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Abstract

This  review  summarizes  analytical  determinations  carried  out  using  antimony  film

electrodes (SbFEs), an environmentally safe option that constitutes an alternative not only

to the most conventional Hg-based electrodes but also to Bi-based electrodes. SbFEs offer

some  interesting  characteristics  such  as  favorably  negative  overvoltage  of  hydrogen

evolution, wide operational potential window, convenient operation in acidic solutions of

pH 2 or lower and a very small Sb stripping signal.  The substrate  on which the Sb was

plated is used to classify the types of SbFEs. Moreover, we detail the method of coating the

substrate with Sb as well as the Sb modifiers. We present tables with the most important

information from the accessible literature.

Keywords: Analytical determination; Antimony film, Antimony-coating method; Antimony

modified  glassy  carbon  electrode  (SbGCE);  Antimony  modified  carbon  paste  electrode

(SbCPE);  Antimony  modified  screen-printed  electrode  (SbSPE);  Environment-friendly
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1. INTRODUCTION

Stripping techniques are particularly suitable for trace and species analysis due to their high

sensitivity and selectivity, their capacity to multielement determination and their simple but

complete  instrumentation and their  relative low cost,  being particularly suitable  for the

determination of trace heavy metal ions in environmental samples [1]. The performance of

the stripping techniques is strongly influenced by the working electrode material. Mercury-

based  electrodes  have  been  extensively  used  not  only  for  inorganic  compounds

determination, such as for heavy metal analysis, but also for the determination of many

organic compounds, since they are very reproducible and have a wide cathodic window [2].

However, in the last years the potential toxicity of mercury vapors and mercury salts, and

the European Regulations on banning exports and safe storage of metallic mercury have led

to  the  development  of  alternative  electrodes  that  exhibit  an  analogous  electrochemical

behavior but lower toxicity. In 2001 bismuth film electrodes (BiFE) were introduced by

Wang et al. as substitutes of mercury electrodes demonstrating their applicability for heavy

metals analysis [3]. Since their presentation, bismuth-based electrodes became a valuable,

attractive  and  widely  used  alternative  to  common  mercury-based  electrodes  for

electroanalytical purposes being environment friendly and offering the features closest to

those  of  mercury  [4-6].  With  the  aim  of  developing new electrode  materials,  in  2007

Hocevar  and  coworkers  introduced  the  antimony  film  electrodes  (SbFEs)  for  the

determination  of  metal  ions.  SbFEs  feature  some  interesting  characteristics  such  as

favorably negative overvoltage of hydrogen evolution, wide operational potential window,

convenient operation in acidic solutions of pH 2 or lower (which is superior to that reported

for BiFEs) and a very small  stripping signal for antimony itself  under some conditions

[7,8]. Moreover, although antimony does not belong to the group of “green elements”, its

toxicity is markedly lower than that of mercury.

As in the case of Bi electrodes and among other considerations, two important aspects have

to be taken into account in the preparation of a Sb electrode: i) The substrate on which the

Sb will be plated; and ii) the selected antimony-coating method. 
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Sb can be  plated on different  supports  being the  carbon substrate  in  its  diverse  forms

(carbon paste, glassy carbon, screen-printed carbon ink…) the most important support for

the  preparation  of  the  Sb  film,  revealing  a  clear  advantage  over  the  metal  electrode

materials [9], although gold and platinum disk electrode as well as boron doped diamond

(BDD) were also used. 

Regarding on Sb-coating methods,  they are similar to those used for the preparation of

BiFEs [10]: (i)  In-situ plating method: the electrode is immersed directly into the sample

solution  containing  Sb(III)  ions  and  antimony  is  electrochemically  deposited  on  the

electrode surface during the analysis; (ii) ex-situ plating or preplated method: the electrode

is immersed into a Sb(III) solution and, after the application of an appropriate potential,

Sb(III) ions are reduced to metallic Sb and electroplated on the electrode surface; later, the

SbFE is rinsed carefully with ultra-pure water and then immersed into the sample solution;

(iii) the “bulk” method: the modification with Sb takes place during the preparation of the

electrode and involves the preparation of a mixture of carbon paste and antimony precursor

(Sb2O3);  Sb  precursor  is  later  electrochemically  reduced  to  metallic  Sb  at  a  selected

potential;  and (iv) the  sputtering method:  the thin film of  antimony is obtained by the

antimony sputtering on a silicon substrate.

Fig.  1  shows the  SEM images of  a  bare  (commercial)  screen-printed  carbon electrode

(SPCE),  as an example of carbon support for the preparation of the Sb electrodes,  and

different  antimony-coated  screen-printed  electrodes  (SbSPE).  The  scanning  electron

micrograph of the bare SPCE (Fig. 1A) shows a uniform carbon surface compared to the

other SbSPE surfaces (Fig. 1 B-D). The SEM image of an in-situ SbSPCE (Fig. 1B) shows

that its surface is different from that of the  ex-situ SbSPCE (Fig. 1C), in which the Sb

particles are bigger, brighter and more randomly dispersed than those observed on the in-

situ approach. The surface morphology of SbsputteredSPE (Fig. 1D) was the most different

from the rest  of SbSPE. The main differences are that the substrate of this electrode is

ceramic instead of carbon and that the Sb was sputtered directly on it, showing Sb particles

of different sizes which are bigger and more compact than those observed on the  ex-situ

SbSPCE.
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The possibility of preparation of Sb electrodes in a great variety of supports and suitable

substrate electrodes combined with the different methods for coating the substrate with Sb

significantly  extends  the  scope  and  applicability  of  the  antimony-based  electrodes  to

different environmental challenges. 

2. ANTIMONY FILM ELECTRODES 

Despite both the quantity of substrates available and the different coating methods, in most

cases the antimony film is plated on a carbon substrate via in-situ or ex-situ leading to an

antimony working electrode that is placed in a typical electrochemical cell together with a

platinum counter electrode and a conventional silver / silver chloride reference electrode.

Particularly,  the  screen-printed  electrode  approach  usually  integrates  in  a  same  strip  a

carbon  working electrode,  whose  surface  is  modified  with  antimony,  a  carbon  counter

electrode, and a silver or silver / silver chloride reference electrode. However, the antimony

screen-printed working electrode can also be placed in a conventional electrochemical cell.

For this review, SbFEs were categorized in four groups in agreement with the substrate on

which the Sb was plated. Moreover, the method of coating the substrate with Sb and the Sb

modifiers were also itemized.

The four considered categories are:

(1) Antimony modified glassy carbon electrode (SbGCE)
(2) Antimony modified carbon paste electrode (SbCPE)
(3) Antimony modified screen-printed electrode (SbSPE)
(4) Miscellaneous

2.1. Antimony modified glassy carbon electrode (SbGCE)

A major part of the investigations related to the applicability of a SbFE was performed

using  the  glassy  carbon  electrode  (GCE)  as  a  substrate  for  the  antimony  film.  The

significant  applications  of  antimony  modified  glassy  carbon  electrode  (SbGCE)  are

reported  in  Table  1.  As  it  can  be  seen,  in  a  significant  percentage  of  the  studies  the

antimony was coated on the glassy carbon substrate by means of the in-situ approach. Prior

to the formation of the Sb film via in-situ, the GCE should be polished using a suspension

of alumina particles of 50-300 nm diameter rinsed with purified water and methanol or

5

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125
126
127
128

129

130

131

132

133

134

135

136

9
10



ethanol for 5 min in an ultrasonic bath, and dried.  In stripping measurements with in-situ

