Gene Expression Profile in Frontal Cortex in Sporadic Frontotemporal Lobar Degeneration-TDP

Pol Andrés-Benito, MSc, Ellen Gelpi, MD, PhD, Mónica Povedano, MD, Gabriel Santpere, PhD, and Isidro Ferrer, MD, PhD

Abstract

Molecular alterations compromising key metabolic pathways are poorly understood in sporadic frontotemporal lobar degeneration with TDP-43 pathology (sFTLD-TDP). Whole-transcriptome array, RT-qPCR validation, gel electrophoresis, and Western blotting, and mitochondrial electron transport chain (ETC) activity were comparatively examined in frontal cortex (area 8) of 16 sFTLD-TDP cases and 14 controls. Assessment of 111 genes by RT-qPCR showed deregulation of 81 genes linked to neurotransmission and synapses, neuronal architecture, cytoskeleton of axons and dendrites, vesicle trafficking, purines, mitochondria, and energy metabolism in sFTLD-TDP. Western blotting studies disclosed downregulation of several mitochondrial subunits encoded by genomic DNA and MT-CO1 encoded by the mitochondrial DNA. Mitochondrial ETC activity of complexes I, IV, and V was decreased in sFTLD-TDP. These findings provide robust information about downregulation of genes involved in vital biochemical pathways and in synaptic

neurotransmission which may help to increase understanding about the biochemical substrates of clinical manifestations in sFTLD-TDP.

Key Words: Energy metabolism, Frontotemporal lobar degeneration, Mitochondria, Neurotransmission, Purines, Synapses, TDP43.

INTRODUCTION

Frontotemporal dementia is a progressive neurological disorder characterized by deterioration of personality, behavior, language, and cognition, with marked individual variations, and in the majority of patients is due to frontotemporal lobar degeneration (FTLD). This term stresses the progressive loss of neurons in the frontal and temporal lobes as the cause of the principal neurological symptoms. FTLD is not a unique disease but covers several unrelated conditions: 1) FTLD-tau is identified by the abnormal tau deposition in neurons and glial cells, which in turn encompasses sporadic and genetic forms associated with mutations in MAPT, the gene coding for protein tau; and 2) FTLD-U, which is characterized by the presence of intraneuronal ubiquitin-immunoreactive inclusions. Subsequent studies have demonstrated the heterogeneity of FTLD-U, including FTLD-TDP-43 proteinopathy, FTLD-FUS proteinopathy, and FTLD-UPS, lacking TDP-43 and FUS inclusions (1-3).

FTLD-TDP-43 proteinopathy (FTLD-TDP) is clinically manifested by behavioral-dysexecutive disorder, primary progressive aphasia and/or motor disorders including motor neuron disease; macroscopically, by frontal and temporal atrophy, commonly symmetrical, variable involvement of the basal ganglia and substantia nigra; and microscopically, by neuron loss in the cerebral cortex, microvacuolation in the upper cortical layers, astrogliosis, and TDP-43-immunoreactive inclusions in the nucleus and/or cytoplasm of neurons and oligodendocytes, and in neuropil threads (1-3). Some cases are sporadic (sFTLD-TDP) whereas other are genetic, often familial (fFTLD-TDP) and linked to mutations in different genes including GRN (progranulin), C9ORF72 (chromosome 9 open reading frame 72), TARDP (TAR DNA-binding protein), VCP (valosin-containing protein), CHMBP2 (charged multivesicular body protein 2), and UBQLN (ubiquilin 2), among others (4–6). Excepting progranulin, mutations of any of the other genes may also be causative of amyotrophic lateral sclerosis (ALS), thus suggesting ALS/FTLD-TDP within the same

Downloaded from https://academic.oup.com/jnen/advance-article-abstract/doi/10.1093/jnen/nly037/4999948 by Washington University School of Medicine Library user on 23 May 2018

From the Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain (PA-B, IF); Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain (PA-B, IF); Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain (EG); Institute of Neurology, Medical University of Vienna, Vienna, Austria (EG); Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain (MP); Department of Neurobiology, Yale School of Medicine, New Haven, Connecticut (GS); Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, Barcelona, Spain (GS); Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain (IF); and Institute of Neurosciences, University of Barcelona, Barcelona, Spain (IF).

Send correspondence to: Isidro Ferrer, MD, PhD, Department of Pathology and Experimental Therapeutics, University of Barcelona, Campus Bellvitge, c/Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain; E-mail: 8082ifa@gmail.com

This study was supported by grants from CIBERNED and PI17/00809 Institute of Health Carlos III, and cofunded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe; ALS intra-CIBERNED project to IF; and IFI15/00035 fellowship to PA-B; grant "Retos todos unidos contra la ELA" to MP; and grant from the "Fundación Tatiana Pérez de Guzmán el Bueno, convocatoria Neurociencias 2014" to EG.

The authors have no competing interests to declare.

disease spectrum (7–9). The presence of TDP-43 inclusions in ALS together with the characteristics of TDP-43, which is phosphorylated, ubiquitinated, and truncated at the C-terminal in both conditions (10), argues in favor of these bounds.

FTLD-TDP has been subclassified into 4 different neuropathologic subgroups that roughly correlate with certain clinical symptoms and genetic substrates although with low predictive value (11, 12). Type A is characterized by numerous neuronal cytoplasmic inclusions (NCIs) and dystrophic neurites (DNs), and variable number of neuronal nuclear inclusions (NIIs) predominating in the upper cortical layers. Type B is delineated by numerous NCIs in the upper and inner cortical layers, and low numbers of DNs and NIIs. Type C is defined by predominant DNs in the upper cortical layers and rare NCIs and NIIs. Type D is characterized by predominance of NIIs, and rare NCIs and DNs (1, 11, 12).

The study of human brain tissue has been useful to unveil additional molecular alterations in FTLD-TDP (13). Complementary information has been obtained using proteomics and transcriptomics in a limited number of FTLD-TDP subtypes including those linked with GRN and C9Orf72 mutations, and atypical FTLD-TDP cases (14-17). Gene expression profile has also been recently described in the frontal cortex area 8 in ALS (18) and in different brain regions in sporadic ALS and ALS linked to C9Orf72 mutations (19). However, the molecular pathology of metabolic pathways, mitochondria and energy metabolism, synapses, and neurotransmission has not been studied in sFTLD-TDP. The present study was aimed at analyzing gene expression in frontal cortex area 8 in a series of sFTLD-TDP in parallel with controls in order to gain understanding about vulnerable pathways which can explain pathogenic aspects of the disease.

MATERIALS AND METHODS

Human Cases

Brain samples were obtained from the Brain Banks of the Institute of Neuropathology HUB-ICO-IDIBELL Biobank and the Hospital Clinic-IDIBAPS Biobank following the guidelines of the Spanish legislation on this matter and the approval of the local ethics committees. The postmortem interval between death and tissue processing was between 2 and 18 hours. One hemisphere was immediately cut into 1-cmthick coronal sections, and selected brain areas were rapidly dissected, frozen on metal plates over dry ice, placed in individual air-tight plastic bags and stored at -80° C until use. The other hemisphere was fixed by immersion in 4% buffered formalin for 3 weeks. The neuropathological study in control and FTLD-TDP cases was carried out on 20 selected 4-µm-thick dewaxed paraffin sections of representative regions of the frontal, temporal, parietal, motor, primary visual, anterior cingulate and entorhinal cortices, hippocampus, amygdala, basal forebrain, caudate, putamen, globus pallidus, thalamus, midbrain, pons, medulla oblongata, cerebellar vermis, hilus, and cerebral white matter. These were stained with hematoxylin and eosin, Klüver-Barrera, or processed for immunohistochemistry for microglia (Iba-1, Wako, Richmond, VA), glial acidic protein ([GFAP], Dako, Gostrup, Denmark), β-amyloid (Dako, clone 6F/3D), phospho-tau (Thermo Scientific, Rockford, IL, clone AT8), α-synuclein (Novocastra, Newcastle, UK, clone KM51), TDP-43 (Abnova, Taipei, Taiwan, clone 2E2-D3), ubiquitin (Dako, Polyclonal Rabbit), and p62 (BD Biosciences, San Jose, Purified Mouse Anti-p62 LCK ligand) using EnVision+System peroxidase (Dako), and diaminobenzidine and H2O2. FTLD-TDP was diagnosed following wellestablished criteria: frontotemporal atrophy, loss of neurons and variable spongiosis in the upper cortical layers, astrocytic gliosis, and presence of TDP-43-immunoreactive inclusions in neurons and dendrites (NCIs, NIIs, and DNs) (1, 11). The whole series included 16 sporadic cases of FTLD-TDP $(71.6 \pm 9.6 \text{ years}; 11 \text{ men and } 3 \text{ women})$, and 14 control cases $(66.5 \pm 8.8 \text{ years}; 8 \text{ men and } 6 \text{ women})$. The postmortem delay varied from 2 hours and 15 minutes to 18 hours $(\sim 5.4 \pm 4.0)$ in the control group, and between 3 hours and 40 minutes and 16 hours ($\sim 7.5 \pm 3.9$) in the sFTLD-TDP group. Patients with associated pathologies of the nervous system, excepting early stages of neurofibrillary tangle pathology and mild small blood vessel disease, were not included. Agematched control cases had not suffered from neurologic and psychiatric disorders and did not show alterations other than those permitted in diseased cases. Regarding TDP types: 11 cases were categorized as type A, 1 as type B, and 4 as type C. A summary of cases is shown in Table 1.

Biochemical studies were carried out in fresh-frozen frontal cortex area 8. Special care was taken to assess premortem and postmortem factors that might interfere with RNA processing and protein integrity (20). For this reason, all the samples were used in the study of RNA expression because RNA integrity values were suitable for RNA study, whereas 10 samples per group were used for gel electrophoresis and Western blotting of samples showing a preserved band pattern after Coomassie Blue staining. The same 10 cases per group were used in the study of mitochondrial enzymatic activities. Cases excluded were neoplastic diseases affecting the nervous system, metabolic syndrome, hypoxia, and prolonged agonic state (such as those occurring in intensive care units), as well as cases with infectious, inflammatory, and autoimmune diseases, either systemic or limited to the nervous system. Assessed samples did not bear C9ORF72 mutations (21). No other FTLD-TDP-related genes were systematically analyzed.

RNA Purification

RNA from frozen frontal cortex area 8 was extracted following the instructions of the supplier (RNeasy Mini Kit, Qiagen, Hilden, Germany). RNA integrity and 28S/18S ratios were determined with the Agilent Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA). RNA integrity values are shown in Table 1. Samples were treated with DNase digestion, and RNA concentration was evaluated using a NanoDrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).

