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Abstract: Eisenberg and Noe (2001) define a financial network where the players have 

claims against each other. In this system it is possible that one or several players do not 

have enough money to pay all their debts and default, being their total payment smaller 

than the total amount of their claims. Under the properties of Limited liability and 

Absolute priority and the bankruptcy rule of Proportionality, they prove that there exists 

a unique payment matrix if the system is regular. The aim of this paper to study whether 

these three properties are compatible or not with non-manipulability properties. In 

particular, we show that although agents may have incentives to split, they do not have 

incentives to merge. 

Key words: financial systems, default, proportionality, splitting, merging. 
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1. Introduction 

 

On September 15th, 2008, the financial institution Lehman Brothers declared officially 

its bankruptcy. This had a cost of 22 trillion of dollars for the US economy and was 

considered by the analysts one of the most important events that triggered the global 

crisis, provoking a sort of tsunami whose effects we still suffer nowadays. 

Although it is common knowledge, the Lehman Brothers’ bankruptcy brought to light 

that institutions are not isolated, in fact they are connected and the financial health of one 

institution does not depend only of itself, but to a greater or lesser extent, depends of the 

other institutions of the system, with which it makes transactions. 

Counterparty risk, the likelihood that one of those involved in a transaction might default 

on its contractual obligation, is a hazard that firms and institutions face every day. This 

risk can exist in investment, trading transactions and credit and its treatment and coverage 

are part of a good risk management. In fact, Basel III (Basel Committee on Banking 

Supervision, 2017), the internationally agreed set of measures to apply in the banking 

system, include specific capital requirements to mitigate the counterparty credit risk. 

Similar requirements are included in Solvency II (see Directive 2009/138/EC of the 

European Parament), the European Directive that harmonizes the insurance regulation in 

Europe. 

As a regulator the most important concern must be to ensure that the default of one or 

more agents of the system does not trigger a chain of defaults that concludes in the failure 

of the whole system, but also it is important to define the way in which the creditors of a 

defaulting institution will be compensated. There exist several bankruptcy rules: all the 

creditors will be payed equally (constrained equal awards), all the creditors will not 

perceive the same amount of their debt (constrained equal losses) or all the creditors will 

perceive a proportional part of their debt (proportionality) are some examples. 

From this point of view, it could be also interesting to know which desirable properties 

hold under certain bankruptcy rules. In fact, Eisenberg and Noe (2001), proved that under 

the proportional rule, if it is imposed that the firms of the system are not able to pay more 

money than they have (Limited liability) and also that if any of them is not able to cover 

entirely all its liabilities then it will destinate all its resources to the payment to its 

creditors (Absolute priority), there only exists one way to clear the debts in the system, a 

unique clearing payment matrix (there are certain characteristics that the system must be 

satisfied, though).  

Based on this paper, we try to study other desirable properties while holding Limited 

liability and Absolute priority. In fact, we are interested in the agents of the system not 

having incentives to merge nor to split. The results are interesting since, as far as we 

know, there are only two other works that study financial systems from an axiomatic point 

of view: one study the situation with indivisibilities (Csóka and Herings, 2018) while the 

other works with perfectly divisible goods, as money (Csóka and Herings, 2017). 

Additionally, we check if the agents have incentives to compensate the bilateral liabilities 

between them before initiate the process of the payment of the debts. 

Also, a simpler version of the algorithm developed by Eisenberg and Noe to find the 

unique payment matrix is presented. 
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The structure of the work goes as follows: in section 2, the model and its characteristics 

are introduced, with some examples. In section 3, the algorithm to find the unique 

payment matrix is presented and implemented in an example. In section 4, new properties 

are imposed and it is proved whether they hold under the properties defined by Eisenberg 

and Noe. Finally, in section 5, we present some conclusions. In the Appendix, we include 

the R code of the algorithm as well as the code used to solve the example in Section 3. 

 

2. The model 

 

In a closed financial system several economic entities, firms, institutions, participants or 

simply agents participate. These words will be used interchangeably throughout this 

work. ℕ denotes the set of all potential agents and 𝒩 = {𝑁 ⊆ ℕ: |𝑁| < ∞} denotes the 

set of possible groups of agents.  By 𝑁 = {1,2, … , 𝑛} ∈ 𝒩 we obtain the set of agents in 

the system. In this first section, we will explain the model presented in Eisenberg and Noe 

(2001). 

