
1 
 

Screen-printed electrodes for the determination of iridium in drugs 

 

Marc Zaguirre, Cristina Ariño*, Núria Serrano, José Manuel Díaz-Cruz and Miquel Esteban 

 

Departament of Chemical Engineering and Analytical Chemistry. Faculty of Chemistry. University 

of Barcelona. Martí i Franquès, 1-11, E-08028 Barcelona (Spain). 

*Corresponding author. Phone: (+34) 93 402 15 45. Fax: (+34) 93 402 12 33. E-mail: 

cristina.arino@ub.edu 

 

Abstract 

Among the impurities that must be controlled in drugs and pharmaceuticals, metal ions are 

considered. These metal impurities appear in those products because of their use as catalysts. 

Although Pharmacopeias recommend ICP based methods for their determination, the use of 

electroanalytical techniques can be considered as a sensible, selective and non-expensive 

alternative for the determination of heavy metal ions in general and metal impurities in 

particular. In the present work, we propose a differential pulse voltammetric method based on 

the use of carbon based-screen-printed electrodes (graphite, nanotubes or nanofibers) that 

allows the determination of iridium in drugs at the concentration limits recommended by official 

organisms. Carbon screen-printed electrode modified with nanotubes (CNT-SPCE) is the sensor 

that provided the best LOD and LOQ (0.03 and 0.10 mg L-1 respectively). Then, the proposed 

method was applied to the voltammetric determination of iridium in spiked drug samples 

purchased in local chemists using CNT-SPCE. 
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Introduction 

Organic and inorganic compounds and residual solvents are the three types of impurities that 

must be controlled in drugs and in their ingredients, and by extension in certain foods and 

dietary supplements because of their potential toxic effects in humans [1-6]. Inside inorganic 

impurities, metals like iridium, rhodium, ruthenium and osmium must be considered. These 

metals, classified as Class 1B by the European Agency for the Evaluation of Medicines (EMEA), 

can be introduced during the manufacturing process and their concentration must be controlled 

in the final product as impurities. Table 1 shows the exposure and the concentration limits of 

different metals according EMEA [2].  

To control their presence in drugs and pharmaceutical, methodologies with high sensitivity and 

selectivity must be developed to substitute the traditional procedures described in all 

international pharmacopoeias for metal impurities determination that have serious limitations. 

In this sense, a method used for monitoring inorganic contaminants in drugs is based on a classic 

colorimetric test described in the USP General Chapter <231> [7]. This method is based on the 

precipitation of sulfide compounds after reaction with thioacetamide, in which the resulting 

colored precipitate is compared visually to a 10 mg L-1 Pb(II) standard solution to determine 

compliance with the heavy metal limit concentration. Besides the associated error with the 

subjective visual comparison, this method is only useful for Ag, As, Bi, Cd, Cu, Hg, Mo, Pb, Sb and 

Sn. Thus, this method can neither provide selectivity nor give individual concentration of each 

particular element.  In addition, it cannot be used to determine elements like chromium or 

platinum group elements that are commonly used as catalysts. To solve this problem, USP 

General Chapter <233> [3] recommends the use of multi-element techniques like inductively 

coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) instead of the colorimetric test described above. Relevant papers 

devoted to the determination of elemental impurities in pharmaceutical products by ICP based 

techniques have been published in the last years [6,8-11]. However, the high cost of the required 

instrumentation appears as the main drawback of these methods. In this point, electroanalytical 

techniques can be considered as a sensible, selective and non-expensive option for the 

determination of heavy metals in general and metal impurities in particular. In the literature, a 

great number of papers devoted to the analysis of some of these analytes have been published 

[12-16]. In these papers as well as in the works cited therein, a lot of metal ions, matrices and 

electrodes have been considered. However, the number of works devoted to the determination 

of elements of platinum group and in particular to iridium was very scarce. Locatelli [17-19] 

proposes a voltammetric determination method for iridium in natural samples by square wave 
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adsorptive-catalytic stripping voltammetry (SWAdCSV) in a glassy carbon electrode at pH 4.8 

media containing NaBrO3 and L-1-cetyltrimethylammonium bromide (CTAB) allowing very 

favorable detection limits. Svancara et al. [20] consider a carbon paste electrode modified with 

a surfactant for the determination of platinum group elements both in model solution and in 

real industrial wastewaters. In any case, the use of screen-printed electrodes (SPE) has not been 

considered for the analysis of iridium. On the other hand, the number of publications 

considering the use of electroanalytical techniques for the analysis of metal impurities in drugs 

is very limited, as far as we know, only a work by Guna et al. [21] aims on the development of a 

potentiometric sensor for the analysis of some metal ions in drugs and pharmaceuticals. In this 

work, although a great number of metal ions have been considered no reference to iridium 

appears. 

