend on those functions.
Thus, the use of templates solves that problem.

Further, the compiler can decide on how to compile the template functions by
looking at the first parameter passed to SolveByBisect() and SolveByNR. If
MyF1 is passed, it substitutes class F1 for the parameter Function when compil-
ing the code. When MyF2 is passed, then it substitutes F2, and compiles another
version of the code. There will be two different versions of SolveByBisect(), one to
work with class F1 and one with class F2, as well as two versions of SolveByNR()
in the compiled code. If more functions were involved, each with its own class, there
would be even more versions of SolveByBisect() and SolveByNR() in the compiled
code. This can result in long compile times and large .exe files. It may or may not
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be a price worth paying for gains in the speed of computation at run time9.

Listing 16: Main18.cpp
#include ” EurCall . h”
#include ” So lver03 . h”
#include <iostream>
using namespace std ;

class Intermediary : public EurCall{
private :

double S0 , r ;
public :

Intermediary (double S0 , double r , double T ,
double K ) : EurCall (T , K ) { S0 = S0 ; r = r ; }
double Value (double sigma ){

return PriceByBSFormula ( S0 , sigma , r ) ;
}
double Deriv (double sigma ) {

return VegaByBSFormula ( S0 , sigma , r ) ;
}

} ;

int main ( )
{

double S0 = 1 0 0 . 0 ;
double r = 0 . 1 ;
double T = 1 . 0 ;
double K = 1 0 0 . 0 ;
Intermediary Ca l l ( S0 , r , T, K) ;

double Acc = 0 . 0 0 1 ;
double LEnd = 0 .01 , REnd = 1 . 0 ;
double Tgt = 1 2 . 5 6 ;
cout << ” Impl ied v o l a t i l i t y by b i s e c t : ” <<
SolveByBisect (&Call , Tgt , LEnd , REnd, Acc )
<< endl ;
double Guess = 0 . 2 3 ;
cout << ” Impl ied v o l a t i l i t y by Newton−Raphson : ”

<< SolveByNR(&Call , Tgt , Guess , Acc ) << endl ;

return 0 ;
}

• Comment on Listing 16:

The function main() simply declares the inputs of the Black-Scholes formula and
calls the other functions in the program with the objective of computing the implied
volatility.

A remark must be made in these lines of code: a class called Intermediary
is defined. Such class serves as an intermediary between the EurCall class and

9Quoted from [5].
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the solvers, translating PriceByBSFormula() and V egaByBSFormula() into the
V alue() and Deriv() functions, which the solvers can understand10.

8.1.3 Pricing path dependent options by means of the Black-Scholes
model and Monte Carlo simulation

In this section we show how Path Dependent Options are priced using the Black-
Scholes model. We will explain the procedure that makes it possible: Monte Carlo
Simulation.

Listing 17: BSModel01.h
#include <ctime>
#pragma once

#ifndef BSModel01 h
#define BSModel01 h

using namespace std ;
#include <vector>

typedef vector<double> SamplePath ;

class BSModel{
public :

double S0 , r , sigma ;
BSModel (double S0 , double r , double s igma ) {

/∗ cons t ruc t i on func t i on ∗/
S0 = S0 ;
r = r ;
sigma = sigma ;
srand ( (unsigned int ) time (NULL) ) ;

}
void GenerateSamplePath (double T, int m, SamplePath& S ) ;

} ;

#endif

Listing 18: BSModel01.cpp
#include ”BSModel01 . h”
#include <cmath>

const double pi = 4 .0∗ atan ( 1 . 0 ) ;

double Gauss ( ) {
double U1 = ( rand ()+1.0) / (RAND MAX + 1 . 0 ) ;
double U2 = ( rand ( ) + 1 . 0 ) / (RAND MAX + 1 . 0 ) ;

return s q r t (−2.0∗ l og (U1) )∗ cos ( 2 . 0∗ pi ∗U2 ) ;
}

void BSModel : : GenerateSamplePath (double T, int m,

10Quoted from [5]
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SamplePath& S) {
double St = S0 ;
for ( int k = 0 ; k < m; k++) {

S [ k ] = St ∗ exp ( ( r−sigma∗ sigma ∗0 . 5 )∗
(T/m)+sigma∗ s q r t (T/m)∗Gauss ( ) ) ;
St = S [ k ] ;

}
}

• Comment on Listings 17 and 18:

Consider a money market account that continuously compounds interest rate r ∈ R:

A(t) = ert

where t > 0 denotes time.

Consider a risky asset whose price evolves under the Black-Scholes hypotheses:

S(t, ω) = S0e
rt−σ

2

2
t+σW (t,ω)

where σ ∈ R stands for the volatility and W (t, ω) is a Wiener process under a
measure of probability that is risk-neutral11.