SbGCE,  Sb(III)  ions  are  directly  added  into  the  sample  solution  containing  usually

hydrochloric acid (pH 2.0), in the concentration range 0.3–2 ppm being 1 ppm the most

common, and Sb is codeposited onto the bare glassy carbon electrode together with the

target  metal  /metals  [7,  9,  12-13,  15-17,  23-24,  30-31].  The  potential  and the  time  of

deposition are defined by the own analytical determination. Most of the authors,  before

each stripping measurement, perform a cleaning step by keeping the working electrode at

usually 0.3 V during 30 s. In other cases, a (1-5 %) Nafion solution [14, 28] was placed on

the surface of the GCE prior to the modification with Sb, or the Sb was plated on a GCE

through the poly p-aminobenzene sulfonic acid poly (p-ABSA) film [20] resulting in the

formation  of  the  NSbFE  and  Sb/poly(p-ABSA)FE,  respectively.  In  other  studies  the

addition  of  tartrate  to  the  measurement  solution  is  also  considered,  on the  one hand a

saturated  solution  of  hydrogen  potassium  tartrate  (pH  3.6)  is  used  as  a  complexing

supporting electrolyte [19] to prevent the precipitation of SbOCl that may otherwise occur

in diluted hydrochloric acid media [32]. On the other hand, in mildly alkaline solution (pH

9.0), potassium sodium tartrate is added to stabilize the Sb(III) [22]. The main use of the in-

situ SbGCE is the determination of heavy metals, especially Pb(II), Cd(II) and Zn(II), in

water  samples,  vegetables  or  even  urine  by  voltammetric  and  chronopotentiometric

techniques [7, 9, 24, 30-31, 14, 19-20, 28]. Characteristic voltammetric stripping signals

resulting from simultaneous measurements at increasing concentrations of Pb(II) and Cd(II)

using an in-situ SbGCE are illustrated in Fig. 2. In addition, a sequential injection-SWASV

method was applied for the simultaneous determination of Pb(II) and Cd(II) opening up the

possibilities for full automation of the measuring process [15-17]. The in-situ SbGCE were

also successfully used for the determination of In(III) and Tl(I) in water samples yielding

well-defined  and  separated  stripping  peaks  for  these  ions  [13,  19],  as  well  as  for  the

monitoring of trace levels of Hg(II) in the presence of Cu(II) [23]. Further, in-situ SbGCE

were also suitable for the determination of trace amounts of Sn(II) in canned fruit juices

[12]. Also, in-situ SbGCE in combination with adsorptive cathodic stripping regime allows

the measurement of trace levels of Ni(II) using DMG as complexing agent [22]. Another

in-situ approach is based on the simultaneous plating of bismuth and antimony into a GCE.

Bi–SbFE exhibited much better  response  to  Cd(II)  than  the  BiFE or  SbFE alone  [21].
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Moreover, in these studies the possible interferences related to the presence of some metal

ions and the influence of bioactive molecules, such as ascorbic acid and dopamine on the

analyte  stripping  voltammetric  response  of  the  antimony  film  electrodes  were  also

examined.

Ex-situ plated procedure is specially appropriated in such applications in which the in-situ

approach is not suitable, e.g.  at relatively high pH, where the Sb(III) hydrolysis occurs;

when  Sb(III)  ions  can  not  be  added  to  the  medium  (in  environmental  or  in-vivo

measurements); or in metal complexation studies, where the presence of Sb(III) ions in the

medium can completely disturb the speciation of the system [6, 8]. Prior to the formation of

the Sb film via ex-situ, the GCE should be polished and rinsed as it is mentioned above for

the  in-situ approach. After being dried, the GCE was immersed into the plating solution

usually containing 0.01 M HCl (pH 2.0) and 10-100 ppm Sb (III). Although, in a study in

which the antimony concentration for the film formation is optimized [29],  the highest

sensitivity  of  Cd(II)  and  Pb(II)  by  DPASV  was  found  at  4  and  8  ppm  of  Sb(III),

respectively. During the electrodeposition step a deposition potential in the range -0.5 V to

-1.20 V was applied during a deposition time of 45-150 s under stirring conditions [8, 11,

18, 26-27, 29]. GCE surface can be also modified with 5 % Nafion solution prior to the

modification with Sb [27]. As can be seen in Table 1, the studies using an ex-situ SbGCE

focus on both the determination of heavy metal ions [8, 27, 29], and the measurements of

organic  compounds  such  as  dopamine  and  ascorbic  acid  [11],  pantoprazole  [26]  and

sulfasalazine [18], in which  ex-situ SbGCE reveals a better electroanalytical performance

than  ex-situ BiGCE and bare  GCE.  Related to  the  metal  ion determination,  Pb(II)  and

Cd(II) were selected, in these studies, as model metal ions and their determination is carried

out in water samples usually by ASV. Nevertheless, some authors point out that for this

purpose the AdSV using pyrogallol red (PGR) as adsorbing and complexing ligand is more

sensitive than the ASV method [27].

Finally, a  SbGCE based on a Sb2S3-Nafion nanocomposites cast on a GCE works as an

Escherichia  coli DNA biosensor  using methylene  blue  as  the  electrochemical  indicator

[25].

2.2. Antimony modified carbon paste electrode (SbCPE)

As seen above, antimony film electrodes were successfully introduced into electroanalytical
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applications using a glassy carbon electrode as a substrate for the preparation of the film.

Nevertheless, similarly as bismuth film modified carbon paste electrode [33], the use  of

carbon  paste  as  alternative  substrate  for  the  antimony  film  was  also  examined.  In

comparison  with  glassy  carbon  electrodes,  carbon  paste  electrodes  have  the  additional

advantage of an easy surface renewal. Taking into account that carbon paste electrodes can

also be bulk-modified,  other studied approaches of SbCPE are based on a carbon paste

bulk-modified with antimony powder (Sb-CPE) [34-35] and with Sb2O3 powder (Sb2O3-

CPE)  [36].  The  different  applications  of  antimony  modified  carbon  paste  electrodes

(SbCPE) available in the literature are summarized in Table 2. Regardless of the Sb-coating

method, first of all is necessary to prepare the bare carbon paste electrode. Typically, the

carbon paste  mixture is  prepared by intimately hand mixing of two components:  0.5 g

graphite powder and 0.3 mL highly viscous silicone oil, which are homogenized to obtain a

mixture that is subsequently packed into an appropriate electrode holder providing a carbon

paste electrode support for the preparation of the antimony film [34-45]. The carbon paste

surface can be mechanically renewed when necessary, extruding ca. 0.5 mm of the paste

out of the electrode holder and smoothed with a filter paper. In the case of a Sb-CPE and a

Sb2O3-CPE, an appropriate amount of antimony powder (usually 17 % (w/w)) and Sb2O3

powder (3 % (w/w)) are also added to the mixture of both components resulting in a bulk-

modified carbon paste electrode, which does not require the subsequent plating of the film.

Regarding the bare CPE, once again, the in-situ approach is the most common method of

Sb-coating film.  Sb(III)  ions are  added to the  cell  in  a  concentration range 0.5-1 ppm

together with the desired concentration of target metal / metals in usually 0.01 M HCl

solution (pH 2.0), by the application of a deposition  potential during a deposition time,

which depends on the nature of the analysis. Then Sb is codeposited onto the bare carbon

paste electrode [9, 34, 37-42, 44]. Normally, before each measurement a pre-conditioning

step at the potential range of 0.1-0.3 V was applied for 30-60 s. Once more, the principal

use of this electrode is the determination of heavy metals, especially Pb(II) and Cd(II), in

water samples by voltammetric and chronopotentiometric stripping techniques [9, 34, 37-

38, 44]. The  in-situ SbCPE exhibited well-developed and separated stripping signals for

both Cd(II)  and Pb(II) with improved sensitivity  of  approximately  35% for Cd(II)  and

105% for Pb(II) in comparison with the glassy carbon counterpart (SbGCE) (Fig. 3). In
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addition,  in-situ SbCPE  exhibited  attractive  electroanalytical  characteristics  for

simultaneous chronopotentiometric stripping measurements of In(III),  Tl(I) and Zn(II) at

pH 2 [39], as well as for the voltammetric determination of Hg(II) [40] and Bi(III) [41] in

the presence of Cd(II), which functioned as an apparent catalyst, and for the voltammetric

determination  of  Cu(II),  in  which  in-situ SbCPE  exhibited  even  more  attractive

electroanalytical behaviour than the corresponding in-situ BiCPE [42]. Another convenient

method for the preparation of the Sb film over the CPE surface is via ex-situ, in which Sb

deposition was carried out using 10 mM antimony trichloride solution (in 0.02 M HCl) at a

deposition potential of -0.6 V for 100 s and then, the  ex-situ SbCPE is relocated to the

sample  solution  and applied to  the  determination of  Cd(II),  Pb(II)  and Cu(II)  in  water

samples; whereas for the analysis of Hg(II), Au was deposited along with Sb to make the