Due to their economic interactions or their past transactions, the agents may have mutual 

liabilities or claims. We can represent all liabilities in the system by a 𝑛 × 𝑛 matrix 𝐿, 

where ∀𝑖, 𝑗 ∈ 𝑁 𝑙𝑖𝑗 ≥ 0 represents the liability of agent 𝑖 to agent 𝑗 or equivalently the 

claim of agent 𝑗 against agent 𝑖, and 𝑙𝑖𝑖 = 0 ∀𝑖 ∈ 𝑁. 

Finally, by 𝑧𝑖 ≥ 0 we will denote the exogenous operating cash flow or cash level of 

agent 𝑖 ∈ 𝑁 that might be used to pay its debts to its creditors. By 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑛) we 

denote the vector of operating cash flows. 

Although operating cash flows are assumed to be nonnegative, this condition is not 

restrictive. Due to operational costs, as paying salaries, the costs of 𝑖 ∈ 𝑁 could exceed 

its revenues. In order to represent this costs, Eisenberg and Noe proposed the inclusion 

of a “sink node”, an agent 0, whose 𝑧0 = 0 and 𝑙0𝑗 = 0 ∀𝑗 ∈ 𝑁, being the claims of the 

sink node, 𝑙𝑖0, the representation of operating cost ∀𝑖 ∈ 𝑁. Since nothing in their setup 

precludes a node with these characteristics, the assumption of nonnegative 𝑧𝑖 is made 

without loss of generality. 

So, a financial system is represented by the triplet (𝑁, 𝑧, 𝐿) with 𝐿 of the form: 

 

𝐿 = (

0 𝑙12

𝑙21 0

…
…

𝑙1𝑛

𝑙2𝑛

⋮ ⋮
𝑙𝑛1 𝑙𝑛2

⋱
…

⋮
0

) . 

 

By Γ we define the set of all financial systems. 

A financial system it is indeed a network that can be represented by a directed graph 

whose nodes are the institutions of the financial systems and there is a directed edge from 

𝑖 to 𝑗 (𝑖 → 𝑗) whenever 𝑙𝑖𝑗 > 0. 



8 
 

For any given financial system (𝑁, 𝑧, 𝐿) we can define the value of the equity of agent 

𝑖 ∈ 𝑁 by  

 

𝐸𝑖(𝑁, 𝑧, 𝐿) = 𝑧𝑖 + ∑ 𝑙𝑗𝑖

𝑗∈𝑁

− ∑ 𝑙𝑖𝑗

𝑗∈𝑁

. 

 

𝐸𝑖(𝑁, 𝑧, 𝐿) represents the available amount of money of the institution 𝑖 ∈ 𝑁 if all the 

liabilities in matrix 𝐿 are fully satisfied. 

If 𝐸𝑖(𝑁, 𝑧, 𝐿) ≥ 0   ∀𝑖 ∈ 𝑁 then the system is healthy, not in risk, since satisfying all its 

obligations does not lead to a negative equity value for any firm and, thus, all debts can 

be fully cancelled. 

However, if there exists 𝑖 ∈ 𝑁 such that 𝐸𝑖 (𝑁, 𝑧, 𝐿) < 0 it means that the debts of 

institution 𝑖 exceed its assets, making impossible to compensate entirely to all creditors, 

provoking the default of firm 𝑖.  

Example 1. Consider the financial system (𝑁, 𝑧, 𝐿) ∈ Γ with three firms 𝑁 = {1,2,3} and 

operating cash flows and liabilities presented in 𝑧 and 𝐿. 

 

𝑧 = (8,0,10), 

𝐿 = (
0 15 30
0 0 20
5 5 0

). 

 

In this example we can see that firms 1 and 3 have liabilities with the other two firms 

while firm 2 only has a liability with firm 3. The network can be represented by the next 

graph in figure 1: 

 

 

Figure 1: graph Example 1 

Source: own elaboration 
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Then, 

 

𝐸1(𝑁, 𝑧, 𝐿) = 8 + 5 − (15 + 30) = −32 

𝐸2(𝑁, 𝑧, 𝐿) = 0 + (15 + 5) − (20) = 0 

𝐸3(𝑁, 𝑧, 𝐿) = 10 + (30 + 20) − (5 + 5) = 50. 

 

Institution 1 defaults. Given this situation, a question arises: could the default of firm 1 

lead to other firms’ default? In fact, although firm 1 dedicate all its resources (8 + 5) to 

cover its debt with firm 2, this last firm will also default, since 0 + (13 + 5) < 20. By 

this example, we can see that an institution defaulting can provoke the default of other 

institutions in the financial system, incurring in systemic risk. 

The main and fundamental question is about how much of the liabilities should be 

satisfied to clear the system and avoid its collapse. 