Whole-Transcriptome Array and RT-qPCR Validation

Selected samples were analyzed by microarray hybridization with Human Clariom D Assay kit and GeneChip WT

Gene Expression in SFILD-IDP	Gene	Expression	in	sFTL	D-	TDP
------------------------------	------	------------	----	------	----	-----

TABL	E 1. Sur	nmary	of the 30 Case	s Analyzed		
Case	Sex	Age	Diagnosis	PMD	RIN	TDP43
1	М	66	Control	18 h 0 min	6.4	_
2	Μ	61	Control	3 h 40 min	7.0	_
3	Μ	62	Control	5 h 45 min	5.0	-
4	Μ	74	Control	6 h 40 min	7.2	-
5	Μ	65	Control	5 h 15 min	6.8	-
6	F	64	Control	2 h 15 min	5.0	-
7	Μ	63	Control	8 h 05 min	7.1	_
8	F	79	Control	3 h 35 min	6.8	-
9	F	67	Control	5 h 20 min	6.2	-
10	Μ	70	Control	3 h 45 min	7.2	-
11	Μ	52	Control	4 h 40 min	7.2	-
12	F	52	Control	5 h 45 min	5.1	-
13	F	82	Control	7 h 35 min	5.2	-
14	F	74	Control	2 h 45 min	5.7	-
15	Μ	76	sFTLD-TDP	5 h 0 min	6.2	А
16	F	82	sFTLD-TDP	3 h 40 min	6.4	А
17	Μ	71	sFTLD-TDP	4 h 0 min	6.1	А
18	F	77	sFTLD-TDP	16 h 0 min	6.9	С
19	Μ	73	sFTLD-TDP	5 h 0 min	6.7	С
20	Μ	63	sFTLD-TDP	9 h 30 min	5.0	А
21	F	77	sFTLD-TDP	7 h 39 min	7.0	А
22	Μ	65	sFTLD-TDP	13 h 0 min	7.4	А
23	F	88	sFTLD-TDP	6 h 30 min	5.4	А
24	Μ	59	sFTLD-TDP	8 h 0 min	7.4	А
25	Μ	58	sFTLD-TDP	4 h 0 min	7.3	А
26	Μ	56	sFTLD-TDP	8 h 0 min	5.0	А
27	F	84	sFTLD-TDP	6 h 0 min	5.9	В
28	Μ	78	sFTLD-TDP	7 h 15 min	6.7	С
29	Μ	66	sFTLD-TDP	5 h 15 min	7.2	А
30	Μ	74	sFTLD-TDP	15 h 0 min	6.4	С

sFTLD-TDP, sporadic frontotemporal lobar degeneration-TDP; F, female; M, male; PM, postmortem delay; RIN, RNA integrity number; TDP43, histological types of FTLD-TDP based on TDP-43-immunoreactive inclusions (see Materials and Methods).

Plus Reagent Kit and microarray 7000 G platform from Affymetrix (Santa Clara, CA). Preprocessing of raw data and statistical analyses were performed using bioconductor packages in R programming environment for genes (22). Complementary DNA (cDNA) was obtained using High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA) following the protocol of the supplier. Parallel reactions for each RNA sample were run in the absence of MultiScribe Reverse Transcriptase to assess lack of contamination of genomic DNA. Gene selection was based upon their values using a test for differential expression between 2 classes (Student t-test). Selected genes differentially expressed showed an absolute logarithm of fold change >0.5 combined with a p value \leq 0.01. Table 2 shows identification numbers and names of selected TaqMan probes. Most of the tested probes corresponded to deregulated genes as revealed by microarrays; the remainder was selected to assess other key genes of the altered pathways that were not identified as deregulated in the arrays. TaqMan RT-qPCR assays were performed in duplicate for each gene on cDNA samples in 384-well optical plates using

FABLE 2. Gene Symbols and TaqMan Probes Used in Frontal

 Cortex Area 8 Including Normalization Probes (GUS-β)

Gene	TaqMan assay
ABLIM2	Hs00402222_m1
ACTLB6	Hs00211827 m1
ACTR3B	Hs01051213_m1
ACTR3C	Hs03988416_m1
AK1	Hs00176119_m1
AK2	Hs01123132_g1
AK5	Hs00952786_m1
AK7	Hs00330574_m1
AMIGO1	Hs00324802_s1
APOOL	Hs00922772_g1
APRT	Hs00975725_m1
ARPC5L	Hs00229649_m1
ATP2B3	Hs00222625_m1
ATP2B4	Hs00608066_m1
ATP4A	Hs00167575_m1
ATP5A1	Hs00900735_m1
ATP5B	Hs00969569_m1
ATP5H	Hs01046892_gH
ATP5L	Hs00538946_g1
ATP50	Hs00426889_m1
ATP6D	Hs00371515_m1
ATP6V1A	Hs01097169_m1
BSN	Hs01109152_m1
C90RF72	Hs00376619_m1
CALB1	Hs01077197_m1
CEP126	Hs01573778_m1
CEP41	Hs00363344_m1
CKAP2	Hs00217068_m1
COA6	Hs01372973_m1
CORO2A	Hs00185610_m1
COX7AL	Hs00190880_m1
DDN	Hs00391784_m1
DGUOK	Hs00176514_m1
ENTPD1	Hs00969559_m1
ENTPD2	Hs00154301_m1
ENTPD3	Hs00928977_m1
FASTKD2	Hs01556124_m1
FRMPD4	Hs01568794_m1
GABBR2	Hs01554996_m1
GABRA1	Hs00971228_m1
GABRA2	Hs00168069_m1
GABRA3	Hs00968130_m1
GABRB2	Hs00241451_m1
GABRB3	Hs00241459_m1
GABRD	Hs00181309_m1
GABRG2	Hs00168093_m1
GABRG3	Hs00264276_m1
GADI	Hs01065893_m1
GAP43	Hs00967138_m1
GDAP1L1	Hs00225209_m1
GFAP	Hs00909240_m1
GRIAI	Hs00181348_m1
GRIN2A	Hs00168219_m1

TABLE 2. Continued

Gene	TaqMan assay
GRIN2B	Hs01002012_m1
GRM5	Hs00168275_m1
GULP1	Hs01061497_m1
GUS-β	Hs00939627_m1
HOMER1	Hs01029333_m1
KIF17	Hs00325418 m1
KLC2	Hs03988192_m1
LRRC6	Hs00917168_m1
MAP1A	Hs00357973_m1
MAST3	Hs00390797_m1
MCU	Hs00293548_m1
MICU3	Hs01028469_m1
MRPL1	Hs00220322_m1
MRPS35	Hs00950427_m1
MTIF2	Hs01091373_m1
MTX3	Hs01372688_m1
NDUFA10	Hs01071117_m1
NDUFA2	Hs00159575_m1
NDUFA5	Hs00916783_m1
NDUFAF2	Hs02380072_u1
NDUFAF6	Hs00901870_m1
NDUFB10	Hs00605903_m1
NDUFB5	Hs00159582_m1
NDUFB8	Hs00428204_m1
NDUFS8	Hs00159597_m1
NME1	Hs02621161_s1
NME3	Hs01573874_g1
NME4	Hs00359037_m1
NME7	Hs00273690_m1
NRN1	Hs00213192_m1
NT5C	Hs00274359_m1
NUDTI	Hs00159343_m1
PAK5	Hs00379318_m1
PCLO	Hs00382694_m1
PLP1	Hs00166914_m1
PNP	Hs01002926_m1
POLR3B	Hs00932002_m1
PRUNE	Hs00535700_m1
PSD	Hs00160539_m1
RMIND1	Hs01012514_m1
RMIND2	Hs04187037_m1
KND1	Hs00205507_m1
SDHB	Hs00208117_m1
SLC1/A/	Hs00220404_m1
SLC1A2	HSUU1881/2_ml
SLC1A2 SLC2541	пзотто2425_ml На01105609 ~1
SI C 25 A 1 1	H_00185040 m1
SLC25A11 SLC25A23	нь00163940_m1 На01012756 m1
SLC227423 SLC3241	Hs00360773 m1
SNAP25	Henno22057 m1
SNAPQ1	He010070/1 m1
SVN1	Hs00100577 m1
SYP	Hs00300531 m1
	11300300331_1111
	(continued)

J Neuropathol Exp Neurol • Volume 0, Number 0, 2018

TABLE 2. Continued					
Gene	TaqMan assay				
SYT1	Hs00194572_m1				
TARDBP	Hs00606522_m1				
ТОММ70	Hs00207896_m1				
UQCR11	Hs00907747_m1				
UQCRB	Hs00559884_m1				
VAMP1	Hs04399177_m1				

an ABI Prism 7900 Sequence Detection system (Applied Biosystems, Life Technologies, Waltham, MA). For each 10 µL TaqMan reaction, 4.5 μ L cDNA was mixed with 0.5 μ L 20× TaqMan Gene Expression Assays and $5 \mu L$ of $2 \times$ TaqMan Universal PCR Master Mix (Applied Biosystems). Values of *GUS*- β were used as internal controls for normalization (23). The parameters of the reactions were 50°C for 2 minutes, 95°C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Finally, capture of all TaqMan PCR data used the Sequence Detection Software (SDS version 2.2.2, Applied Biosystems). For the data analysis, threshold cycle (CT) values for each sample were processed to obtain the double delta CT ($\Delta\Delta$ CT) values. First, delta CT (Δ CT) values were calculated as the normalized CT values of each target gene in relation to the CT of endogenous controls GUS- β . Then, $\Delta\Delta CT$ values were obtained from the ΔCT of each sample minus the mean ΔCT of the population of control samples. Results were analyzed using the Student *t*-test.

RNA Purification, Retrotranscription Reaction, and RT-qPCR for Detection of 3 R and 4 R Tau Isoforms

Tau mRNA isoforms were assessed by using SYBR green quantitative RT-qPCR; 1000 ng of total RNA was used as a template. cDNA samples obtained from the retrotranscription reaction were diluted 1:20 and duplicate SYBR green PCR assays for each gene were performed. For each reaction, $2.5 \,\mu\text{L}$ of cDNA was mixed with $1.25 \,\mu\text{L}$ of forward primer 10 µM, 1.25 µL reverse primer 10 µM, and 5 µL of PowerUp SYBR Green Master Mix (Applied Biosystems). The reactions were performed following the parameters: 50°C for 2 minutes, 95°C for 10 minutes, and 40 cycles at 95°C for 15 seconds and at 60°C for 1 minute. SYBR green PCR data were captured using the Sequence Detection Software (SDS version 2.2). 3Rtau forward primer sequence: GTCCGTACTCCACC-CAAGTC: 3Rtau reverse: GTTTGTAGACTATTTG-CACCTTC; 4Rtau forward: GGCGGGAAGATGCAGATAA TTAAT; 4Rtau reverse: GTAGACTATTTGCACACTGCC. Parallel assays for each sample were carried out using primers for β -glucuronidase (GUS- β), forward: GTCTGCGGCA TTTTGTCGG; reverse: CACACGATGGCATAGGAATGG as endogenous controls. Mean fold-change values of each experimental group were analyzed by 1-way ANOVA test with post hoc Tukey by using GraphPad Prism version 5.01 (La Jolla, CA) and Statgraphics Statistical Analysis and Data Visualization Software version.1 (Warrenton, VA).