Sb–Au nanocomposite modified CPE [45]. Furthermore, CPE can be also modified ex-situ

by drop coating of different materials such as SbNP-MWCNT nanocomposite or Sbmicrosphere-

MWCNT. The application to the analysis of Pb(II) and Cd(II) indicates that the size of the

Sb particles on the coating layer influenced the oxidation current signals of Pb and Cd,

decreasing  in  the  order  ISb-nanoparticle>  ISb-film>  ISb-microsphere [44].  Another  in-situ  or ex-situ

approach is based on the simultaneous codeposition of Bi(III) and Sb(III) on the carbon

paste  surface,  in  which  the  determination  of  Cd(II)  and  Pb(II)  was  also  successfully

attempted resulting in a higher current response in comparison with electrodes electroplated

by individual metals [43].

2.3. Antimony modified screen-printed electrode (SbSPE)

Nowadays, the screen-printing technology is well-stablished for the production of thick-

film electrochemical transducers. This technology allows the mass production of numerous

highly-reproducible  single-use  screen-printed  electrodes  (SPEs)  with  an  accessible  and

low-cost  character.  The  coupling  of  these  disposable  SPEs  with  stripping  techniques

presents  an  attractive  alternative  to  more  conventional  electrode  supports  for  analytical

determinations [6, 46]. Table 3 summarizes the studies carried out on SbSPE. SPEs can be

produced in the own research group laboratories that possess screen-printed machines by

printing different inks on various types of plastic or ceramic holdings. However, currently

an increasing number of types of SPE can be commercially purchased from different firms

specialized in the design and mass production of instruments for electrochemical purposes
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(e.g.,  Dropsens,  PalmSens  Electrochemical  Sensor  Interface,  Pine  Research

Instrumentation, eDAQ, Metrohm, Micrux Technologies, etc). Similarly to other supports,

the working electrode of the SPE device can be modified via the usual Sb-coating methods.

Commonly,  carbon  is  the  preferred  material  for  the  working  electrode  surface  for  the

modification with Sb via  in-situ or  ex-situ  [10, 49, 51-52], although the working carbon

layer can also be modified with novel material such as 4 % (w/w) of MWCNTs and 4 %

(w/w)  of [Bmim]BF4  that were added into the graphite carbon ink [48]. For the “bulk”

modification approach Sb2O3, SnO2/Sb2O5, or SbIII(C2O4)OH were used as a metal precursor

which is loaded with graphite at different loadings during SPE fabrication [47, 50]. As can

be seen in Table 3, almost all studies, which use a SbSPE, focus again on quantification of

heavy metal ions in different water samples by means of stripping techniques [10, 52, 47-

50]. Nevertheless,  SbSPE prepared on-line and installed as part of a sequential injection

system, was also used as an electrochemical detector to determine azo dyes in food samples

[51]. Related to the metal determination, in the in-situ approach the Sb film was obtained

by the application of the corresponding deposition potential and time, depending on the

metal analysis, by co-electrodepositing together with the analyte / analytes 1 ppm Sb(III) in

hydrochloric acid solution (pH 1.53) in the case of Hg(II) determination [48]; and 0.5 ppm

Sb(III) in acetate buffer solution (pH 4.5) in the case of the simultaneous determination of

Pb(II)  and  Cu(II),  and  Cd(II),  Pb(II)  and  Cu(II)  [10].  Characteristic  stripping  signals

resulting from simultaneous measurements at increasing concentrations of Pb(II),  Cd(II)

and Cu(II) using an in-situ SbSPCE are illustrated in Fig. 4. Bi(III) and Sb(III) can be also

simultaneously  in-situ plated  to  the  SPCE  surface  from  a  solution  containing  a  total

concentration of Bi(III) and Sb(III) of 1.5 ppm in 0.1 M acetate buffer (pH 4.5), showing an

enhanced signal towards Pb(II) compared to BiSPE, SbSPE and Bi-SbGCE [49]. Also, the

determination  of  traces  of  Ni(II)  in  the  presence  of  dimethylglyoxyme  by  AdSV was

achieved  using  an  ex-situ SbSPCE,  demonstrating  the  suitability  of  this  approach  for

measurements of this metal. In this case, Sb film was ex-situ plated on the SPCE surface

using 50 ppm Sb(III) in 0.01 M HCl solution (pH 2.0) at a deposition potential of -0.5 V for

300 s [52]. The determination of Cd(II) and Pb(II) was also attempted using different bulk-

modified SPE [47, 50], being the  SbIII(C2O4)OH-SPE the one which produced the highest

sensitivity  for  both  considered  metal  ions.  In  all  Sb-coating  approaches,  before  each
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measurement a cleaning step is recommended in order to eliminate analyte traces from the

electrode surface.

2.4. Miscellaneous

Table  4  presents  antimony-based electrode  contributions  in  which  the  substrate  for  the

deposition of the Sb film is different from a glassy carbon, carbon paste or screen-printed

support. One of the approaches to prepare a  SbFE is based on an antimony nanoparticle

modified boron doped diamond (Sb-BDD) electrode, in which Sb film was performed in-

situ with the analytes, from a solution of 1 ppm Sb(III) in 0.1 M HCl (pH 1). The use of Sb

to  modify  BDD electrodes  improved simultaneous detection  of  Cd(II)  and Pb(II)  [54].

Another process of preparation of a SbFE consists in the  in-situ deposition of Sb film on

both a carbon fiber surface [57] and a pencil core rod [59]. This modification process takes

place in 0.01 M HCl (pH 2) solution with 1 ppm Sb(III) for the Sb film microelectrode

(SbFME) or 0.5 ppm for the  Sb film pencil core electrode together with the considered

analytes. Electrochemical characteristics of the SbFME are similar to those found at the

SbGCE and SbCPE, however the SbFME revealed higher current densities/responses for

tested heavy metal ions [57]. Sb film pencil core electrode was applied to the simultaneous

determination of Pb(II) and Cd(II) achieving much lower LOD than that of Bi film pencil

core  electrode  [59].  Although  carbon  substrates  are  the  most  common support  for  the

deposition of the Sb film, other approaches considered Au as a substrate in which Sb is

coated via in-situ [9], or a suspension of polystyrene spheres (0.3 % (w/w)) spread over an

Au surface in which Sb is ex-situ electrodeposited resulting in a macroporus SbFAuE [56].

In-situ SbFAuE was applied to the stripping determination of Pb(II), Cd(II) and Zn(II). In

comparison to a SbFE prepared on the GC surface which displays well-defined peaks for all

three considered analytes, the signals for Pb(II) and Cd(II) recorded with the SbFE prepared

on the Au substrate electrode are significantly lower and poorly developed and no signal for

Zn(II)  is  shown  due  to  the  high  hydrogen  evolution  contribution  [9].  In  contrast,

macroporus  SbFAuE  allows  the  simultaneous  determination  of  Pb(II)  and  Cd(II)  with

sensitivities more  than  three times higher than  using a  non-porous SbFE [56].  Another

approach to  achieve  the  determination  of  Ni(II)  with  dimethylglyoxime as  complexing

agent is based on the use of a sputtered SbFE. It should be pointed out that whereas no

stripping signals were obtained on ex-situ SbGCE, well-shaped stripping peaks for Ni(II)
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were obtained on sputtered SbFE [55].  The stripping determination of  trace Pb(II)  and

Cd(II) in water was also performed by a copper-based Cu-Sb/Sb composite film electrode

consisting  of  a  copper-antimony  alloy  transitional  layer  and  an  outer  electrodeposited

antimony film that was fabricated on a Cu substrate  [58]. Finally,  the determination of

sulfide in wastewater samples was also carried out using a Sb-based electrode, i.e., a SPE

modified with [SbVO(CHL)2]Hex,  which  shows a  good working stability  in  contrast  to

[SbVO(CHL)2]Hex-CME with no significant loss of their initial activity for more than 100

runs [53].