Because W (t, ω)−W (s, ω) ∼ N(0, t− s) for any t > s, we can write

S(tk, ω) = S(tk−1, ω)e

(
r−σ

2

2

)
(tk−tk−1)+σ

√
tk−tk−1Zk

for tk = k
m

and k = 1, ...,m and where Z1, ..., Zm are copies of Z ∼ N(0, 1).

Definition 8.1. Let Ẑ1, ..., Ẑm be a sequence of independent samples of Z1, ..., Zm
respectively.

An ordered sequence
(
Ŝt1 , ..., Ŝtm

)
is called a sample path if

Ŝt1 = S0e
rt1−σ

2

2
t1+σ

√
t1Ẑ1

and

Ŝtk = Ŝtk−1
er(tk−tk−1)−σ

2

2
(tk−tk−1)+σ

√
tk−tk−1Ẑk , for k = 2, ...,m

The following theorem allows to generate a random number with distribution
N(0, 1):

Theorem 8.2. If U1, U2 are independent random variables with uniform distribu-
tion on an interval [0, 1], then the random variable

Z =
√
−2ln (U1)cos (2πU2)

has distribution N(0, 1).
11All the theory of discounted prices being martingales in the CRR model discussed in Chapter

2 works analogously for continuous price processes such as S(t, ω). The basic idea is that a risk-
neutral probability measure can be built in continuous time so that µ in Chapter 5 satisfies µ = r.
For further discussion on that topic the interested reader may refer to [3].

73



Proof. A proof of this theorem can be found in [1]. �

The former theorem receives the name of Box-Muller method. Listing 18 uses
this theorem: builds random integers k1 and k2 with function rand(), resizes them
so that they lie in the interval [0, 1] and then the Box-Muller method is computed.
That method is repeated m-times in order to obtain Ẑ1, ..., Ẑm, with which the
sequence Ŝt1 , ..., Ŝtm is computed

Listing 19: PathDepOption01.h
#ifndef PathDepOption01 h
#define PathDepOption01 h

#include ”BSModel01 . h”

class PathDepOption {
public :

double T;
int m;
double PriceByMC(BSModel Model , long N) ;
virtual double Payof f ( SamplePath& S) = 0 ;

} ;

class ArthmAsianCall : public PathDepOption {
public :

double K;
ArthmAsianCall (double T , double K , int m ) {

T = T ;
K = K ;
m = m ;

}
double Payof f ( SamplePath& S ) ;

} ;

#endif

Listing 20: PathDepOption01.cpp
#include ”PathDepOption01 . h”
#include <cmath>

double PathDepOption : : PriceByMC(BSModel Model ,
long N) {
double H = 0 . 0 ;
SamplePath S(m) ;
for ( long i = 0 ; i < N; i++) {

Model . GenerateSamplePath (T,m, S ) ;
H = ( i ∗H+Payof f (S ) ) / ( i +1 .0) ;

}

return exp(−Model . r ∗T)∗H;
}

double ArthmAsianCall : : Payof f ( SamplePath& S) {
double Ave = 0 . 0 ;
for ( int k = 0 ; k < m; k++) {
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Ave = ( k∗Ave+S [ k ] ) / ( k +1.0) ;
}
i f (Ave<K) {

return 0 . 0 ;
}

return Ave − K;
}

• Comment on Listings 19 and 20:

Definition 8.3. A path dependent option is a financial derivative with payoff H at
expiry date T such that:

h : Rm → R
(St1 , ..., Stm) 7→ h (St1 , ..., Stm) = H(T )

A typical example of path dependent option is the arithmetic Asian call, whose
payoff function is:

h (St1 , ..., Stm) =

(
1

m

m∑
i=1

Sti −K

)+

This is the kind of option that Listing 19 treats as ArthAsianCall, a subclass of a
class PathDepOption.

Listing 21: Main19.cpp
#include ”PathDepOption01 . h”
#include <iostream>
using namespace std ;

int main ( )
{

double S0 = 100 .0 , r = 0 .03 , sigma = 0 . 2 ;
BSModel Model ( S0 , r , sigma ) ;

double T = 1.0 / 12 . 0 , K = 1 0 0 . 0 ;
int m = 30 ;
ArthmAsianCall Option (T, K, m) ;

long N = 30000;
cout << ”Asian Cal l Pr i ce = ” <<
Option . PriceByMC( Model , N) << endl ;

return 0 ;
}

• Comment on Listing 21:

We say that
H(0) = e−rTE (H(T ))
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is the price of a path dependent option, where E stands for the expectancy under
the risk-neutral probability.

Let
(
Ŝit1 , ..., Ŝ

i
tm

)
, for i ∈ N, be a sequence of independent sample paths. By the

law of large numbers:

E (h (St1 , ..., Stm)) = lim
N→∞

1

N

N∑
i=1

h
(
Ŝit1 , ..., Ŝ

i
tm

)
Listing 21 gives a very large number for N , 30000 indeed, with which the price

of the Arithmetic Asian Call is computed.
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