TABLE 2 List of Antibodies Lload in Western Platting

TABLE 5. LIST OF AIRIDOULES OSED IN WESTERN DIOTUNG					
Primary antibody	Symbol	Source	Reference	Host	WB Dilution
Actin Binding LIM Protein Family Member 2	ABLIM2	Abcam	ab100926	Rabbit	1:750
ATP synthase subunit alpha, mitochondrial	ATP5	Abcam	ab110411	Mouse	1:1000
Calbindin	CALB	Swant	CB-38a	Rabbit	1:5000
Chromosome 9 open reading frame 72	C9ORF72	Abcam	ab183892	Rabbit	1:500
Cytochrome b-c1 complex subunit 2, mitochondrial	UQCRC2	Abcam	ab110411	Mouse	1:1000
Cytochrome c oxidase	MT-CO1	Abcam	ab110411	Mouse	1:1000
Gamma-aminobutyric acid Receptor Subunit beta-2	GABAARB2	Abcam	ab156000	Rabbit	1:500
Gamma-Aminobutyric Acid Type A Receptor Delta Subunit	GABRD	Abcam	ab110014	Rabbit	1:1000
Glial Fibrillary Acidic Protein	GFAP	Dako	Z0334	Rabbit	1:5000
Glutamate (NMDA) receptor subunit epsilon-1	NMDAR2A	Abcam	ab169555	Rabbit	1:250
Glutamate Decarboxylase 1	GAD1	CellSignaling	#5305	Rabbit	1:250
Glyceraldehyde-3-Phosphate Dehydrogenase	GAPDH	Abcam	ab9485	Rabbit	1:2500
Mitochondrial import receptor subunit TOM70	TOMM70	Novus biological	NBP1-87863	Rabbit	1:500
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 10	NDUFA10	Antibody BCN	GTX114572	Rabbit	1:1000
NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 10	NDUFB10	Antibody BCN	15589-1-AP	Rabbit	1:2500
NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8,	NDUFB8	Abcam	ab110411	Mouse	1:1000
mitochondrial					
NADH dehydrogenase (ubiquinone) iron-sulfur protein 8, mitochondrial	NDUFS8	Antibody BCN	GTX114119	Rabbit	1:1000
NADH-ubiquinone oxidoreductase chain 1	MT-ND1	Abcam	ab181848	Rabbit	1:1000
Postsynaptic density protein 95	PSD-95	Invitrogen	7E3-1B8	Mouse	1:1000
Succinate dehydrogenase (ubiquinone) iron-sulfur subunit, mitochondrial	SDHB	Abcam	ab110411	Mouse	1:1000
Synaptophysin	SYN	Novocastra	NCL-L-SYNAP-299	Mouse	1:1000
Synaptosome Associated Protein 25	SNAP-25	BioLegend	SMI81	Mouse	1:1000
Vesicular inhibitory amino acid transporter	VGAT	Synaptic systems	131 011	Mouse	1:1000
Voltage Dependent Anion Channel 1	VDAC1	Abcam	ab15895	Rabbit	1:500
4R TAU	4R TAU	Merck-Millipore	clone 1E1/A6	Mouse	1:50
3R TAU	3R TAU	Merck-Millipore	clone 8E6/C11	Mouse	1:500
Phospho-tau Thr181	Thr181	Cell Signalling	mAb 12885	Rabbit	1:50
Total Tau	Tau 5	Thermo-Fisher	AHBOO42	Mouse	1:250
TAR DNA-binding protein 43	TDP-43	Abcam	ab154047	Rabbit	1:250

Gel Electrophoresis and Western Blotting

Frozen samples of the frontal cortex area 8 were homogenized in RIPA lysis buffer (50 mM Tris/HCl buffer, pH 7.4 containing 2 mM EDTA, 0.2% Nonidet P-40, 1 mM PMSF, protease, and phosphatase inhibitor cocktails; Roche Molecular Systems, Pleasanton, CA). Homogenates were centrifuged at 14000g for 20 minutes. Protein concentration was determined with the BCA method (ThermoFisher Scientific). Equal amounts of protein (12 µg) for each sample were loaded and separated by electrophoresis on 10% sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels and transferred onto nitrocellulose membranes (Amersham, Freiburg, Germany). Nonspecific binding was blocked by incubation with 3% albumin in PBS containing 0.2% Tween for 1 hour at room temperature. After washing, membranes were incubated overnight at 4°C with 1 of primary antibodies (Table 3). Protein loading was normalized using an antibody against GAPDH (37kDa, 1:2500, Abcam, Cambridge, UK). Membranes were then incubated for 1 hour in the appropriate HRP-conjugated secondary antibodies (1:2000, Dako, Santa Clara, CA). Immunocomplexes were revealed with chemiluminescence reagent (ECL, Amersham). Densitometric quantification was carried out with ImageLab v4.5.2 software (Bio-Rad, Hercules, CA).

Isolation of Mitochondrial-Enriched Fractions From Human Brain Tissue

Mitochondria were extracted from frozen frontal cortex (100 mg) under ice-cold conditions. Tissues were minced in ice-cold isolation buffer (IB) containing 0.25 M sucrose, 10 mmol/L Tris, and 0.5 mmol/L EDTA, pH 7.4, and then homogenized and centrifuged at 1000g for 10 minutes. Samples were homogenized with a micropestle using 10 vol buffer per mg of tissue and centrifuged at 1000g for 10 minutes at 4°C. The supernatant (S1) was conserved. The pellet was washed with 2 vol IB and centrifuged under the same conditions. The last supernatant (S2) was combined with S1, mixed, and centrifuged at 10 000g for 10 minutes at 4°C, resulting in the mitochondria-enriched pellet. The supernatant (S3) was discarded and the pellet was washed with 2 volumes IB and centrifuged at 10 000g for 10 minutes at 4°C, thereby obtaining the washed mitochondria-enriched pellet. The supernatant (S4) was discarded and the final pellet was resuspended in 1 vol IB and stored at -80° C. Protein concentration was measured using a SmartspectTMplus spectrophotometer (Bio-Rad) and the Bradford method (Merck, Darmstadt, Germany). The mitochondrial enriched fraction was used for mitochondrial enzymatic activities and for Western blotting. Protein loading (12 µg) was normalized with anti-VDAC (1:500, Abcam).

FIGURE 1. Examples of TDP-43-immunoreactive inclusions, including thin and thick dystrophic neuritis and cytoplasmic inclusions in frontal cortex area 8 in sFTLD-TDP. **(A–C)** Type C; **(D, E)** Type A; **(F)** Type B. **(A)**, **(B)**, and **(C)**, cases 18, 19, and 28, respectively; **(D)** and **(E)**, cases 23 and 25, respectively; **(F)**, case 27. Paraffin sections, hematoxylin counterstaining, scale $bar = 50 \mu m$.

The activities of mitochondrial complexes I, II, IV, and V were analyzed using commercial kits following the instructions of the suppliers (Mitochondrial complex V: Novagen, Merck Biosciences; and Mitochondrial complex I, II, and IV: Abcam). Activity of citrate synthase was evaluated as a quantitative enzyme marker for the presence of intact mitochondria using commercial kits (Abcam). About 25 μ g of mitochondria extract was loaded into each well. The enzymatic activities for each mitochondrial complex were expressed as a rate of milli-optical densities per minute normalized with the citrate synthase activity.

Statistical Analysis

6

The normality of distribution of fold-change values was analyzed with the Kolmogorov-Smirnov test. The nonparametric Mann-Whitney test was performed to compare each group when values did not follow a normal distribution, while the unpaired *t*-test was used for normal variables. Statistical analysis and graphic design were performed with GraphPad Prism version 5.01 (La Jolla, CA). Results were analyzed with the Student *t*-test. Outliers were detected using the GraphPad software QuickCalcs (p < 0.05). All data were expressed as mean \pm SEM and significance levels were set at *p < 0.05, **p < 0.01, and ***p < 0.001. Pearson's correlation coefficient was used to assess a possible linear association between 2 continuous quantitative variables.

RESULTS

Main Neuropathological Findings

All sFTLD-TDP cases presented variable neuron loss and microvacuolation in the upper cortical layers, mild

astrocytic gliosis in all layers of the cortex and the presence of TDP-43-immunoreactive dystrophic neurites mainly in the upper layers accompanied or not by neuronal cytoplasmic inclusions. Neuronal intranuclear inclusions were extremely rare. About 11 cases were categorized as type A, 1 as type B, and 4 as type C (Table 1; Fig. 1). Type A was characterized by numerous NCIs and DNs in the upper cortical layers; type B by numerous NCIs in the upper and inner cortical layers; and type C by predominant DNs in the upper cortical layers. p62-immunoreactive inclusions were absent in any brain region.

Microarray Analysis

All samples had enough quality for subsequent analysis after quality control analysis. The cofactors age and gender were not relevant for the analysis. After filtering, 4851 genes were included in the analysis. The analysis to select differentially expressed genes was based on adjusting a linear model with empirical Bayes moderation of the variance. The 538 top variable genes (with nominal p values <0.01 and an absolute logarithm of the fold change ≥ 0.5) were represented in a heat map to illustrate common and differing gene expression patterns between control and sFTLD-TDP cases in FC (Fig. 2A). We identified 425 genes differentially expressed in sFTLD-TDP compared with controls (5 up and 420 down) (Fig. 2B). Gene Ontology (GO) database was used to highlight biological categories of differentially regulated genes. Downregulated genes in sFTLD-TDP were involved in neurotransmission and synapsis, neuron architecture, cytoskeleton of axons and dendrites, vesicle trafficking, purine metabolism, mitochondria, and energy metabolism (Table 4). Raw data are

FIGURE 2. (A) Hierarchical clustering heat-map of expression intensities of mRNA array transcripts reflects differential gene expression profiles in frontal cortex area 8 in controls (red), sFTLD-TDP (blue). Differences are considered statistically significant at p value \leq 0.01 and logFC 0.5. (B) Total number of significantly different expressed genes in sFTLD-TDP versus controls. (C) Diagram showing deregulated gene clusters in frontal cortex area 8 in sFTLD-TDP compared with controls as revealed by whole transcriptome arrays.

found in https://www.ebi.ac.uk/arrayexpress/; reference number fgsubs #218580.

Gene Expression Validation

RT-qPCR was carried out to assess the expression of 111 selected genes; 81 of them were abnormally regulated in sFTLD-TDP.

TARDBP and C9ORF72, and GFAP

TARDBP and *C9ORF72* were significantly decreased in sFTLD-TDP compared with controls (p = 0.05 and p = 0.01, respectively) (Fig. 2A). *GFAP* expression was increased (p = 0.003) in sFTLD-TDP (Fig. 3A).

Cytoskeleton and Neuron Architecture

The expression of 17 genes was analyzed by RT-qPCR; 12 of them showed decreased expression in sFTLD-TDP when compared with controls. *ABLIM2* (p = 0.0001), *ACTLB6* (p = 0.025), *ACTR3B* (p = 0.002), *ACTR3C* (p = 0.05), *CEP41* (p = 0.003), *CKAP2* (p = 0.017), *COR02A* (p = 0.05), *KIF17* (p = 0.003), *MAP1A* (p = 0.05), *MAST3* (p = 0.003), *PAK5* (p = 0.005), and *RND1* (p = 0.008) showed a significant decrease in sFTLD-TDP (Fig. 3B, C).