3. CONCLUSIONS AND FUTURE TRENDS

This  work  summarizes  the  analytical  determinations  available  in  the  literature  that  are

performed using different types of Sb-based electrodes. The good results achieved in most

of the reported studies together with their  low toxicity make the Sb-based electrodes a

suitable  alternative  not  only  to  the  most  conventional  electrodes  such  as  Hg-based

electrodes but also to Bi-based electrodes. For example, the limitations observed for the

determination of Cu(II) using an in-situ BiFE due to the competition of the electrodeposited

Cu(II) and the Bi(II) for surface sites [3] were overcome using an in-situ SbSPCE [10]. The

compiled contributions were categorized in four different groups in agreement with the

support in which the Sb can be coated: glassy carbon electrodes, carbon paste electrodes,

screen-printed  electrodes  and  miscellaneous.  In  each  category  the  advantages  and

limitations  of  the  considered  Sb  approaches  were  discussed.  It  can  be  concluded  that

regardless of the support selected for the Sb film formation, the carbon substrate is the

preferred support for the preparation of the Sb film, and the in-situ approach is the main Sb-

coating method used being more minority the  ex-situ,  “bulk”  and sputtered approaches.

However,  as  detailed  above,  some  Sb  modified  supports  such  as  the  introduction  of

different modifiers in the classical carbon paste mixture or new modified inks in the case of

the SPE were also successfully tested.

As can be seen from the presented tables, SbFE were largely applied to the determination of

heavy metal ions, particularly of Cd(II) and Pb(II) although other metals such as Cu(II),

Zn(II), Hg(II), Tl(I), In(III), Ni(II), Sn(II) and Bi(III) were also studied with large linearity

ranges. In most of the studies the obtained LODs and LOQs were very good, at levels of
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ppb,  and  similar  or  even  slightly  lower  than  those  achieved  using  Hg  or  Bi-based

electrodes.  Moreover,  SbFE  was  also  successfully  applied  to  the  analysis  of  organic

compounds such as dopamine,  ascorbic acid,  pantoprazole,  sulfasalazine,  allura red and

tartrazine.

The future trends for Sb-based electrodes should be aimed at enhancing their analytical

applications to more complex problems. This improvement could be achieved by expanding

their  application  to  other  inorganic  and  organic  analytes  in  samples  of  biological  or

environmental interest, and also reinforcing the pioneering results obtained with some Sb-

based electrodes.

SbFEs constitute an environmentally safe option that in combination with the relatively low

cost of the stripping techniques in comparison with other available techniques make them a 

suitable implement for analytical determinations.
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Caption to figures

Figure  1. Scanning  electron  micrographs:  (A)  Commercial  screen  printed  carbon

electrode  (SPCE);  (B)  antimony  film  coated  in-situ on  a  commercial  SPCE;  (C)

antimony  film  coated  ex-situ on  a  commercial  SPCE;  (D)  commercial  antimony

sputtered  screen-printed  electrode.  Resolution  of  1µm,  magnification  of  5,000x and

accelerating potential of 15.0 kV were used. Reproduced with permission from [10].

Figure 2. SWASV measurements at increasing concentrations of Cd(II) and Pb(II) from

20 to 140 ppb obtained at an in-situ prepared antimony film glassy carbon electrode (in-

situ  SbGCE) at  0.01 M HCl (pH 2) containing 1 ppm Sb(III).  The inset shows the

resulting calibration plots. Deposition at -1.2 V for 120 s, equilibration period of 15 s,

and cleaning step of 30 s at 0.1 V. Reproduced with permission from [7].

Figure 3. SWASV measurements at increasing concentrations of Cd(II) and Pb(II) from

5 to 50 ppb obtained at an in-situ prepared antimony film carbon paste electrode (in-situ

SbCPE) at 0.01 M HCl (pH 2) containing 0.5 ppm Sb(III). The inset shows the resulting

calibration plots. Deposition at -1.2V for 120 s, equilibration step of 15 s, and cleaning

step of 30 s at 0.1V. Reproduced with permission from [37].

Figure  4. DPASV measurements  at  increasing  concentrations  of  Cd(II),  Pb(II)  and

Cu(II) from 1.0 x 10-7 to 2.0 x 10-6 M on an  in-situ antimony screen-printed carbon

electrode  (in-situ SbSPCE)  at  acetate  buffer  solution  (pH 4.5)  containing  0.5  ppm

Sb(III). Deposition at -1.2 V for 120 s, equilibration step of 30 s, and cleaning step of 15

s at 0.5V.











Table 1. Antimony modified glassy carbon electrode (SbGCE). 

ASV: anodic stripping voltammetry, SCP: stripping chronopotentiometry, SbFE: antimony film electrode, DPV: differential pulse voltammetry, GCE: glassy carbon electrode,
BiFE: bismuth film electrode, AdSV: adsorptive stripping voltammetry, NSbFE: nafion antimony film electrode, NMFE: nafion mercury film electrode, NBiFE: nafion
bismuth film electrode, SIA: sequential injection analysis, SWV: square wave voltammetry, Bi-SbFE: bismuth and antimony film electrode, AdSCP: adsorptive stripping
chronopotentiometry, DMG: dimethylglyoxime, Sb-CdFE: antimony and cadmium film electrode, CV: cyclic voltammetry, CPE: carbon paste electrode, EIS: electrochemical
impedance spectroscopy, AA: ascorbic acid, DA: dopamine, LOD: limit of detection.

Ref.
Coating 
method

Analyte Technique Sample Detec. limit (ppb)
Linear range 
(ppb)

Additional information

[7] In-situ with 
Sb(III)

Pb, Cd ASV
SCP

--- 0.9 (Pb, td= 120 s)
0.7 (Cd, td= 120 s)

20-140 (Pb, Cd)  SbFE is reported for the first time as a possible

alternative for electrochemical stripping analysis
of trace heavy metals

 SbFE  revealed  favorable  electroanalytical

performance  similar  to  that  of  bismuth-  and
mercury-based electrodes 

 SbFE offers a remarkable performance in more

acidic solutions (pH ≤ 2)

[11] Ex-situ with
Sb(III)

Ascorbic 
acid (AA)

Dopamin
e (DA)

DPV AA 
tablets

DA 
injections

6.7 x 10-7 M (AA)
1.5 x 10-7 M (DA)

2.6 x 10-6-1.2 x 
10-3M (AA)
6.8 x 10-7-1.33 x
10-2M (AA)

 The potential  difference of oxidation  peaks of

DA and AA at the SbFE was 316 mV, which is
much larger than that (136 mV) at the bare GCE

 The simultaneous determination of DA and AA

was possible using the SbFE
[12] In-situ with 

Sb(III)
Sn(II) ASV Canned 

fruit 
juices 

0.5, td= 120 s 10-120  BiFE and SbFE are feasible for the voltammetric

determination of trace amounts of Sn(II) ion
 The  presence  of  cetyltrimethylammonium

bromide (CTAB) in the sample highly enhances
the response of the electrodes



 BiFE  and  SbFE  present  very  similar

performance characteristics

[8] Ex-situ with
Sb(III)

Pb, Cd ASV --- 0.3 (Pb, td= 60 s)
1.1 (Cd, td= 60 s)

25-80  Ex-situ SbFE  revealed  favorable

electroanalytical performance similar to that of
the  in-situ prepared  SbFE  and  comparable  to
bismuth- and mercury- based electrodes

 SbFE was also preliminary tested for measuring

low levels of Ni(II) using AdSV
[13] In-situ with 

Sb(III)
In, Tl(I) ASV River 

water
Tap water

8 (In, td= 120 s)
2 (Tl, td= 120 s)

20-100  SbFE yielded well-defined and separated from

each other stripping peaks for In and Tl(I), while
the peaks were completely overlapped with  in-
situ BiFE

 The  peaks  determined  with  SbFE show  much

better resolution as compared with unmodified
GCE

[14] In-situ with 
Sb(III)

Pb, Cd ASV Vegetable
Water 
sample

0.15 (Pb, td= 300 s)
0.3 (Cd, td= 300 s)

2-50  1 % Nafion solution was placed on the surface

of the GCE prior to the modification with Sb
 Compared  with  SbFE,  the  electrochemical

signals on the NSbFE were improved about 70%
for Pb and 50% for Cd

 In comparison with the NMFE, signals for Pb

and Cd at the NSbFE remarkably enhanced, and
the  resolution  between  Pb  and  Cd  was  also
improved.