In the present work, a simple voltammetric methodology using carbon based screen-printed 

electrodes has been proposed for the analysis of iridium in drugs at the levels recommended by 

official organisms. The screen-printed electrodes considered were a graphite screen-printed 

electrode (SPCE), a carbon screen-printed electrode modified with carbon nanotubes (CNT-

SPCE) and a carbon screen-printed electrode modified with nanofibers (CNF-SPCE). The 

proposed differential pulse voltammetric methodology was applied to the determination of 

iridium in spiked commercial drugs using a CNT-SPCE as the optimal sensor. 

 

2. Experimental  

2.1 Reagents 

Ir(IV) working solutions were prepared by the appropriate dilutions of an atomic standard 

solution of 1.000 g L-1 of Ir(IV)  from Sigma-Aldrich (St. Louis, USA). Ultrapure sulphuric acid 

(Merck, Darmstad, Germany) was used to control the pH and as supporting electrolyte. 

All solutions were prepared in ultrapure water obtained from a Milli-Q plus 185 system, 

Millipore. 

Adolonta® and Trigon® drug samples were purchased in local chemists. 

2.2 Apparatus 

Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments were performed 

in a µAutolab Type III (Ecochemie, The Netherlands) coupled to a Metrohm 663VA Stand 
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(Metrohm, Switzerland) and a personal computer with GPES version 4.9 data acquisition 

software (Ecochemie). 

The electrochemical experiments were carried out using different working electrodes: i) a 

graphite screen-printed electrode (SPCE) referenced as DRP-110 (DropSens, Oviedo, Spain); ii) a 

carbon screen-printed electrode modified with carbon nanotubes (CNT-SPCE) referenced as 

DRP-110CNT (DropSens); and iii) a carbon screen-printed electrode modified with carbon 

nanofibers (CNF-SPCE) referenced as DRP-110CNF (DropSens). As reference and auxiliary 

electrodes, external Ag/AgCl/KCl (3 mol L-1) and carbon electrodes were respectively used unless 

otherwise indicated. It should be pointed out that internal reference and auxiliary electrodes of 

the screen-printed devices were also considered in some of the performed experiments. 

2.3 Voltammetric measurements 

Voltammetric measurements were performed by introducing in the voltammetric cell a certain 

volume of standard or sample solution in 0.016 mol L-1 H2SO4 media. Instrumental parameters 

were 50 mV of pulse amplitude with a modulation time of 50 ms applied at interval times of 0.5 

s. The cathodic scan rate applied was from 1.1 V to 0.35 V. After each measurement, a 

conditioning potential of 1.1 V was applied during 30 s to remove possible residues of iridium 

from the electrode surface. When measurements were performed in drop (using the three-

electrode cell of the SPE), the measuring solution was prepared in a volumetric flask and a drop 

of the solution was deposited on the surface of the CNT-SPCE covering the area of the three 

electrodes. Instrumental parameters were equal to those considered in cell measurements. 

 

3.- Results and discussion 

To characterize the electrochemical redox processes of Ir(IV) solution, cyclic voltammetric 

experiments were performed using a SPCE. Figure 1 shows a cyclic voltammogram of 60 mg L-1 

Ir(IV) solution in 0.016 mol L-1 H2SO4 media using a scan rate of 100 mV s-1. Scans were performed 

from 1.2 V to -0.5 V and returned to 1.2 V. Two well-defined cathodic peaks close to 0.8 V (peak 

1) and 0.63 V (peak 2) were observed together with their respective anodic peaks close to 0.83 

V (peak 1’) and 0.70 V (peak 2’), pointing out the reversibility of the redox processes. The 

cathodic peaks can be attributed to the reduction of Ir(IV) to Ir(III) (peak 1) and of Ir(III) to Ir(0) 

(peak 2), and the respective anodic ones to the reverse processes (peak 1’ and peak 2’). The 

analysis of the dependence of the peak current intensity in front of the square root of the scan 

rate (from 10 mV s-1 to 1000 mV s-1) was considered showing a linear relation between both 
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parameters which indicates that all the processes are controlled by diffusion (results not shown). 

Moreover, at potentials from -0.3 V and 0.15 V some small signals are also observed (peaks 3, 4 

and 3’) that can be associated to catalytical signals related with protons [22,23]. 