Synapsis and Neurotransmission

The expression of 36 genes was assessed; 30 of them were downregulated in sFTLD-TDP. The expression of the following genes implicated in presynaptic and postsynaptic attachment was significantly decreased in sFTLD-TDP: DDN (p = 0.04), (p = 0.004),FRMPD4 GAP43 HOMER1 (p = 0.01),(p = 0.000), NRN1 (p = 0.004), PCLO (p = 0.005), and PSD (p=0.013). Similarly, 15 genes involved in GABAergic and glutamatergic neurotransmission were downregulated in sFTLD-TDP: CALB1 (p = 0.000), GABBR2 (p = 0.033), GABRA1(p = 0.004), GABRA2 (p = 0.008), GABRA3 (p = 0.000), GABRB2 (p = 0.006),GABRB3 (p = 0.002), GABRD(p=0.024), GABRG2 (p=0.001), GAD1 (p=0.05), GRIA1(p = 0.042), GRIN2A (p = 0.048), GRIN2B (p = 0.025), GRM5(p=0.002), SLC1A1 (p=0.02), SLC17A2 (p=0.049), and *SLC32A1* (p = 0.025). Finally, a set of genes involved in synaptic vesicles were significantly deregulated in sFTLD-TDP: *GULP1* (p = 0.001), *SNAP25* (p = 0.006), *SNAP91* (p = 0.012), SYN1 (p = 0.001), SYP (p = 0.035), and SYT1 (p = 0.017) (Fig. 4).

Expression Levels of Genes Involved in Purine Metabolism

The expression of 18 genes was assessed by RT-qPCR; 9 of them were downregulated. AK5 (p = 0.000), AK7

GO Term	Count	Size	Genes	Odds ratio	p value
Actin filament-based process	38	186	ABLIM2, ACTN4, ACTR3B, ACTR3C, ADD2, ARHGEF2, ARPC5L, BAG4, BAIAP2, CACNA2D1, CACNB2, CAP2, CAPZA2, CDK5, CDK5R1, CORO2A, DNAJB6, EPB41L4B, FGF12, ID1, ITGB1BP1, LIMK1, MEF2C, PACSIN1, PHACTR1, PIP5K1C, PRKCZ, PTK2B, RND1, SCN1B, SCN2B, SCN3B, SDAD1, SORBS2, STC1, SYNPO, TPM2, WASF1	1.65	6.74e-03
Action potential	15	43	CACNAIG, CACNAIH, CACNAII, CACNA2D1, CACNB2, DRD1, FGF12, GNAQ, KCNA1, PTPN3, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A	3.42	3.74e-04
Alternative mRNA splic- ing, via spliceosome	5	10	CELF3, CELF4, RBFOX1, RBFOX2, RBFOX3	6.30	6.82e-03
Anterograde transsynaptic signaling	63	182	AKAP5, AMPH, BAIAP2, BTBD9, CA7, CACNA1G, CACNB1, CACNB2, CADPS, CADPS2, CDK5, CELF4, CHRM1, CLSTN3, DGKI, DLGAP1, DOC2A, DRD1, EGR3, FGF12, GABBR2, GABRB3, GABRG2, GFAP, GLRA3, GPR176, GRIN2A, GRM2, GRM5, GSK3A, HOMER1, HTR4, KCNA1, KCNQ2, KCNQ5, LRRTM1, LRRTM2, MAPK8IP2, MEF2C, NRXN3, OPRL1, PCDH8, PIP5K1C, PLK2, PNOC, PRKCG, PRKCZ, PTK2B, RASGRF1, RIMS1, RPH3A, SCN1B, SCN2B, SLC12A5, SLC17A7, SNAP25, SNAP91, STXBP1, SYN1, SYN11, SYP. SYT1, UNC13A	3.65	1.90e-13
Axon	47	127	AMIGO1, AP1S1, AP3S1, ATL1, ATP1A3, BLOC1S2, CCK, CDK5, CDK5R1, CHRM1, DAGLA, DGKI, ELK1, GABRA2, GABRG2, GAP43, GRM2, HOMER1, HPCA, INPP5F, KCNA1, KCNA3, KCNA4, KCNC2, KCNIP3, KCNQ2, LRRTM1, NEFL, NEFM, NRP1, PACSIN1, PNOC, PRKCZ, PTK2B, ROBO2, SCN1B, SCN2A, SCN8A, SERPINF1, SLC17A7, STXBP1, SYN1, SYNJ1, SYP, SYT1, UNC13A, VAMP1	3.96	1.99e-11
Axon hillock	3	4	CCK, PRKCZ, SERPINF1	18.80	9.40e-03
Axon part	27	71	AP1S1, AP3S1, BLOC1S2, CCK, CHRM1, DAGLA, DGKI, ELK1, KCNA1, KCNC2, KCNIP3, KCNQ2, NEFL, PACSIN1, PNOC, PRKCZ, ROBO2, SCN1B, SCN2A, SCN8A, SERPINF1, STXBP1, SYN1, SYNJ1, SYP, SYT1, VAMP1	4.00	2.42e-07
Axon terminus	16	35	AP1S1, CCK, CHRM1, DGKI, ELK1, KCNA1, KCNC2, KCNIP3, PACSIN1, PNOC, STXBP1, SYN1, SYNJ1, SYP, SYT1, VAMP1	5.40	4.44e-06
Blood circulation	30	138	ATP1A3, ATP2B1, CACNA1G, CACNA1H, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, CHRM1, CLIC2, DRD1, EHD3, FGF12, GSK3A, HMGCR, ITGB1BP1, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNK1, NCALD, OPRL1, PPARG, SCN1B, SCN2B, SCN3B, STC1, TRHDE	1.78	6.23e-03
Calcium channel complex	10	26	CACNAIG, CACNAIH, CACNAII, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, MCU, PTPA	3.96	1.53e-03
Calcium ion binding	38	171	ACTN4, ANXA2, CABP1, CAMKK2, CDH10, CDH12, CDH18, CDH9, CDK5R1, CLSTN3, CRTAC1, DGKB, DOC2A, EHD3, EPDR1, HPCA, KCNIP1, KCNIP3, KCNIP4, MCTP1, NCALD, NELL1, PCDH19, PCDH8, PITPNM2, PITPNM3, PPP3R1, PRSS3, RASGRP1, RCVRN, REPS2, RPH3A, SLC25A23, SLIT1, SYT1, TBC1D9, TLL1, VSNL1	1.85	1.44e-03
Calcium ion transmem- brane transporter activity	11	37	ATP2B1, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, GRIN2A, MCU	2.68	8.89e-03
Channel activity	42	139	CACNAIG, CACNAIH, CACNAII, CACNA2DI, CACNBI, CACNB2, CACNG2, CACNG3, CLIC2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GLRA3, GRIN2A, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNK1, KCNQ2, KCNQ5, KCNS2, KCNV1, MCU, NCALD, PTK2B, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A, SLC17A7, TTYH3	2.87	2.44e-07
Chemical synaptic trans- mission, postsynaptic	12	22	CDK5, CELF4, DGKI, GABRB3, GRIN2A, GSK3A, MAPK8IP2, MEF2C, PRKCZ, PTK2B, RIMS1, SLC17A7	7.65	7.33e-06

TABLE 4. Main Significant Clusters of Altered Genes in Frontal Cortex Area 8 in SETI D-TDP

TABLE 4. Continued

GO Term	Count	Size	Genes	Odds ratio	p value
Chloride channel complex	8	19	CLIC2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GLRA3, TTYH3	4.60	2.33e-03
Cilium	23	88	ANKMY2, ARL6, C5orf30, CEP126, CEP41, CFAP221, DRD1, EHD3, GNAQ, GPR83, GRK4, HK1, IQUB, KIF17, KIFAP3, LRRC6, MCHR1, NAPEPLD, NME5, PRKAR1B, PRKAR2B, SSX2IP, WRAP73	2.27	1.39e-04
Circulatory system process	30	138	ATP1A3, ATP2B1, CACNA1G, CACNA1H, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, CHRM1, CLIC2, DRD1, EHD3, FGF12, GSK3A, HMGCR, ITGB1BP1, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNK1, NCALD, OPRL1, PPARG, SCN1B, SCN2B, SCN3B, STC1, TRHDE	1.78	6.23e-03
Cyclic nucleotide biosyn- thetic process	13	38	CAP2, ADCY1, RUNDC3A, DRD1, PTK2B, GNAL, GRM2, GSK3A, HPCA, OPRL1	3.31	1.13e-03
Cyclic purine nucleotide metabolic process	13	38	CAP2, ADCY1, RUNDC3A, DRD1, PTK2B, GNAL, GRM2, GSK3A, HPCA, OPRL1	3.31	1.13e-03
Dendrite	43	160	AMIGO1, ARHGAP32, ARHGAP44, ARHGEF2, ATP1A3, BAIAP2, CCK, CDK5, CDK5R1, CHL1, CHRM1, DGK1, DRP2, ELK1, FRMPD4, GABRA2, GLRA3, GLRX2, GNAQ, GNG3, GRK4, GRM2, HPCA, INPP5F, KCNA1, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNK1, PCDH8, PCSK2, PLK2, PNOC, PRKAR2B, PRKCG, PTK2B, RCVRN, SLC12A5, SYN1, SYNPO, THY1	2.42	5.82e-06
Dendrite extension	4	7	CPNE5, RIMS1, SYT1, UNC13A	8.38	8.91e-03
Dopamine receptor sig- naling pathway	5	9	DRD1, GNAL, GNAQ, GSK3A, VPS35	7.87	3.84e-03
GABA receptor activity	6	10	GABBR2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3	9.47	8.64e-04
GABA receptor complex	5	9	GABRA2, GABRA3, GABRB3, GABRG2, GABRG3	7.87	3.84e-03
Gamma-aminobutyric acid signaling pathway	6	10	HTR4, GABRG3, GABRG2, GABRA3, GABRA2, GABBR2	9.47	8.64e-04
Glutamate receptor sig- naling pathway	13	28	ATP1A3, CACNG2, CACNG3, CDK5R1, GNAQ, GRIN2A, GRM2, GRM5, HOMER1, MAPK8IP2, MEF2C, PTK2B, RASGRF1	5.53	2.93e-05
Glutamate secretion	7	15	CCK, GRM2, RIMS1, SLC17A7, SNAP25, STXBP1, SYT1	5.53	2.14e-03
Growth cone	13	41	CDK5, CDK5R1, CRTAC1, GAP43, LRRTM1, NEFL, NGEF, NRP1, PTK2B, RASGRF1, SNAP25, THY1, TIAM2	2.95	2.48e-03
Intracellular protein transport	46	237	AKAP5, ANXA2, AP1S1, AP2S1, AP3S1, ARHGEF2, ARL6, ATG4B, BAG4, BAP1, BID, CABP1, CDK5, CDK5R1, CHML, CHRM1, DRD1, EHD3, FBXW7, GDAP1, GNAQ, GSK3A, HPCA, ITGB1BP1, KCNB2, KCNIP3, MAPK14, NAPB, NAPG, OAZ2, PPP3R1, RAB8B, RANBP1, REEP2, RFTN1, RIMS1, RPH3A, RTN2, SSX2IP, TBC1D9, TMEM30A, TOMM34, TOMM70, UBR5, VPS35, VPS36	1.56	8.18e-03
Ion channel complex	46	96	AMIGO1, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, CLIC2, DPP6, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GLRA3, GRIN2A, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNK1, KCNQ2, KCNQ5, KCNS2, KCNV1, MCU, OLFM2, OLFM3, PTK2B, PTPA, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A, SNAP25, TTYH3	6.24	3.15e-16
Ionotropic glutamate re- ceptor signaling pathway	4	7	ATP1A3, CDK5R1, GRIN2A, PTK2B	8.38	8.91e-03
Main axon	9	25	CCK, DAGLA, KCNA1, KCNC2, KCNQ2, ROBO2, SCN1B, SCN2A, SCN8A	3.56	4.44e-03
Mitochondrial outer membrane permeabilization	4	7	BID, BLOC1S2, GSK3A, PPP3R1	8.38	8.91e-03
Mitochondrial outer membrane permeabili- zation involved in pro- grammed cell death	4	7	BID, BLOC1S2, GSK3A, PPP3R1	8.38	8.91e-03