 The  electrochemical  response  of  Cd  at  the

NSbFE was the same as that at NBiFE, however,
the sensitivity for Pb was improved

 In  the  presence  of  5  ppm  gelatin,  the  peak

heights at the NSbFE for Pb and Cd enhanced



over a bare SbFE
[15]
[16]
[17]

In-situ with 
Sb(III)

Pb, Cd ASV
ASV-SIA

Tap water
[16-17]

SbFE-batch
1.5 (Pb, td= 120 s)
1.7 (Cd, td= 120 s)

SbFE-SIA
1.2 (Pb, td= 100 s)
1.4 (Cd, td= 100 s)

SbFE-batch
4.7-120 (Pb)
5.2-100 (Cd)

SbFE-SIA
4-100 (Pb)
5-120 (Cd)

 ASV-SIA/SbFE  reduces  the  risk  of  sample

contamination,  requires  smaller  volumes  of
solution,  eliminates  majority  of  the  subjective
errors  that  may arise  in  the  measurement,  and
opens up the possibilities for full automation of
the measuring process

 KCl and KBr had a favorable effect on the shape

and intensity of the oxidation peaks of Cd and
Pb

 The presence of KSCN in the sample solution

allowed  a  multitarget  analysis,  i.e.,  additional
detection of Zn(II), Mn(II) or Cr(III) besides of
Cd(II) and Pb(II)

 BiFE  and  SbFE  have  shown  similar

performances
[18] Ex-situ with

Sb(III)
Sulfasala-
zine

SWV Pharma-
ceutical 
tablets

7.8 × 10−7 M 3 × 10−6-2.5 × 
10−4 M

 SbFE is  presented for the  first  time for direct

cathodic  voltammetric  measurement  of  an
organic compound

 The  SbFE  revealed  superior  electroanalytical

performance than ex-situ BiFE and bare GCE 
[19] In-situ with 

Sb(III)
Cd, Pb, 
Zn, Tl(1),
In, Cu(II)

ASV Rainwate
r

1.5 (Pb, td= 120 s)
0.06 (Pb, td= 360 s)
0.7 (Cd, td= 120 s)
1.0 (Tl, td= 120 s)
3.8 (Zn, td= 120 s)
1.4 (In, td= 120 s)
0.5 (Cu, td= 120 s)

5-100 (Pb)
2-100 (Cd)
2-100 (Tl)
20-200 (Zn)
10-100 (In)
2-50 (Cu)

 SbFE was prepared  in-situ in a new supporting

electrolyte,  a  saturated  solution  of  hydrogen
potassium  tartrate  in  which  Sb(III)  ions  were
complexed by tartrate

 The use of this electrolyte eliminates the risk of

SbCl3 hydrolysis in acidic media
 In  this  medium  (less  acidic  than  HCl),  the

potential window is wider and the voltammetric



signals  are  well-developed,  especially  in  the
case of Zn(II)

 Zn(II),  Cd(II)  and  Pb(II)  or  Zn(II),  Tl(I)  and

Pb(II) can be detected simultaneously
 The  simultaneous  determination  of  Tl(I)  and

Cd(II), Cd(II) and In(III), or Tl(I) and In(III) is
not  possible  due  to  the  strong  overlapping  of
their voltammetric signals

[20] In-situ with 
Sb(III)

Pb ASV Tap water 0.1, td= 240 s 0.5-150  Sb was plated on  a  GCE through the  poly  p-

aminobenzene  sulfonic  acid  poly  (p-ABSA)
film

 The  poly(p-ABSA)  film  can  protect  the

antimony surface against abrasion, adsorption of
surface-active  compounds  and  enhance  the
sensitivity  of  antimony  film  for  determining
heavy metals

 Compared with the commonly used SbFEs and

BiFEs  the  Sb/poly(p-ABSA)FE,  offers  a
remarkable  performance  in  more  acidic
solutions (pH≤2.0)

[21] In-situ with 
Bi(III) and 
Sb(III)

Cd ASV Tap water 0.15, td= 210 s 1-220  Bi–SbFE  is  reported  for  the  first  time  as  a

possible  alternative  for  electrochemical
stripping analysis of trace heavy metals

 Bi–SbFE  revealed  better  electroanalytical

performance than the BiFE and SbFE 



[22] In-situ with 
Sb(III)

Ni(II) AdSV
AdSCP

--- 0.11, td= 60 s 2-20  Tartrate  has  proven  to  be  an  appropriate

complexing  agent  preventing  hydrolysis  of
Sb(III) in the ammonia buffer solution (pH 9.0)

 Dimethylglyoxime  (DMG)  was  used  as

complexing agent
 In-situ SbFE  revealed  superior  performance

over  its  ex-situ prepared  analogue  and,
furthermore,  exhibited  auspicious
electroanalytical performance also under AdSCP
conditions

[23] In-situ with 
Sb(III)

Hg(II) ASV Real 
water 

0.39, td= 300 s 2.5-80  The  presence  of  Cu(II)  for  measuring  trace

concentration levels of Hg(II) is evaluated
 This  procedure  revealed  an  improved

electroanalytical  performance  of  the  SbFE
versus  SbFE  without  added  Cu(II),  and  also
versus  Sb-CdFE  and  BiFE,  exhibiting
comparable  results  to  some  gold-based
electrodes

[9] In-situ with 
Sb(III)

Pb
Cd
Zn

ASV
CV

Tap water

River 
water

>1 (Pb, Cd, Zn, td= 
240 s)

---  Five  different  substrate  electrodes  were

examined:  three  carbon-based  electrodes,  i.e.
carbon  fibre  microelectrode,  GCE  and  CPE
electrode, and two metal electrodes, i.e. Au and
Pt disc electrode 

 A clear advantage of the carbon based substrates

over the metal electrode materials is revealed
 The functioning of the  in-situ formed SbFE in

six different acidic media is inspected
 The  electrode  cleaning  step  is  of  essential

importance  due  to  the  formation  of  Sb



hydroxides/oxides  that  remain  adsorbed at  the
substrate  electrode  surface  after  the  anodic
stripping step is completed

[24] In-situ with 
Sb(III)

Pb
Cd
Zn

ASV --- --- ---  Mechanism  and  kinetics  of  anodic  stripping

electrode processes of Zn(II), Cd(II) and Pb(II)
at BiFE, SbFE and bare GCE have been studied

 Mechanisms and kinetics of the three metal ions

are  different  and  depend  significantly  on  the
electrode substrate

 Kinetics of electrode reactions can be estimated

by means of quasireversible maximum and the
peak potential  separation  between the  forward
and  backward  components  of  the  potential-
corrected SW voltammograms

 The electrode reactions at BiFE are faster than

at SbFE. The kinetics of all studied analytes is
rather fast and comparable at BiFE, whereas at
SbFE  the  kinetics  of  Zn(II)  is  significantly
slower compared to Cd(II) and Pb(II)