We will search for ways of selecting some payoff proposal, a specification of how much 

of a liability 𝑙𝑖𝑗 should be paid for all 𝑖, 𝑗 ∈ 𝑁. We will impose natural lower and upper 

bounds requirements. Those payoffs should be seen as a recommendation for the problem. 

Formally, a clearing payment matrix assigns to every financial system (𝑁, 𝑧, 𝐿) ∈ Γ a 

𝑛 × 𝑛 clearing matrix of payoffs. That clearing matrix is a function 𝑃: Γ → ℳ𝑛×𝑛 where 

ℳ𝑛×𝑛 is the space of 𝑛 × 𝑛 matrix with  0 ≤ 𝑝𝑖𝑗(𝑁, 𝑧, 𝐿) ≤ 𝑙𝑖𝑗  ∀𝑖, 𝑗 ∈ 𝑁. This condition 

simply imposes natural lower and upper bounds requirements. Note that implies 

𝑝𝑖𝑖(𝑁, 𝑧, 𝐿) = 0 ∀𝑖 ∈ 𝑁. Let (𝑁, 𝑧, 𝐿) ∈ Γ and 𝑃: Γ → ℳ𝑛×𝑛, for simplicity of notation 

we will use 𝑃(𝑁, 𝑧, 𝐿) = (𝑝𝑖𝑗)𝑖∈𝑁
𝑗∈𝑁

 

= 𝑃. 

𝑃(𝑁, 𝑧, 𝐿) = 𝑃 is of the form 

 

𝑃 = (

0 𝑝12

𝑝21 0

…
…

𝑝1𝑛

𝑝2𝑛

⋮ ⋮
𝑝𝑛1 𝑝𝑛2

⋱
…

⋮
0

). 

 

Following Eisenberg and Noe, we impose that such solution or clearing matrix should be 

consistent with several principles or properties that at the same time should capture the 

ideas underlying the legal rules in case of bankruptcy. To define those principles or 

axioms let us introduce some notation. An important value is the value of equity of the 

agents under the clearing payment matrix 𝑃(𝑁, 𝑧, 𝐿) = 𝑃: 
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𝐸𝑖(𝑁, 𝑧, 𝑃) = 𝑧𝑖 + ∑ 𝑝𝑗𝑖

𝑗∈𝑁

− ∑ 𝑝𝑖𝑗

𝑗∈𝑁

. 

 

The first property that Eisenberg and Noe impose is Limited liability (LL), which requires 

that the total payments made by an institution must never exceed the assets available of 

the institution. Formally, a clearing matrix proposal, 𝑃(𝑁, 𝑧, 𝐿) = 𝑃, satisfies LL if for all 
(𝑁, 𝑧, 𝐿) ∈ Γ and all 𝑖 ∈ 𝑁 

 

𝑧𝑖 + ∑ 𝑝𝑗𝑖

𝑗∈𝑁

≥ ∑ 𝑝𝑖𝑗

𝑗∈𝑁

. 

 

Note that this condition is equivalent to, 𝐸𝑖(𝑁, 𝑧, 𝑃) ≥ 0 ∀𝑖 ∈ 𝑁. 

The second property also defined by Eisenberg and Noe is Absolute priority (AP) of debts 

over equity which requires that stakeholders of an institution receives no value until the 

institution have payed entirely its outstanding liabilities. A clearing matrix 𝑃(𝑁, 𝑧, 𝐿) =
𝑃 satisfies AP if for all (𝑁, 𝑧, 𝐿) and for all 𝑖 ∈ 𝑁 either 𝑝𝑖𝑗 = 𝑙𝑖𝑗  ∀𝑗 ∈ 𝑁 or 

 

𝑧𝑖 + ∑ 𝑝𝑗𝑖

𝑗∈𝑁

= ∑ 𝑝𝑖𝑗

𝑗∈𝑁

. 

 

Then, under LL and AP, 𝐸𝑖(𝑁, 𝑧, 𝑃) ≥ 0 ∀𝑖 ∈ 𝑁 and it is strictly positive if and only if 

institution 𝑖 have honored fully its obligations with the other firms in the financial system. 

Finally, Eisenberg and Noe impose the principle of Proportionality (PROP) that requires 

that, if default occurs for 𝑖 ∈ 𝑁, then all claimants of 𝑖 are paid proportionally to their 

claims. Proportionality is a principle that is mostly applied in bankruptcy rules nowadays 

(see Aristotle, 1985). Egalitarianism and some forms of priorities are also principles with 

long roots in the past. However, we leave the study of these ideas for future work. 