Andrés-Benito et al

GO Term	Count	Size	Genes	Odds ratio	p value
Modulation of synaptic transmission	27	78	BAIAP2, BTBD9, CA7, CDK5, CELF4, CLSTN3, DGKI, DRD1, GFAP, GRIN2A, GRM2, GRM5, LRRTM1, LRRTM2, MAPK8IP2, MEF2C, PLK2, PRKCZ, PTK2B, RASGRF1, RIMS1, SNAP25, STXBP1, SYN1, SYP, SYT1, UNC13A	3.44	2.13e-06
Neurofilament	4	6	INA, NEFL, NEFM, NRP1	12.60	4.28e-03
Neuron part	107	379	ACTL6B, ACTN4, ADGRB1, AMIGO1, AMPH, AP1S1, AP3S1, ARHGAP32, ARHGAP44, ARHGEF2, ATL1, ATP1A3, ATP2B1, BAIAP2, BLOC1S2, CABP1, CADPS, CADPS2, CCK, CDK5, CDK5R1, CHL1, CHRM1, CPNE5, CRTAC1, DAGLA, DDN, DGK1, DLGAP1, DOC2A, DRP2, ELK1, ENC1, FRMPD4, GABBR2, GABRA2, GABRG2, GAP43, GLRA3, GLRX2, GNAQ, GNG3, GRIN2A, GRK4, GRM2, GRM5, HOMER1, HPCA, ICA1, INPP5F, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNK1, KCNQ2, LIMK1, LRRTM1, MAPK8IP2, NAPEPLD, NEFL, NEFM, NGEF, NRP1, NRSN2, NRXN3, OPRL1, PACSIN1, PCDH8, PCSK2, PDE1B, PIP5K1C, PLK2, PNOC, PRKAR2B, PRKCG, PRKCZ, PTK2B, RAP1GAP2, RASGRF1, RBFOX3, RCVRN, RIMS1, ROB02, RPH3A, SCN1B, SCN2A, SCN8A, SERPINF1, SLC12A5, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYN1L, SYNPO, SYP, SYT1, THY1, TIAM2, LINC13A, VAMP1	2.81	2.92e-15
Neuron projection	90	294	ACTN4, AMIGO1, AP1S1, AP3S1, ARHGAP32, ARHGAP44, ARHGEF2, ATL1, ACTN4, AMIGO1, AP1S1, AP3S1, ARHGAP32, ARHGAP44, ARHGEF2, ATL1, ATP1A3, ATP2B1, BAIAP2, BLOC1S2, CCK, CDK5, CDK5R1, CHL1, CHRM1, CPNE5, CRTAC1, DAGLA, DDN, DGK1, DOC2A, DRP2, ELK1, FRMPD4, GABBR2, GABRA2, GABRG2, GAP43, GLRA3, GLRX2, GNAQ, GNG3, GRIN2A, GRK4, GRM2, GRM5, HOMER1, HPCA, INPP5F, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNK1, KCNQ2, LIMK1, LRRTM1, NEFL, NEFM, NGEF, NRP1, OPRL1, PACSIN1, PCDH8, PCSK2, PLK2, PNOC, PRKAR2B, PRKCG, PRKCZ, PTK2B, RAP1GAP2, RASGRF1, RCVRN, ROB02, RPH3A, SCN1B, SCN2A, SCN8A, SERPINF1, SLC12A5, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYNJ1, SYNPO, SYP, SYT1, THY1, TIAM2, UNC13A, VAMP1	3.16	3.62e-15
Neuron projection morphogenesis	33	157	ADCY1, ADGRB1, AMIGO1, ATL1, BAIAP2, CCK, CDK5, CDK5R1, CHL1, CHN1, CPNE5, GAP43, HPRT1, ID1, LIMK1, MAPK8IP2, NEFL, NGEF, NRP1, NRXN3, NTN4, PACSIN1, PRKCZ, RBFOX2, RIMS1, ROBO2, SCN1B, SLIT1_STXRP1_SYT1_THY1_UNC13A_ZNF280B	1.71	7.27e-03
Neuron remodeling	3	4	GNAO. NTN4. RND1	18.80	9.40e-03
Neuronal cell body	36	130	AMIGO1, ARHGEF2, ATP2B1, BAIAP2, CCK, CDK5, CDK5R1, CPNE5, DDN, DGK1, DRP2, ELK1, ENC1, GABRA2, GLRA3, GLRX2, GRK4, HPCA, INPP5F, KCNA1, KCNB2, KCNC2, KCNK1, MAPK8IP2, NRP1, NRSN2, PCSK2, PDE1B, PNOC, PRKAR2B, PRKCZ, PTK2B, RBFOX3, SERPINF1, SLC12A5, SYNPO	2.50	1.69e-05
Neuron-neuron synaptic transmission	16	46	CA7, CDK5, CLSTN3, DGK1, DRD1, GABRG2, GLRA3, GRM2, GRM5, MAP- K8IP2, MEF2C, PTK2B, SLC17A7, STXBP1, SYT1, UNC13A	4.10	5.04e-05
Neurotransmitter receptor activity	9	23	CHRM1, DRD1, GABRA2, GABRA3, GABRB3, GABRG2, GLRA3, GRIN2A, PTK2B	4.07	2.23e-03
Neurotransmitter secretion	16	46	CDK5, RPH3A, RIMS1, UNC13A, PIP5K1C, MEF2C, SNAP25, STXBP1, SYN1, SYT1, DOC2A, CADPS, SYNJ1, DGKI, CADPS2, NRXN3	3.41	2.49e-04
Node of Ranvier	4	6	KCNQ2, SCN1B, SCN2A, SCN8A	12.60	4.28e-03
Nonmotile primary cilium	9	25	C5orf30, DRD1, GNAQ, GPR83, GRK4, KIF17, KIFAP3, MCHR1, NAPEPLD	3.56	4.44e-03
Postsynapse	39	121	ADGRB1, ARHGAP32, ARHGAP44, ATP1A3, BAIAP2, CABP1, CADPS2, CDK5, CDK5R1, CHRM1, CLSTN3, DGKI, DLGAP1, DRP2, FRMPD4, GABBR2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GAP43, GLRA3, GRIN2A, GRM5, GSK3A, HOMER1, HPCA, KCNC2, LRRTM1, LRRTM2, MAPK8IP2, MEF2C, PCDH8, PRKAR2B, PTK2B, SLC17A7, SYN1, SYNPO	3.14	9.97e-08

TABLE 4. Continued

GO Term	Count	Size	Genes	Odds ratio	p value
Postsynaptic density	17	54	ADGRB1, ARHGAP32, BAIAP2, CABP1, CDK5, CDK5R1, CHRM1, DLGAP1, DRP2, GAP43, GRIN2A, GRM5, HOMER1, MAPK8IP2, PTK2B, SYN1, SYNPO	2.94	6.16e-04
Potassium channel activity	16	39	KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNK1, KCNQ2, KCNQ5, KCNS2, KCNV1	4.46	2.41e-05
Potassium ion transport	25	71	AMIGO1, ATP1A3, CAB39, DPP10, DPP6, DRD1, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNK1, KCNQ2, KCNQ5, KCNS2, KCNV1, PTK2B, SLC12A5, SLC12A8	3.52	3.60e-06
Presynapse	29	84	AMPH, AP1S1, CADPS, CADPS2, CCK, CDK5, DGK1, DOC2A, GABRA2, GRIN2A, GRM2, ICA1, KCNA1, KCNC2, NRXN3, PCDH8, PIP5K1C, RIMS1, RPH3A, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYNJ1, SYP, SYT1, UNC13A, VAMP1	3.44	9.43e-07
Primary cilium	11	37	ARL6, C5orf30, CEP41, DRD1, GNAQ, GPR83, GRK4, KIF17, KIFAP3, MCHR1, NAPEPLD	2.68	8.98e-03
Purine nucleotide biosyn- thetic process	16	59	ADCY1, AKAP5, ATP5A1, CAP2, DRD1, GABBR2, GNAL, GRM2, GSK3A, HPCA, HPRT1, NME5, OPRL1, PTK2B, RCVRN, RUNDC3A	2.37	4.90e-03
Regulation of alternative mRNA splicing, via spliceosome	5	10	CELF3, CELF4, RBFOX1, RBFOX2, RBFOX3	6.30	6.82e-03
Regulation of calcium ion-dependent exocytosis	9	24	CACNAIG, CACNAII, CDK5, DOC2A, RIMS1, RPH3A, STXBP1, SYN1, SYT1	3.80	3.23e-03
Regulation of ion trans- membrane transport	46	125	ACTN4, AMIGO1, CAB39, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, CLIC2, DPP10, DPP6, DRD1, EHD3, FGF12, HOMER1, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNQ2, KCNQ5, KCNS2, KCNV1, MAPK8IP2, MEF2C, MMP9, OPRL1, PTK2B, PTPN3, RASGRF1, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A, THY1	3.91	4.16e-11
Regulation of neurotrans- mitter levels	23	64	CADPS, CADPS2, CDK5, DAGLA, DGK1, DOC2A, DRD1, GABRA2, GFAP, MEF2C, NRXN3, PDE1B, PIP5K1C, RIMS1, RPH3A, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYNJ1, SYT1, UNC13A	3.63	5.98e-06
Regulation of nucleotide biosynthetic process	13	37	ADCY1, AKAP5, CAP2, DRD1, GABBR2, GNAL, GRM2, GSK3A, HPCA, OPRL1, PTK2B, RCVRN, RUNDC3A	3.45	8.49e-04
Regulation of nucleotide metabolic process	15	49	ADCY1, AKAP5, CAP2, DRD1, GABBR2, GNAL, GRM2, GSK3A, HPCA, OPRL1, PTK2B, RCVRN, RUNDC3A, SLC25A23, TIGAR	2.81	1.76e-03
Regulation of purine nu- cleotide biosynthetic process	13	39	CAP2, ADCY1, RUNDC3A, DRD1, PTK2B, GNAL, GRM2, GSK3A, HPCA, OPRL1	3.18	1.49e-03
Regulation of synapse assembly	10	27	ADGRB1, ADGRB2, AMIGO1, CLSTN3, LRRTM1, LRRTM2, MEF2C, NRXN3, ROBO2, SLIT1	3.73	2.17e-03
Regulation of synapse organization	11	36	ADGRB1, ADGRB2, AMIGO1, CLSTN3, FRMPD4, LRRTM1, LRRTM2, MEF2C, NRXN3, ROBO2, SLIT1	2.79	7.18e-03
Regulation of synapse structure or activity	11	36	ADGRB1, ADGRB2, AMIGO1, CLSTN3, FRMPD4, LRRTM1, LRRTM2, MEF2C, NRXN3, ROBO2, SLIT1	2.79	7.18e-03
Regulation of synaptic plasticity	18	43	BAIAP2, CDK5, DGK1, DRD1, GFAP, GRIN2A, GRM5, LRRTM1, LRRTM2, MEF2C, PLK2, PRKCZ, PTK2B, RASGRF1, SNAP25, STXBP1, SYP, UNC13A	4.63	5.26e-06
Regulation of transmem- brane transport	47	129	ACTN4, AMIGO1, CAB39, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNB1, CACNB2, CACNG2, CACNG3, CLIC2, DPP10, DPP6, DRD1, EHD3, FGF12, HOMER1, KCNA1, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNQ2, KCNQ5, KCNS2, KCNV1, MAPK8IP2, MEF2C, MMP9, OAZ2, OPRL1, PTK2B, PTPN3, RASGRF1, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A, THY1	3.86	3.79e-11