[25] Sb2S3-
Nafion 
nanocompo
sites

Escherich
ia Coli 
DNA

CV
EIS

2.4 x 10-13 M 1.0 x 10-12-1.0 x
10-7 M

 Sb2S3-Nafion was obtained by mixing rod-like

Sb2S3 and Nafion in alcohol solution
  The Sb2S3-Nafion nanocomposites were cast on

a GCE to fabricate a Sb2S3-Nafion/GCE
 The sulfonic groups on Nafion were transfered

to  sulfonyl  chloride  groups  by  PCl5,  and  the
obtained sulfonyl chloride groups were applied
to  the  covalent  immobilization  of  Escherichia
Coli gene related oligonucleotides



 Methylene  blue  (MB)  was  used  as  the

electrochemical indicator

[26] Ex-situ with
Sb(III)

Pantopra-
zole

SWV Pharma-
ceutical 
tablets

9.1 x 10-7 M 9.0 × 10−6-2.0 × 
10−4 M

 Determination of pantoprazole was based on the

electrochemical reduction of its sulfoxide group
 SbFE  exhibited  favorable  operation  capability

when compared to BiFE and bare GCE
[27] Ex-situ with

Sb(III)
Pb, Cd AdSV Certified 

water
2-mm diameter 
GCE
0.4 (Pb, td= 100 s)
0.5 (Cd, td= 100 s)

3-mm diameter 
GCE
0.9 (Pb, td= 100 s)
1 (Cd, td= 100 s)

0.9-12 (Pb, Cd)  5 % Nafion solution was placed on the surface

of the GCE prior to the modification with Sb
 Pyrogallol  red  is  used  as  adsorbing  and

complexing ligand in a solution of acetate buffer
 Using NSbFE deposited  ex-situ, AdSV is more

sensitive than the ASV method 

[28] In-situ with 
Sb(III)

Pb, Cd ASV --- Without AA and 
DA
0.05 (Pb, Cd, td= 
120 s) 

With AA or DA
0.015 (Pb, Cd, td= 
120 s) 

Without AA and
DA 
10-150

With AA or DA
See Fig. 7 in 
[28]

 5 % Nafion solution was placed on the surface

of the GCE prior to the modification with Sb
 The influence of AA and DA on the stripping

voltammetric response of SbFE was evaluated
 Nafion film prevented the biomolecular fouling

effect
 NSbFE  exhibited  higher  sensitivity  for

electrochemical stripping analysis of Cd and Pb
in  the  presence  of  AA  or  DA,  whereas
unmodified SbFE showed no separation of ASV
peaks for the metals



[29] Ex-situ with
Sb(III)

Pb,Cd ASV Tap water 0.6 (Pb, td= 140 s)
0.17 (Cd, td= 130 s)

2.28-559.4 (Pb)
6.63-331.6 (Cd)

 The  electrochemical  responses  of  Pb  and  Cd

were  improved in  comparison  with  bare  GCE
(LOD of Pb and Cd is 1.67 and 0.86 ppb on bare
GCE, respectively)

 Suitable  operation  in  acidic  solution  in  the

presence of dissolved oxygen
[30] In-situ with 

Sb(III)
Pb,Cd ASV Surface 

water
0.99 (Pb, td= 180 s)
1.21 (Cd, td= 180 s)

10-100 (Pb, Cd)  Well defined peaks of Pb and Cd were obtained

[31] In-situ with 
Sb(III)

Pb,Cd ASV Urine 
(Pb)

0.47 (Pb, td= 180 s)
0.78 (Cd, td= 180 s)

0-100 (Pb, Cd)  Cetyltrimethylammonium bromide (CTAB) was

used as sensitizer
 Well defined peaks of Pb and Cd were obtained



Table 2. Antimony modified carbon paste electrode (SbCPE).

ASV: anodic stripping voltammetry, SbCPE: antimony carbon paste electrode, Sb-CPE: carbon paste electrode bulk-modified with Sb powder, SbGPE: antimony glassy
carbon electrode, BiCPE: bismuth carbon paste electrode, MCPE: mercury carbon paste electrode, SCP: stripping chronopotentiometry, Bi-CPE: carbon paste electrode bulk-
modified  with  Bi  powder,  Sb2O3-CPE:  carbon  paste  electrode  bulk-modified  with  Sb2O3,  Bi2O3-CPE:  carbon  paste  electrode  bulk-modified  with  Bi2O3,  CV:  cyclic
voltammetry, SbNP-MWCNT: multiwalled carbon nanotubes modified with antimony nanoparticles. 

Ref.
Coating 
method

Analyte Technique Sample Detec. limit (ppb)
Linear range 
(ppb)

Additional information

[34] In-situ with 
Sb(III)

Sb powder

Pb, Cd ASV --- --- ---  Initial  studies  with  SbCPE  and  Sb-CPE  are

presented
 SbCPE  and  Sb-CPE  are  more  flexible  than

SbGCE thanks to the use of carbon paste-based
substrates which can be easily regenerated and
their properties controlled via the actual carbon
paste composition

 See more detailed information in Ref [35] 
[37] In-situ with 

Sb(III)
Pb, Cd ASV Lake 

water
0.2 (Pb, td= 120 s)
0.8 (Cd, td= 120 s)

5-50 (Cd, Pb)  The  SbCPE  exhibited  well-developed  and

separated stripping signals for both Cd and Pb,
and  with  improved  sensitivity  in  comparison
with the SbGCE

 In  comparison  with  BiCPE  and  MCPE,  the

SbCPE  exhibited  superior  electroanalytical
performance at pH 2

 SbCPE  and  MCPE  exhibit  comparable

performance for measuring trace concentration
levels of Zn(II) at  pH 2, whereas its detection
with BiCPE was practically impossible

[38] In-situ with Pd, Cd SCP --- --- 10-100 (Cd, Pb)  Sb(III)  ions  are  first  presented  as  chemical



Sb(III) oxidants  in  stripping  potentiometry,  exhibiting
considerably  moderate  and  selective  oxidizing
capabilities

 Stripping peaks were also obtained for In(III),

Tl(I) as Zn(II)
 The use of complexing media containing higher

concentrations  of  chloride  or  bromide  ions  is
especially recommended

[39] In-situ with 
Sb(III)

In, Tl(I), 
Zn

SCP --- 1.4 (Tl, td= 120 s)
2.4 (In, td= 120 s)
--- (Zn)

10-100 (In, Tl)
--- (Zn)

 SbCPE  exhibited  attractive  electroanalytical

characteristics  for  simultaneous  measurements
of In(III), Tl(I) and Zn(II) at pH 2

 SCP measurement  yielded  considerably  more

favorable responses for all three examined metal
ions than ASV 

 In  comparison  with  BiCPE  and  MCPE,  the

SbCPE exhibited advantageous electroanalytical
performance: at the BiCPE the measurement of
Zn(II)  was  practically  impossible  due  to
hydrogen evolution, whereas MCPE exhibited a
poorly developed signal for Tl(I)

[35] Sb powder Pb, Cd ASV
SCP

Tap water 0.9 (Pb, td= 120 s)
1.4 (Cd, td= 120 s)

20-120 (Cd, Pb)  A new  Sb  electrode  based  on  a  carbon  paste

bulk-modified  with  Sb  powder  (Sb-CPE)  is
presented

 CPE  with  17%  of  antimony  powder  was

selected
 Sb-CPE  displays  higher  voltammetric  signals

for both tested metals compared to Bi-CPE but
lower  signal  for  Cd(II)  in  comparison  with
SbCPE



[40] In-situ with 
Sb(III)

Hg(II) ASV River 
water

1.3, td= 150 s 10-100  Voltammetric measurements can be made in  a

wide potential window in highly acidic medium
 The presence of Cd(II), which functioned as an

apparent  catalyst,  allows  to  separate  peaks  of
Hg(II) and Sb(III)

 SbCPE  proved  to  be  more  competent  than

analogous bismuth-based electrodes
[41] In-situ with 

Sb(III)
Bi(III) ASV River 

water
1.55, td= 160 s 10-110  Voltammetric  measurements  are  carried  out  in

highly acidic medium in which antimony peak
is negligible

 Bi peak increased drastically in the presence of

Cd(II) which functioned as an apparent catalyst
[36] Sb2O3 

powder
Pb
Cd

ASV
SCP

Tap water ASV
0.7 (Pb, td= 90 s)
1.0 (Cd, td= 90 s)
SCP
1.0 (Pb, td= 90 s)
1.0 (Cd, td= 90 s)