Figure 2 shows the differential pulse voltammogram of 40 mg L-1 Ir(IV) solution in 0.016 mol L-1 

H2SO4 media using a SPCE in which two peaks corresponding to the reduction of Ir(IV) to Ir(III) 

(peak 1) and of Ir(III) to Ir(0) (peak 2) can be observed. With the aim to stablish which of both 

peaks is the most appropriate for analytical purposes, different studies were performed 

considering the three screen-printed electrodes above indicated: SPCE, CNT-SPCE and CNF-

SPCE. The obtained results obtained are shown in Table 2. Reproducibility for each electrode 

was computed from 5 independent measurements of a 60 mg L-1 Ir(IV) solution using 5 different 

units; whereas repeatability was obtained from 10 consecutive measurements of the same 

solution carried out using the same SPE unit. As it can be seen in this table, reproducibility and 

repeatability results obtained for each peak at each considered SPE pointed out that peak 1, 

corresponding to the reduction process of Ir(IV) to Ir(III),  performs better than peak 2 (reduction 

process of Ir(III) to Ir(0)). Therefore, peak 1 will be further considered for analytical purposes. 

Moreover, according to the obtained results, it can be concluded that CNT-SPCE would be the 

more convenient sensor in term of reproducibility and repeatability. 

With the aim to establish the optimal concentration range for the determination of Ir(IV), DPV 

measurements of different solutions containing Ir(IV) from 0.1 mg L-1  to 100 mg L-1  in 0.016 mol 

L-1 H2SO4 media using the three considered SPEs were performed. Figure 3a shows the obtained 

voltammograms using a SPCE. Again, it can be observed the presence of two overlapped peaks 

corresponding to peak 1 and peak 2. The obtained calibration plot is shown in Figure 3b. This 

plot presents two different lineal ranges from 0.1 to 10 mg L-1, and around 10 mg L-1 to 100 mg 

L-1, being 100 mg L-1 the highest concentration considered. Similar results were observed for the 

other studied SPEs (results not shown). Taking into account that the interest is related to the 

determination of Ir(IV) at low concentrations, in the following the lower linear range will be 

considered. Thus, linear calibration curves were carried out by DPV using SPCE, CNT-SPCE and 

CNF-SPCE by measuring increasing concentrations of Ir(IV) ranging from 0.1 to 10 mg L-1  (Figure 

4). The obtained voltammograms confirm that the peak 1 is the most appropriate for analytical 

purposes because the height of peak 2 is lower and appears at higher Ir(IV) concentrations. 

Calibration data for the determination of Ir(IV) using SPCE, CNT-SPCE and CNF-SPCE are reported 

in Table 3. Sensitivities were calculated as the slope of the calibration curves and limits of 

detection (LOD) and quantification (LOQ) were computed as 3 and 10 times, respectively, the 
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standard deviation of the intercept over the slope of the calibration plot. The LOQ was 

considered as the lowest value of the linear concentration range. 

As it can be seen in Table 3, the lowest LOD was achieved using a CNT-SPCE. Although CNF-SPCEs 

usually provide better LODs [23], it must be pointed out that in this study, the baseline obtained 

with CNF-SPCE shows a great contribution of capacitive currents in comparison to that of the 

other SPEs considered that leads to higher LODs. From these studies, it can be concluded that 

taking into account that the objective is to determine low concentrations of Ir(IV) in drugs and 

the reproducibility and repeatability results (Table2), the optimal sensor for this aim is a SPCE 

modified with CNTs. 

In order to test the applicability of this methodology to a real drug, the analysis of Ir(IV) was 

attempted in drug samples purchased in local chemists. The considered drugs were Adolonta® 

that contains, as active pharmaceutical ingredient (API), tramadol hydrochloride that it is used 

for the treatment of moderate to severe pain, and Trigon® that contains triamcinolone 

acetonide as API and it is used as anti-inflammatory drug. For their analysis these samples were 

previously spiked with Ir(IV). The level of Ir(IV) added was evaluated taking into account the 

recommended dose of the API per day, the recommended limit concentration of iridium per 

day, and the sample dilution required to obtain the measuring solution in 0.16 mol L-1 H2SO4 

media. According to these points, samples of Adolonta® and Trigon® were spiked with an Ir(IV) 

concentration that results in 0.666 mg L-1  and 1.333 mg L-1 m respectively in the measuring 

solution. The external calibration method was applied for quantification and the obtained 

results are shown in Table 4. Proper recoveries were achieved pointing out that this 

methodology is appropriate for the analysis of Ir(IV) at these levels of concentration in drugs by 

DPV in CNT-SPCE.  Moreover, this determination was also performed considering the particular 

properties of SPEs that allow carrying out the determination using only a drop sample since the 

three electrodes of the electrochemical cell are integrated in the device. The good results 

obtained considering the drop analysis are also shown in Table 4. 