Andrés-Benito et al

GO Term	Count	Size	Genes	Odds ratio	p value
Regulation of vesicle-me- diated transport	27	120	ACTN4, ANXA2, AP2S1, BTBD9, CACNA1G, CACNA11, CADPS2, CDK5, DOC2A, INPP5F, LRRTM1, LRRTM2, NRP1, PACSIN1, PPARG, PRKCG, RAB27B, RIMS1, RINT1, RPH3A, SCFD1, SNAP91, STXBP1, SYN1, SYT1, TBC1D9, VSNL1	1.86	5.74e-03
Somatodendritic compartment	54	205	AMIGO1, ARHGAP32, ARHGAP44, ARHGEF2, ATP1A3, ATP2B1, BAIAP2, CCK, CDK5, CDK5R1, CHL1, CHRM1, CPNE5, DDN, DGK1, DRP2, ELK1, ENC1, FRMPD4, GABRA2, GLRA3, GLRX2, GNAQ, GNG3, GRK4, GRM2, HPCA, INPP5F, KCNA1, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNK1, MAPK8IP2, NRP1, NRSN2, PCDH8, PCSK2, PDE1B, PLK2, PNOC, PRKAR2B, PRKCG, PRKCZ, PTK2B, RBFOX3, RCVRN, SERPINF1, SLC12A5, SYN1, SYNPO, THY1	2.39	6.48e-07
Synapse	68	222	ADGRB1, AMPH, AP1S1, ARHGAP32, ARHGAP44, ATP1A3, ATP2B1, BAIAP2, CABP1, CADPS, CADPS2, CCK, CDK5, CDK5R1, CHRM1, CLSTN3, DDN, DGK1, DLGAP1, DOC2A, DRP2, FRMPD4, GABBR2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GAP43, GLRA3, GRIN2A, GRM2, GRM5, GSK3A, HOMER1, HPCA, ICA1, KCNA1, KCNC2, KCNK1, LRRTM1, LRRTM2, MAPK8IP2, MEF2C, NRXN3, OLFM2, OLFM3, PACSIN1, PCDH8, PHACTR1, PIP5K1C, PRKAR2B, PRKCG, PTK2B, RIMS1, RPH3A, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYNJ1, SYNPO, SYP, SYT1, UNC13A, VAMP1, WASF1	3.05	1.43e-11
Synapse assembly	12	39	ADGRB1, ADGRB2, AMIGO1, CDK5, CLSTN3, DRD1, LRRTM1, LRRTM2, MEF2C, NRXN3, ROBO2, SLIT1	2.82	4.75e-03
Synapse organization	18	67	ADGRB1, ADGRB2, AMIGO1, CACNB1, CACNB2, CACNG2, CDK5, CLSTN3, DRD1, DRP2, FRMPD4, LRRTM1, LRRTM2, MEF2C, NRXN3, ROBO2, SLIT1, UNC13A	2.34	3.25e-03
Synapse part	63	190	ADGRB1, AMPH, AP1S1, ARHGAP32, ARHGAP44, ATP1A3, ATP2B1, BAIAP2, CABP1, CADPS, CADPS2, CCK, CDK5, CDK5R1, CHRM1, CLSTN3, DDN, DGKI, DLGAP1, DOC2A, DRP2, FRMPD4, GABBR2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GAP43, GLRA3, GRIN2A, GRM2, GRM5, GSK3A, HOMER1, HPCA, ICA1, KCNA1, KCNC2, LRRTM1, LRRTM2, MAP- K8IP2, MEF2C, NRXN3, OLFM2, PCDH8, PIP5K1C, PRKAR2B, PRKCG, PTK2B, RIMS1, RPH3A, SLC17A7, SNAP25, STXBP1, SV2B, SYN1, SYNJ1, SYNPO, SYP, SYT1, UNC13A, VAMP1	3.41	1.79e-12
Synaptic membrane	35	89	ARHGAP32, ATP2B1, CABP1, CADPS2, CDK5, CHRM1, CLSTN3, DDN, DGKI, DLGAP1, DRP2, GABBR2, GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GLRA3, GRIN2A, GRM2, HOMER1, KCNA1, KCNC2, LRRTM1, LRRTM2, OLFM2, PCDH8, PRKCG, RIMS1, SNAP25, SYNJ1, SYNPO, SYP, SYT1, UNC13A	4.28	1.28e-08
Synaptic signaling	63	182	AKAP5, AMPH, BAIAP2, BTBD9, CA7, CACNAIG, CACNB1, CACNB2, CADPS, CADPS2, CDK5, CELF4, CHRM1, CLSTN3, DGKI, DLGAP1, DOC2A, DRD1, EGR3, FGF12, GABBR2, GABRB3, GABRG2, GFAP, GLRA3, GPR176, GRIN2A, GRM2, GRM5, GSK3A, HOMER1, HTR4, KCNA1, KCNQ2, KCNQ5, LRRTM1, LRRTM2, MAPK8IP2, MEF2C, NRXN3, OPRL1, PCDH8, PIP5K1C, PLK2, PNOC, PRKCG, PRKCZ, PTK2B, RASGRF1, RIMS1, RPH3A, SCN1B, SCN2B, SLC12A5, SLC17A7, SNAP25, SNAP91, STXBP1, SYN1, SYNJ1, SYP, SYT1, UNC13A	3.65	1.90e-13
Synaptic transmission, glutamatergic	12	26	CDK5, CLSTN3, DGKI, DRD1, GRM2, GRM5, MAPK8IP2, MEF2C, PTK2B, SLC17A7, SYT1, UNC13A	5.46	6.45e-05
Synaptic vesicle	14	37	AMPH, DGKI, DOC2A, GABRA2, GRIN2A, ICA1, RPH3A, SLC17A7, SNAP25, SV2B, SYN1, SYP, SYT1, VAMP1	3.88	2.21e-04
Synaptic vesicle endocytosis	6	10	CDK5, BTBD9, PIP5K1C, PACSIN1, SYT1, SYNJ1	9.47	8.64e-04

TABLE 4. Continued

GO Term	Count	Size	Genes	Odds ratio	p value
Synaptic vesicle exocytosis	13	34	CADPS, CADPS2, CDK5, DOC2A, PIP5K1C, RIMS1, RPH3A, SNAP25, STXBP1, SYN1, SYNJ1, SYT1, UNC13A	3.94	3.28e-04
Synaptic vesicle maturation	4	5	UNC13A, SYP, STXBP1, SLC17A7	25.20	1.60e-03
Synaptic vesicle membrane	11	22	AMPH, DOC2A, GABRA2, ICA1, RPH3A, SLC17A7, SV2B, SYN1, SYP, SYT1, VAMP1	6.36	5.22e-05
Synaptic vesicle priming	5	7	CADPS, CADPS2, SNAP25, STXBP1, SYNJ1	15.80	8.14e-04
Synaptic vesicle recycling	6	10	CDK5, BTBD9, PIP5K1C, PACSIN1, SYT1, SYNJ1	9.47	8.64e-04
Synaptic vesicle transport	17	42	AP3S1, BLOC1S2, BTBD9, CADPS, CADPS2, CDK5, DOC2A, PACSIN1, PIP5K1C, RIMS1, RPH3A, SNAP25, STXBP1, SYN1, SYN11, SYT1, UNC13A	4.36	1.66e-05
Terminal bouton	9	17	AP1S1, CCK, KCNC2, STXBP1, SYN1, SYNJ1, SYP, SYT1, VAMP1	7.14	1.47e-05
Transport vesicle	25	103	AMPH, AP1S1, AP3S1, CNST, DDHD2, DGKI, DOC2A, GABRA2, GRIN2A, ICA1, NCALD, NRSN2, PCSK2, RAB27B, RPH3A, SCG3, SLC17A7, SNAP25, STEAP2, SV2B, SYN1, SYP, SYT1, TMEM30A, VAMP1	2.06	2.69e-03
Voltage-gated ion chan- nel activity	30	65	CACNAIG, CACNAIH, CACNAII, CACNA2DI, CACNBI, CACNB2, CACNG2, CACNG3, CLIC2, KCNAI, KCNA3, KCNA4, KCNB2, KCNC2, KCND3, KCNIP1, KCNIP3, KCNIP4, KCNJ16, KCNJ6, KCNK1, KCNQ2, KCNQ5, KCNS2, KCNV1, SCN1B, SCN2A, SCN2B, SCN3B, SCN8A	5.64	1.91e-10

FIGURE 3. mRNA expression levels of selected deregulated genes in frontal cortex area 8 of sFTLD-TDP and controls assessed with TaqMan RT-qPCR assays. Genes coding for **(A)** proteins involved in toxic aggregates of FTLD variants and *GFAP*: **(B, C)** cytoskeleton and structural components. Significant levels set at *p < 0.05, **p < 0.01, and ***p < 0.001.

(p=0.001), APRT (p=0.001), DGUOK (p=0.007), ENTPD3 (p=0.02), NME1 (p=0.03), NME3 (p=0.01), NME7 (p=0.007), and POLR3B (p=0.003) were significantly deregulated in sFTLD-TDP (Fig. 5).