10-100 (Pb, Cd)  CPE with 3% (w/w) of Sb2O3 powder was tested
 The  signals  obtained  at  the  Sb2O3-CPE  were

well-developed and comparable in  both height
and shape to those obtained at the Bi2O3-CPE

 In contrast to SbCPE, the Sb2O3-CPE performed

well in mild acidic media (with pH about 4.5),
as  well  as  in  more  acidic  solutions  of  diluted
HCl (with pH 1-2)

[42] In-situ with 
Sb(III)

Cu(II) ASV River 
water

1) 1.45, td= 120 s
2) 1.10, td= 60 s

1) 0-120
2) 0-100

 Two  new  voltammetric  procedures  were

elaborated:  1)  Cu(II)  was accumulated from a
medium of  0.01  M HCl,  and  2)  Pyrocatechol
Violet was used as a chelating ligand

 When compared with analogous bismuth-based

electrodes,  SbCPE  exhibited  even  more
attractive electroanalytical behavior

[9] In-situ with 
Sb(III)

Pb
Cd
Zn

ASV
CV

Tap water

River 

>1 (Pb, Cd, Zn, td= 
240 s)

---   See comments in Table 1



water
[43] In-situ or 

ex-situ with
Bi(III) and 
Sb(III)

Pb
Cd

ASV --- In-situ
0.9 (Pb, td= 300 s)
0.8 (Cd, td= 300 s)
Ex-situ
1.4 (Pb, td= 300 s)
1.1 (Cd, td= 300 s)

10-70  An  optimum  concentration  ratio  c(Sb)/[c(Sb)

+c(Bi)]  was  around  0.7  when  in-situ
electrodeposition was applied and around 0.8 at
ex-situ platting

 Compared  with  electrodes  electroplated  by

individual  metals,  current  responses  obtained
within  reoxidation  of  both  metal  ions  tested
were  favorably  higher  when  related  with
measurements at codeposited films

[44] In-situ with 
Sb(III) 

Ex-situ 
drop with 
SbNP-
MWCNT

Pb
Cd

ASV Wheat 
flour 
material

0.65 (Pb, td= 120 s)
0.77 (Cd, td= 120 s)

10-60  SbNP-MWCNT nanocomposite electrode based

on the carbon paste substrate was optimized
 An  enhancement  in  the  current  signal  was

achieved  in  comparison  with  those  obtained
with  in-situ SbCPE  and  Sbmicrosphere-MWCNT
composite CPE

 High surface area and the enhancement of mass

transport  at  the  SbNP-MWCNT  electrode
resulted in a high signal-to-noise ratio

[45] Ex-situ with
Sb(III)

Ex-situ with
Sb(III) and 
Au(III)

Cd
Pb
Cu(II)
Hg(II)

ASV Lake 
water

Ground 
water

2.65 (Pb, td= 300 s)
2.32 (Cd, td= 300 s)
9.73 (Cu, td= 300 s)
0.052 (Hg, td= 300 
s)

See inset Figure
5 in [45] (Pb, 
Cd)
25-150 (Cu)
0.5-2 (Hg)

 SbCPE was used for the analysis of Cd, Pb and

Cu,  whereas  for the analysis  of  Hg, gold was
deposited  along  with  Sb  to  make  the  Sb–Au
nanocomposite modified CPE

 Cd and Pb ions were determined simultaneously
 Cu was determined separately and the pH of the

solution  was  the  most  crucial  factor  and  was
optimized to a value of 6



Table 3. Antimony modified screen-printed electrode (SbSPE). 

ASV:  anodic  stripping  voltammetry,  Sb2O3-SPE:  screen-printed  electrode  bulk-modified  with  Sb2O3,  Bi2O3-SPE:  screen-printed  electrode  bulk-modified  with  Bi2O3,
SPSbFE/MWCNT: multiwalled carbon nanotubes modified screen-printed antimony film electrode, SPSbFE/IL: ionic liquid [Bmim]BF 4-modified screen-printed antimony
film electrode, Bi-SbSPE: bismuth and antimony screen-printed electrode, BiSPE: bismuth screen-printed electrode, SbSPE: antimony screen-printed electrode, Bi-SbGCE:
bismuth and antimony glassy carbon electrode, SbIII(C2O4)OH-SPE: screen-printed electrode bulk-modified with SbIII(C2O4)OH, SnO2/Sb2O5-SPE: screen-printed electrode
bulk-modified with SnO2/Sb2O5, LOD: limit of detection, SbSPCE: antimony screen-printed carbon electrode, BiFE: bismuth film electrode, BiSPCE: bismuth screen-printed
carbon electrode, SIA: sequential injection analysis, HPLC: High-performance liquid chromatography, DPV: differential pulse voltammetry, AdSV: adsorptive stripping
voltammetry, DMG: dimethylglyoxime, BisputteredSPE: sputtered bismuth screen-printed electrode.

Ref.
Coating 
method

Analyte
Techniqu
e

Sample Detec. limit (ppb)
Linear range 
(ppb)

Additional information

[47] Bulk-
modified with
Sb2O3

Pb, Cd ASV --- 20 (Cd, td= 600 s) 20-100 (Cd)  The best composition established is 0.9-1.0 %

(w/w) in the carbon ink
 Sb2O3-SPE displays higher quantification limit

for Cd than Bi2O3-SPE at the same conditions
 Pb cannot be determined on the Sb2O3-SPE by

the  possibly  formation  of  some  stable
intermetallic compound 

[48] In-situ with 
Sb(III)

 Hg(II) ASV Tap water 
Wastewater

SPSbFE/IL:
0.36, td= 120 s

SPSbFE/IL:
20-140

 MWCNTs-modified  screen-printed  antimony

film  electrode  (SPSbFE/MWCNT)  and  ionic
liquid  [Bmim]BF4-modified  screen-printed
antimony  film  electrode  (SPSbFE/IL)  were
developed

 SPSbFE/IL  provides  the  largest  stripping

current for Hg(II)
 The  SPSbFE/MWCNT  offers  more  sensitive

responses to Pb than the bare one

[49] In-situ with Pb ASV River water 0.07, td= 240 s 0.1-90  Bi-SbSPE  shows  an  enhanced  signal  towards



Bi(III) and 
Sb(III)

Pb compared to BiSPE, SbSPE and Bi-SbGCE
 There  is  a  synergistic  effect  existing  among

Bi(III)  and  Sb(III)  when  the  simultaneous
deposition/stripping take place

[50] In-situ with 
Sb(III)

Bulk-
modified with
Sb2O3, 
SnO2/Sb2O5, 
and 
SbIII(C2O4)O
H

Pb, Cd ASV Mineral 
water

SbSPE: 
1.0 (Pb, td= 240 s)
2.7 (Cd, td= 240 s)

Sb2O3-SPE:

0.9 (Pb, td= 240 s)
2.5 (Cd, td= 240 s)

SnO2/Sb2O5-SPE:

1.1 (Pb, td= 240 s)
1.8 (Cd, td= 240 s)

SbIII(C2O4)OH-
SPE

1.1 (Pb, td= 240 s)
3.5 (Cd, td= 240 s)

5-45 (Pb ) 
10-90 (Cd)

 Some new types of electroplated and precursor-

modified  screen-printed  antimony  and  tin
electrodes were developed 

 A  comprehensive  comparison  of  the  new

sensors  was performed against  the  benchmark
electroplated  and  precursor-modified  screen-
printed Bi electrodes. 

 Provided  LOD  values  are  similar  to  those

obtained on BiSPE for Cd (2.3 ppb) and Pb (1.2
ppb)

 SbIII(C2O4)OH-SPE  together  with  BiSPE,

produced the highest sensitivity for both Cd and
Pb.