From these studies it can be concluded that CNT-SPCEs are very suitable for the determination 

of Ir(IV) in drug samples by DPV at the concentration levels between 0.10 and 10 mg L-1, which 

has allowed the detection of concentration levels lower than the maximum concentration level 

recommended per day. 
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Conclusions 

In this work the voltammetric determination of Ir(IV) in drugs using carbon based- SPEs (SPCE, 

CNT-SPCE or CNF-SPCE) was studied as a sensible, selective and non-expensive alternative to ICP 

based methods. Cyclic voltammetric measurements show that the reversible and diffusion 

controlled reduction process of Ir(IV) in a 0.016 mol L-1 H2SO4 media takes place in two steps, 

first the reduction of Ir(IV) to Ir(III) and later the reduction of Ir(III) to Ir(0). Studies performed 

by DPV show that the peak related to the Ir(IV) to Ir(III) reduction process is the most appropriate 

for analytical purposes. Figures of merit of the procedure show that the best sensor is that 

modified with nanotubes (CNT-SPCE) providing both the lower LOD and LOQ values (0.03 and 

0.10 mg L-1 respectively), and the best repeatability and reproducibility. Then, the proposed 

method was successfully applied to the voltammetric determination of iridium in spiked drug 

samples purchased in local chemists using a CNT-SPCE, providing good reproducibility and 

trueness inferred by the RSD and the relative error respectively. 
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Table 1. Classification and recommended limits of concentration of elemental impurities [2]. 

Classification Oral exposure Parental exposure Inhalation 
exposure 

PDE***  
(µg per day) 

Concentration 
(mg L-1) 

PDE  
(µg per day) 

Concentration 
(mg L-1) 

PDE  
(ng per day) 

Class 1A: Pt, Pd 100 10 10 1 Pt: 70* 

Class 1B: ** Ir, Ru, 
Rh, Os 

100 10 10 1  

Class 1C: Mo, Ni, 
Cr, V 

Metals with 
significant safety 

control 

250 25 25 2.5 Ni: 100 
Cr(IV): 10 

Class 2: Cu, Mn 
Metals with low 
safety concern 

2500 250 250 25  

Class 3: Fe, Zn 
Metals with minimal 

safety concern 

13000 1300 1300 130  

*Pt as hexachloroplatinate 
**The total amount of listed metals should not exceed the indicated limit 
***PDE: Permitted daily exposure 
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Table 2.- Reproducibility and repeatability obtained measuring a solution of 60 mg L-1 of Ir(IV) in 

0.016 mol L-1 H2SO4 media by DPV using the SPCE, CNT-SPCE and CNF-SPCE.  

 SPCE CNT-SPCE CNF-SPCE 

Peak 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2 

Reproducibility 
(RSD %) 

6 10 1 4 5 10 

Repeatability 
(RSD %) 

5 8 2 1 2.5 4 
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Table 3.- Calibration data, obtained by DPV using SPCE, CNT-SPCE and CNF-SPCE.  

Working 
electrode 

Calibration plota R2 LOD (mg L-1) LOQ (mg L-1) Concentration 
range (mg L-1) 

SPCE y = -0.1332 x + 0.0072 0.9945 0.05 0.15 0.15 - 10 

CNT-SPCE y = -0.1136 x + 0.0214 0.9939 0.03 0.10 0.10 - 10 

CNF-SPCE y = -0.1321 x + 0.0374 0.9997 0.14 0.48 0.48 - 10 

a y peak current in µA and x Ir(IV) concentration in mg L-1 
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Table 4.- Results obtained in the analysis of drugs spiked with Ir(IV). Measurements performed 

by DPV using CNT-SPCE as working electrode in cell or in drop. Standard deviation are denoted 

by parenthesis (n=3).  

Adolonta®  Expected Found 

In cell c (mg L-1) 0.666 0.68 

 RSD (%) -- 6.1 

 Relative error (%) -- 1.7 

In drop c (mg L-1) 0.666 0.68 

 RSD (%) -- 3.4 

 Relative error (%) -- 1.6 

Trigon®  Expected  

In cell c (mg L-1) 1.333 1.32 

 RSD (%) -- 6.5 

 Relative error (%) -- 1.3 

In drop c (mg L-1) 1.333 1.32 

 RSD (%) -- 5.05 

 Relative error (%) -- 1.07 
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Figure 1.- Cyclic voltammogram of a 60 ppm Ir(IV) solution in a 0.016 mol L-1 H2SO4 media 

measured with a SPCE. Scan rate 100 mV s-1. 

 

Figure 2.- Differential pulse voltammogram of a 20 ppm Ir(IV) solution in a 0.016 mol L-1 H2SO4 

media measured with a SPCE.  

 

Figure 3.- a) Peak current vs. Ir(IV) concentration plot, and b) voltammograms measured at 

increasing Ir(IV) concentration from 0.04 to 100 ppm in a 0.016 mol L-1 H2SO4 media measured 

with a SPCE. 

 

Figure 4.- Differential pulse voltammograms of Ir(IV) solutions from 0.04 to 10 ppm measured 

with SPCE, CNT-SPCE and CNF-SPCE in a 0.016 mol L-1 H2SO4 media. Insets show the 

corresponding calibration plots. 
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