Protein Expression Levels of Selected Genes

Expression levels of 14 proteins not related to mitochondria and energy metabolism were assessed. C9ORF72 protein levels were significantly decreased in sFTLD-TDP (p = 0.01). However, TDP-43 levels were increased in sFTLD-TDP (p = 0.02) (Fig. 6). Significant reduction of VGAT (p = 0.04) and GAD1 (p = 0.02) levels occurred in sFTLD-TDP. A significant reduction was found in GABRD protein levels (p = 0.02), but no changes were detected in synaptophysin (SYP), NMDAR2A, GABAARB2, calbindin-28K (CALB1), and SNAP25 levels in sFTLD-TDP. GFAP levels showed a

FIGURE 4. mRNA expression levels of selected deregulated genes identified by microarray analysis in frontal cortex area 8 of sFTLD-TDP and controls assessed by TaqMan RT-qPCR assays are coding for glutamatergic and GABAergic-related genes and corresponding ionotropic and metabotropic receptors, as well as synaptic cleft proteins and neurotransmission vesicles system. Significant levels set at *p < 0.05, **p < 0.01, and ***p < 0.001.

nonsignificant increase in sFTLD-TDP cases when compared with controls (Fig. 6).

revealed with the phospho-tauThr181 antibody was found in sFTLD-TDP (Fig. 7).

Total TAU, 4R-TAU and 3R-TAU

To further analyze cytoskeletal anomalies, the expression levels of total TAU, 3R-TAU, and 4R-TAU were assessed using forward SYBR primer and reverse primer specific probes. Total Tau, 3R-TAU, and 4R-TAU mRNA expression levels were similar in sFTLD-TDP cases when compared with controls. In this line, 4R/3R ratio was preserved in sFTLD cases. Protein expression was studied with Western blotting. Total TAU protein levels were similar in sFTLD-TDP and controls and the ratio 4R/3R was not modified. Finally, no evidence of increased tau phosphorylation, as

Mitochondrial Alterations

Genes Coding for Mitochondrial Subunits and Energy Metabolism

The expression of 37 genes was assessed by RT-qPCR; 27 of them were deregulated in sFTLD-TDP. Downregulated genes encoded subunits of the electron transport chain (ETC) complexes I: *NDUFA2* (p=0.02), *NDUFA5* (p=0.05), *NDUFA10* (p=0.016), *NDUFAF2* (p=0.02), *NDUFAF6* (p=0.04), *NDUFB5* (p=0.016), *NDUFB8* (p=0.017), and *NDUFB10* (p=0.025); subunits of complex IV: *COX7A2L*

FIGURE 5. mRNA expression levels of selected deregulated genes identified by microarray analysis in frontal cortex area 8 of sFTLD-TDP and controls assessed with TaqMan RT-qPCR assays coding for purines metabolism. Significant levels set at *p < 0.05, **p < 0.01, and ***p < 0.001.

(p = 0.02) and *COA6* (p = 0.02); and complex V: *ATP50* (p = 0.015), *ATP5A1* (p = 0.03), and *ATP5B* (p = 0.04). In addition, several genes involved in energy metabolism were downregulated in sFTLD-TDP including *ATP2B3* (p = 0.03), *ATP2B4* (p = 0.04), *ATP6D* (p = 0.02), *ATP6V1A* (p = 0.002), *FASTKD2* (p = 0.007), *MCU* (p = 0.045), *MICU3* (p = 0.01), *MTIF2* (p = 0.006), *MTX3* (p = 0.03), *RMND1* (p = 0.005), *SLC25A1* (p = 0.01), *SLC25A11* (p = 0.03), and *TOMM70* (p = 0.001) (Fig. 8A).

Mitochondria Protein Levels in Mitochondria-enriched Fractions

Decreased levels of NDUFB10 were found in sFTLD-TDP (p=0.04), but not of NDUFB8, NDUFS8, NDUFA10. Protein levels of SDHB, a component of ETC complex II, were not modified in sFTLD-TDP. In contrast, UQCRC2, a component of ETC complex III, was significantly increased in sFTLD-TDP (p=0.03). Levels of ATP5A were significantly decreased (p=0.04). MT-CO1 levels were significantly decreased in sFTLD-TDP (p=0.01) but MT-ND1 expression was preserved (Fig. 8B). In contrast to mRNA expression, TOMM70 protein levels were not significantly altered in pathological cases when compared with controls.

Mitochondrial Enzymatic Activities in Mitochondrial Enriched Fractions

The enzymatic activity of mitochondrial complexes I, IV, and V was significantly reduced in sFTLD-TDP cases when compared with controls (p = 0.04, p = 0.03, and p = 0.05, respectively) (Fig. 8C).

DISCUSSION

Gene transcription profiles are analyzed in the frontal cortex area 8 in sFTLD cases with typical neuropathology including TDP-43-immunoreactive inclusions mainly in the form of cortical neurites and intracytoplasmic inclusions. Cases in this series had reduced *TARDBP* mRNA expression and increased levels of TDP-43 protein, and reduced expression of C9Orf72 mRNA and protein. Opposite expression of TDP mRNA and protein may be related to translational modifications. These are further accompanied by posttranslational modifications of TDP-43 (10). Decreased C9Orf72 mRNA and protein was not expected and further studies are needed to elucidate C9Orf72 loss of function in sFTLD-TDP not linked to *C9ORF72* mutations.

The present study using whole-transcriptome microarray hybridization showed downregulation of several genes in

FIGURE 6. Gel electrophoresis and Western blotting of proteins involved in toxic aggregates in FTLD, GABAergic, and glutamatergic neurotransmission systems, synaptic vesicles, cytoskeleton, neuroinflammation, and mitochondria. Significant levels set at *p < 0.05, **p < 0.01, and ***p < 0.001.

the frontal cortex area 8 in sFTLD-TDP clustered in pathways involved in neurotransmission and synapsis, neuronal architecture, cytoskeleton of axons and dendrites, vesicle trafficking. purine metabolism, mitochondria, and energy metabolism. Microarray observations were further validated by RT-qPCR of selected genes from predicted altered pathways after searching on Gene Ontology (GO) database, using 111 probes; the expression of 81 genes was significantly deregulated in this cortical region in sFTLD-TDP when compared with controls. Expression levels of 24 proteins were analyzed by Western blotting; levels of 8 proteins were altered in sFTLD-TDP. Neurotransmission was markedly affected in sFTLD-TDP involving downregulated gene expression of glutamate decarboxylase, several types and subunits of ionotropic and metabotropic glutamate and GABA receptors, neuronal vesicular and soluble glutamate transporters, and various synaptic proteins, together with loss of calbindin expression. This provides robust support to preliminary observations showing decreased numbers, amputation, and proximal swellings of dendritic branches and loss of synaptic spine pyramidal cells, and loss of calbindin-immunoreactive neurons and atrophy of remaining neurons in layers II and III of the frontal cortex in FTLD (24). Protein expression studies showing decreased levels of synaptic markers are also in line with previous observations demonstrating reduced levels of several synaptic and presynaptic plasma membrane proteins in the frontal cortex, but not in the posterior parietal cortex assessed in parallel, in FTLD (25).

In contrast to the marked decrease in the expression of cytoskeletal and synaptic markers, tau mRNA and protein levels were preserved in the present series, and tau phosphorylation was not increased in sFTLD-TDP. This is in contrast with

FIGURE 7. (A) mRNA expression levels of total TAU, 3R-TAU, and 4R-TAU in the frontal cortex area 8 in control and sFTLD-TDP. No significant differences are observed and the ratio 4R/3R is similar in sFTLD and controls. **(B)** Similarly, no differences in TAU protein expression and 4R/3R are seen in sFTLD-TDP cases and controls. Phospho-tau levels, as revealed with the phospho-tau-specific Thr181 antibody, are similar in control and sFTLD-TDP.

early reports pointing to decreased tau protein levels in FTLD with ubiquitin inclusions (presumably FTLD-TDP), which suggested that FTLD-U may be a novel "inverse" tauopathy because of the reduced levels of tau (26, 27). Reduced tau mRNA and protein levels have been reported in FTLD-TDP linked to GRN mutations but not in other FTLD-TDP subtypes including sporadic FTLD-TDP and FTLD-TDP-C9ORF72 (28).

Mitochondrial alterations compromise mRNA expression of several subunits of the mitochondrial complexes. Moreover, they are accompanied by altered protein expression of several subunits and with reduced activity of complexes I, IV, and V in sFTLD-TDP. Importantly, in addition to mitochondrial subunits encoded by genomic DNA, expression levels of MT-CO1 encoded by mitochondrial DNA are reduced in sFTLD-TDP. Therefore, mitochondrial alterations in sFTLD-TDP have both genomic and mitochondrial components. Other genes involved in energy metabolism are downregulated as well, thus indicating functional energy metabolism failure in sFTLD-TDP. Gene-specific mitochondrial dysfunction has been described in human fibroblasts bearing mutations in *TARDBP* and *C9ORF72* (29). Mitochondrial dysfunction has also been documented in a transgenic knock-in mouse model for TDP-43 (30). Therefore, mitochondrial alterations seem to be common to different forms of sFTLD-TDP and fFTLD-TDP.

Purines and pyrimidines are components of a large number of key molecules. The primary purines adenine and guanosine, and pyrimidines cytosine, thymidine, and uracyl, are the core of DNA, RNA, nucleosides, and nucleotides involved in energy transfer (ATP, GTP) and coenzymes (NADH, FADH2) (31, 32). Alterations in the expression of genes encoding enzymes of purine metabolism may interfere with numerous metabolic processes in sFTLD-TDP.

It can be argued that differences in the percentage of neurons, astrocytes, oligodendroglia, and microglia lie beyond distinct patterns of gene expression, protein levels, and mitochondrial enzymatic activities in sFTLD-TDP. Certainly, neuron loss, spongiosis in the upper cortical layers and variable astrocytic gliosis are typical morphological alterations in sFTLD-TDP (1–3). Present findings complement morphological observations by biochemical data that identify damage of particular components of vital molecular pathways and essential modulators of synaptic transmission.