[10] In-situ with 
Sb(III)

Cd, Pb, 
Cu(II)

ASV Groundwate
r

Ed= -1.2 V
5.0 (Pb, td= 120 s)
3.4 (Cd, td= 120 s)
1.6 (Cu, td= 120 s)

Ed= -0.7 V

4.8 (Pb, td= 120 s)

Ed= -1.2 V
16.8-62.6 (Pb)
11.5-72.4 
(Cd)
5.3-99.8 (Cu)

Ed= -0.7 V

 In-situ SbSPCE  is  proposed  as  a  valuable

alternative  to  in-situ BiFEs,  since  no
competition  between  the  electrodeposited  Cu
and Sb for surface sites was noticed

 An Ed of -0.7 V and -1.2 V for the simultaneous

detection  of  Pb  and  Cu(II)  and  Cd,  Pb  and
Cu(II),  respectively  provide  the  best



0.28 (Cu, td= 120 
s)

16.1-55.5 (Pb)
0.95-54.8(Cu)

voltammetric response 
 Cu(II)  LODs  obtained  in  this  work  are

significantly lower than those provided by  in-
situ BiSPCE

[51] Ex-situ with 
Sb(III)

Allura 
red (AR),
Tartrazin
e (T)

DPV-SIA Candies
Gelatin
Corn flour
based
Isotonic 
drink

0.3 μM (AR, T) 1.0-5.0 μM 
(AR, T)

 SbSPE used  as  an  electrochemical  detector  to

determine azo dyes in food samples
 SbSPE could be easily renewed on-line without

affecting the analytical parameters
 DPV-SIA provided  determinations  comparable

to those obtained by HPLC reference method
[52] Ex-situ with 

Sb(III)
Ni(II) AdSV Wastewater 0.9, td= 120 s 3.1-197  Ex-situ SbSPCE  behaves  much  better  (lower

LOD and higher  sensitivity)  than  both  ex-situ
BiSPCE  and  BisputteredSPE  for  Ni(II)
determination

 Dimethylglyoxime  (DMG)  was  used  as

complexing agent at pH 9.2
 The  ex-situ protocol  avoids  the  Sb(III)

hydrolysis occurring at relatively high pH



Table 4. Miscellaneous. 

[SbVO(CHL)2]Hex-SPE: screen-printed electrode bulk-modified with [SbVO(CHL)2]Hex, CV: cyclic voltammetry, ASV: anodic stripping voltammetry, SbBDD: antimony 
nanoparticle modified boron doped diamond, BDD: boron doped diamond, AdSV: adsorptive stripping voltammetry, DMG: dimethylglyoxime, SbFE: antimony film 
electrode, Macroporus SbFAuE: macroporous antimony film electrodes, SbFME: antimony film microelectrode, SbGCE: antimony glassy carbon electrode, SbCPE: antimony
carbon paste electrode, BiFME: bismuth film microelectrode, SbFAuE: antimony film gold electrode, GCE: glassy carbon electrode, CPE: carbon paste electrode, LOD: limit 
of detection. 

Ref. Electrode Analyte Technique Sample Detec. limit (ppb)
Linear range 
(ppb)

Additional information

[53] [SbVO(CHL)2]
Hex-printed
electrodes

Sulfide CV wastewater 5 μM 0.01-0.7 mM  The fabrication of SPEs with a mixture of 5%

(w/w)  [SbVO(CHL)2]Hex/graphite  powder  in
1.5%  (w/v)  ethyl  cellulose  in  2-butoxyethyl
acetate,  as  well  as  their  behavior  as
electrocatalysts toward the oxidation of sulfide
are described

 [SbVO(CHL)2]Hex-SPE showed good working

stability  in  contrast  to  [SbVO(CHL)2]Hex-
chemically modified electrodes 

[54] Sb 
nanoparticles 
modified BDD
(SbBDD)

Pb
Cd

ASV --- Pb
Bare BDD
41.8, td= 120 s
SbBDD
18.5, td= 120 s

Cd
Bare BDD
150, td= 120 s
SbBDD

Pb 
Pb+Cd
50-500 (Bare 
BDD, SbBDD)

Cd
250-500 (Bare 
BDD, SbBDD)

 Sb deposition was performed in-situ
 The  detection  of  Pb  and  Cd  as  individual

analytes was not improved by the presence of
Sb, particularly evident in the case of Cd

 Pb  inhibited  the  detection  of  Cd  during

simultaneous  additions  at  the  bare  BDD
electrode, whereas in the presence of Sb, both
peaks  were  readily  discernable  and
quantifiable



150, td= 120 s

Pb and Cd
Bare BDD
25.7 (Pb, td= 120 s)
SbBDD
25.4 (Pb, td= 120 s)
38.1 (Cd, td= 120 s)

[55] Sputtered 
SbFE

Ni(II) AdSV --- 0.2, td= 60 s 0-30  The electrode was microfabricated by coating

a  silicon  chip  with  a  thin  antimony-film  by
means of sputtering and the active area of the
electrode was defined by photolithography

 Dimethylglyoxime  (DMG)  was  used  as

complexing agent at pH 9.2
 Well-formed Ni stripping peaks were obtained

on  sputtered  SbFE,  whereas  no  stripping
signals were obtained on ex-situ SbGCE

[56] Macroporus 
SbFAuE

Pb
Cd

ASV --- Porous SbFE
0.5 (Pb, td= 100 s)
0.7 (Cd, td= 100 s)
Non-porous SbFE
1.8 (Pb, td= 100 s)
2.8 (Cd, td= 100 s)

20-120 (Pb, Cd)  Colloidal crystal templating has been used to

electrochemically  deposit  three-dimensional
macroporous antimony films

 A suspension  of  polystyrene  spheres  (0.3  %

(w/w))  was spread  over  of  a  gold  electrode.
Antimony is then infiltrated in the polystyrene
opal by ex-situ electrodeposition 

 The sensitivity of the porous SbFE was more

than  three times higher  for both metals  than
non-porous SbFE

[57] SbF micro- Pb ASV Natural 3.1(Pb, td= 120 s) 20-100 (Pb, Cd)  Sb deposition was performed in-situ



electrode 
(SbFME)

Cd
Cu(II)

water (Cu) 1.9 (Cd, td= 120 s)
1.0 (Cu, td= 120 s)

5-150 (Cu)  Electrochemical characteristics of the SbFME

are similar to those found at the SbGCE and
SbCPE,  however  SbFME  revealed  higher
current  densities/responses  for  tested  heavy
metal ions

 In  comparison  with the  BiFME,  the  SbFME

exhibited favorably lower hydrogen evolution
and  associated  wider  applicable  potential
window, and rather lower response for Pb

[58] Cu-Sb/Sb 
composite 
film electrode

Pb
Cd

ASV --- 0.08 (Pb)
0.25 (Cd)

1-100 (Pb, Cd)  The electrode  was first  prepared  to  obtain  a

copper-antimony alloy layer on the surface of
a  copper  substrate.  Then,  an  Sb  film  was
plated  on  the  alloy  layer  by  electrolytic
deposition potentiostatically

 The  prepared  Cu-Sb/Sb  composite  film

electrode  possesses  low  cost,  long  term
stability,  low  toxicity,  high  sensitivity  and
good reproducibility

[9] In-situ 
SbFAuE

Pb
Cd
Zn

ASV
CV

Tap water

River water

>1 (Pb, Cd, Zn, td= 
240 s)

---  See comments in Table 1

[59] SbF pencil 
core electrode

Pb
Cd

ASV Tap water 0.13 (Pb, td= 180 s)
0.49 (Pb, td= 300 s)
0.075 (Cd, td= 180 s)
0.048 (Cd, td= 300 s)

4-10, 15-65 (Pb,
Cd, td= 180 s)
4-10, 15-50 (Pb,
Cd, td= 300 s)

 A pencil core rod was used as the substrate for

SbFE 
 Sb deposition was performed in-situ
 SbF pencil core electrode shows a lower LOD

than that of BiF pencil core electrode
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