Previous studies have shown differential gene expression in frontal cortex between 6 cases of FTLD-U

	Gene symbol NDUFA2	Gene name NADH:Ubiquinone Oxidoreductase Subunit A2		Control			sFTLD-TDP		
Complex I			1,03	±	0,07	0,77	±	0,07*	
	NDUFA5	NADH:Ubiquinone Oxidoreductase Subunit A5	1,03	±	0,07	0,78	*	0,09*	
	NDUFA10	NADH:Ubiquinone Oxidoreductase Subunit A10	1,03	±	0,06	0,75	±	0,04***	
	NDUFAF6	NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6	1,02	±	0,07	0,79	±	0,08*	
	NDUFAF2	NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 2	1,05	±	0,09	0,76	±	0,07*	
	NDUFB5	NADH:Ubiquinone Oxidoreductase Subunit B5	1,02	±	0,06	0,76	±	0,08*	
	NDUFB8	NADH:Ubiquinone Oxidoreductase Subunit 88	1,04	±	0,08	0,77	±	0,07*	
	NDUFB10	NADH:Ubiquinone Oxidoreductase Subunit B10	1,03	±	0,07	0,78	±	0,07*	
	NDUFS8	NADH:Ubiquinone Oxidoreductase Subunit S8	1,03	±	0,07	0,92	±	0,10	
Complex II	SDHB	Succinate Dehydrogenase Complex Iron Sulfur Subunit B	1,03	±	0,07	0,87	±	0,08	
Complex III	UQCR11	Ubiquinol-Cytochrome C Reductase, Complex III Subunit XI	1,04	±	0,08	0,83	±	0,09	
	UQCRB	Ubiquinol-Cytochrome C Reductase Binding Protein	1,07	±	0,11	0,78	±	0,11	
Complex IV	COX7AL	Cytochrome C Oxidase Subunit 7A	1,03	±	0,07	0,76	±	0,08*	
	COA6	Cytochrome c oxidase assembly factor 6	1,04	±	0,09	0,73	±	0,09*	
Complex V	ATP5H	ATP Synthase, H+ Transporting, Mitochondrial Fo Complex Subunit D	1,03	±	0,07	0,81	±	0,08	
	ATP5L	ATP Synthase, H+ Transporting, Mitochondrial Fo Complex Subunit G	1,03	±	0,06	0,85	±	0,09	
	ATP50	ATP Synthase, H+ Transporting, Mitochondrial F1 Complex, O Subunit	1,04	±	0,08	0,74	±	0,08*	
	ATP5A1	ATP Synthase, H+ Transporting, Mitochondrial F1 Complex, Alpha Subunit 1	1,07	±	0,11	0,75	±	0,09*	
	ATP5B	ATP Synthase, H+ Transporting, Mitochondrial F1 Complex, Beta Polypeptide	1,09	±	0,13	0,76	±	0,09*	
Indirect components of ETC	ATP2B3	ATPase Plasma Membrane Ca2+ Transporting 3	1,05	±	0,09	0,74	±	0,1*	
	ATP2B4	ATPase Plasma Membrane Ca2+ Transporting 4	1,05	±	0,09	0,78	±	0,09*	
	ATP4A	ATPase H+/K+ Transporting Alpha Subunit	1,15	±	0,15	1,14	±	0,17	
	ATP6D	ATPase H+ Transporting V0 Subunit D1	1,03	±	0,06	0,78	±	0,08*	
	ATP6V1A	ATPase H+ Transporting V1 Subunit A	1,12	±	0,15	0,57	±	0,08**	
Mitochondrial structure	APOOL	Apolipoprotein O like	1,02	±	0,06	0,96	±	0,10	
	FASTKD2	FAST kinase domains 2	1,04	±	0,07	0,74	±	0,07**	
	MCU	Mitochondrial calcium uniporter	1,05	±	0,09	0,78	±	0,09*	
	MICU3	Mitochondrial calcium uptake family member 3	1,03	±	0,06	0,71	±	0,09**	
	MRPL1	Mitochondrial ribosomal protein L1	1,03	±	0,07	0,83	±	0,09	
	MRPS35	Mitochondrial ribosomal protein \$35	1,04	±	0,09	0,84	±	0,08	
	MTIF2	Mitochondrial translational initiation factor 2	1,04	±	0,08	0,74	±	0,06**	
	MTX3	Metaxin 3	1,04	±	0,08	0,79	±	0,07*	
	RMND1	Required for meiotic nuclear division 1 homolog	1,04	±	0,08	0,70	±	0,08**	
	SLC25A1	Solute carrier family 25 member 1	1,10	±	0,13	0,61	±	0,11**	
	SLC25A11	Solute carrier family 25 member 11	1,04	±	0,08	0,77	±	0,08*	
	SLC25A23	Solute carrier family 25 member 23	1,03	±	0,07	0,78	±	0,08*	
	TOMM70	Translocase of outer mitochondrial membrane 70	1.07	+	0.11	0.62	+	0.07***	

В

С

18

FIGURE 8. (A) mRNA expression levels of selected deregulated genes identified by microarray analysis in the frontal cortex area 8 of sFTLD-TDP and controls assessed with TaqMan RT-qPCR assays coding for subunits of the mitochondrial respiratory chain and proteins linked to energy metabolism. **(B)** Protein levels in control and sFTLD-TDP of subunits encoded by genomic DNA of mitochondrial complexes I (NDUFA10, NDUFB10, NDUFS8, NDUFB8), II (SDHB), III (UQCRC2), and V (ATP5A); encoded by mitochondrial DNA of complex I (MT-ND1) and complex IV (MTCO1); and TOMM10 normalized with voltage-dependent anion channel (VDAC). Diagrams show quantitative values of all assessed cases. **(C)** Mitochondrial enzymatic activities in complex I, II, IV, and V in control and FTLD. All the mitochondrial activities are corrected with citrate synthase activity. Significant levels set at *p < 0.05, **p < 0.01, and ***p < 0.001.

(FTLD-TDP), 3 of them bearing *GRN* mutations, and 4 FTLD-MND (linked to motor neuron disease) cases. RT-qPCR validated the deregulation of dynein, annexinA2, and

myeloid differentiation primary response in FTLD-U (14). Another study examined 7 FTLD-U cases linked to *GRN* mutations and 10 FTLD-U cases without *GRN* mutations (15). A distinct molecular phenotype was identified for *GRN*+ FTLD-U when compared with *GRN*-FTLD-U subtypes. Validation by RT-qPCR was assessed for 16 genes; deregulated biological processes associated with *GRN*-FTLD-U were lipid metabolism, MAPK signaling pathways, and transport (15). A recent study in the cerebellum and frontal cortex in sALS and ALS linked to *C90RF72* mutations has shown 57 genes in cerebellum and 32 genes in frontal cortex abnormally expressed in both c9ALS and sALS; however, the number of deregulated genes in C90RF72 sALS cases was double than in sALS thus further suggesting differences between different forms of ALS (19).

Comparison between present findings and our previous observations in frontal cortex area 8 in sALS (18), using the same methods, is worth stressing since most of downregulated genes in sFTLD-TDP are upregulated in the frontal cortex area 8 in sALS cases without dementia (18). This suggests a primary response to synaptic and neurotransmission disturbances of frontal cortex area 8 at preclinical stages of frontal degeneration in sALS. Reduced expression of genes encoding actin, actin-related members, kinesin, and microtubuleassociated protein further supports cytoskeletal damage in sALS and sFTLD-TDP.

Conclusions

Whole transcriptome arrays and bioinformatics processing followed by RT-qPCR expression of 111 genes shows deregulation of 81 genes involved in cytoskeleton and neuron structure, neurotransmitters, receptors, transporters and synaptic proteins, components of mitochondrial function and energy metabolism, enzymes involved in purine metabolism and RNA splicing in sFTLD-TDP. Western blotting of selected proteins further supports alterations of these pathways at translational level. Finally, altered mitochondrial activity of several mitochondrial complexes is demonstrated by enzymatic assays.

ACKNOWLEDGMENTS

We are indebted to the Neurological Tissue Bank of the IDIBAPS Biobank, Barcelona, Spain, for sample and data procurement. Microarrays were carried out at the High Technology Unit (UAT), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain. We wish to thank F. Briansó, Unit of Statistics and Bioinformatics, VHIR, for the preliminary bioinformatics processing of data, and T. Yohannan for editorial help.

REFERENCES

- Hortobagyi T, Cairns NJ, Amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In: Kovacs Gabor G, eds. Neuropathology of Neurodegenerative Diseases: A Practical Guide. Cambridge: Cambridge University Press 2015:209–48
- Lashley T, Roher JD, Mead S, et al. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 2015;41:858–81
- Mann DMA, Snowden JS. Frontotemporal lobar degeneration: pathogenesis, pathology and pathways to phenotype. Brain Pathol 2017;27: 723–36
- Olszewska DA, Lonergan R, Fallon EM, et al. Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep 2016;16:107

- Pottier C, Ravenscroft TA, Sanchez-Contreras M, et al. Genetics of FTLD: Overview and what else we can expect from genetic studie. J Neurochem 2016;138:32–53
- Rainero I, Rubino E, Michelerio A, et al. Recent advances in the molecular genetics of frontotemporal lobar degeneration. Funct Neurol 2017;32: 7–16
- Geser F, Martinez-Lage M, Robinson J, et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 2009; 66:180–9
- Cruts M, Gijselinck I, Van Langenhove T, et al. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci 2013;36:450–99
- Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17–23
- Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314:130–3
- Mackenzie IR, Neumann M, Baborie A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011;122: 111–3
- Alafuzoff I, Pikkarainen M, Neumann M, et al. Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: An inter-laboratory study by the BrainNet Europe consortium. J Neural Transm (Vienna) 2015;122:957–72
- Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J Neurochem 2016;138:54–70
- Mishra M, Paunesku T, Woloschak GE, et al. Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 2007;114:81–94
- Chen-Plotkin AS, Geser F, Plotkin JB, et al. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 2008;17:1349–62
- Martins-de-Souza D, Guest PC, Mann DM, et al. Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J Proteome Res 2012;11:2533–43
- Evers BM, Rodriguez-Navas C, Tesla RJ, et al. Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep 2017;20:2565–74
- Andrés-Benito P, Moreno J, Aso E, et al. Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: Implications in frontotemporal lobar degeneration. Aging 2017;9:823–51
- Prudencio M, Belzil VV, Batra R, et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 2015;8: 251175–82
- Ferrer I, Martinez A, Boluda S, et al. Brain banks: Benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 2008;9:181–94
- van der Zee J, Gijselinck I, Dillen L, et al. A pan-European study of the C9orf72 repeat associated with FTLD: Geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 2013;34:363–73
- Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004;5:R80
- Barrachina M, Castaño E, Ferrer I. TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 2006;49:276–84
- Ferrer I. Dementia of frontal lobe type and amyotrophy. Behav Neurol 1992;5:87–96
- Ferrer I. Neurons and their dendrites in frontotemporal dementia. Dement Geriatr Cogn Disord 1999;10(Suppl 1):55–60
- Zhukareva V, Sundarraj S, Mann D, et al. Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: An international follow-up study. Acta Neuropathol 2003;105:469–76
- Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 2001;49:165–75
- Papegaey A, Eddarkaoui S, Deramecourt V, et al. Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathol Commun 2016;4:74

- Onesto E, Colombrita C, Gumina V, et al. Gene-specific mitochondria dysfunctions in human TARDP and C9ORF72 fibroblasts. Acta Neuropathol Commun 2016;4:47
- Stribl C, Samara A, Trümbach D, et al. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J Biol Chem 2014;289:10769–84
- 31. Ipata PL, Camici M, Micheli V, et al. Metabolic network of nucleosides in the brain. Curr Top Med Chem 2011;11:902–22
- Ansoleaga B, Jové M, Schlüter A, et al. Deregulation of purine metabolism in Alzheimer's disease. Neurobiol Aging 2015;36: 68-80