For simple claim problems (for a survey see Thomson, 2002) in which a single firm 

bankrupts having liabilities to others that in total exceed its estate (or operating cash 

flows), the proportional rule has been extensively studied (see for instance de Frutos, 

1999 and Moreno-Ternero, 2006). 

Formally, a clearing matrix or solution 𝑃(𝑁, 𝑧, 𝑙) = 𝑃 satisfies PROP if for all (𝑁, 𝑧, 𝐿) 

and for all 𝑖 ∈ 𝑁 

 

𝑝𝑖𝑗 =
𝑙𝑖𝑗

𝑙𝑖̅.

(∑ 𝑝𝑖𝑗

𝑗∈𝑁

) = Π𝑖𝑗(𝐿) (∑ 𝑝𝑖𝑗

𝑗∈𝑁

)     ∀𝑗 ∈ 𝑁 
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Each Π𝑖𝑗(𝐿) stands for the proportion of the total debt 𝑙𝑖̅. = ∑ 𝑙𝑖𝑗𝑗∈𝑁  that represents 𝑙𝑖𝑗 

∀𝑖 ∈ 𝑁, in case 𝑙𝑖̅. = 0 we simply define Π𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑁, since firm 𝑖 has no debts with 

others. Hence∑ Π𝑖𝑗𝑗∈𝑁  ∀𝑖 ∈ 𝑁, except if 𝑙𝑖̅. = 0. Moreover, we can construct the matrix 

Π(𝐿) by setting 

 

Π(L) = (

0 Π12

Π21 0

…
…

Π1𝑛

Π2𝑛

⋮ ⋮
Π𝑛1 Π𝑛2

⋱
…

⋮
0

). 

 

For simplicity, we define for all (𝑁, 𝑧, 𝐿) ∈ Γ and a clearing matrix 𝑃(𝑁, 𝑧, 𝐿) = 𝑃 the 

clearing vector 𝑝̅ = (𝑝̅1., 𝑝̅2. , … , 𝑝̅𝑛.) where 

 

𝑝̅𝑖. = ∑ 𝑝𝑖𝑗

𝑗∈𝑁

   ∀𝑖 ∈ 𝑁 

 

represents the total amount payed by 𝑖 to the rest of agents according to matrix 𝑃. 

 
 

3. The clearing payment matrix 

 

3.1. Existence and uniqueness 

 

For a financial system (𝑁, 𝑧, 𝐿) ∈ Γ, Eisenberg and Noe and Groote, Reijnierse and Borm 

(2018) reached the same conclusion on the existence of a clearing payment matrix 

satisfying LL, AP and PROP, following different approaches. 

Theorem 1 (Eisenberg and Noe, 2011): Let (𝑁, 𝑧, 𝐿) ∈ Γ. There exists a clearing payment 

matrix 𝑃 that satisfies LL, AP and PROP. Moreover, if 𝑃′(𝑁, 𝑧, 𝐿) = 𝑃′ and 𝑃′′(𝑁, 𝑧, 𝐿) =
𝑃′′ are two different clearing payment matrices proposals then the value of equity under 

𝑃′ and 𝑃′′ is the same, ∀ 𝑖 ∈ 𝑁. That is 

𝐸𝑖 (𝑁, 𝑧, 𝑃′) = 𝐸𝑖 (𝑁, 𝑧, 𝑃′′)  ∀𝑖 ∈ 𝑁 

 

Eisenberg and Noe show that under some mild conditions the clearing payment matrix 𝑃 

that satisfies LL, AP and PROP is moreover unique. We now introduce the necessary 

definitions to present these conditions. 
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The conditions are imposed on the graph. 𝑆 ⊆ 𝑁 is a surplus set of 𝑁 if no agent in 𝑆 has 

any liability to agents outside 𝑆, i.e. 𝑙𝑖𝑗 = 0 ∀𝑖 ∈ 𝑆 and ∀𝑗 ∉ 𝑆 and agents in 𝑆 together 

has positive operating cash flows, i.e.∑ 𝑧𝑖𝑖∈ 𝑆 > 0 . 

For each node of the system 𝑖 ∈ 𝑁 the risk orbit of 𝑖, denoted by 𝑜(𝑖), is: 

𝑜(𝑖) = {𝑗 ∈ 𝑁: there exist a directed path from i to j} 

𝑜(𝑖) can be interpreted as the set of institutions that may suffer the effects of 𝑖 not facing 

all its obligations. 

A financial system is regular if ∀𝑖 ∈ 𝑁, it holds that 𝑜(𝑖) is a surplus set. 

To illustrate the necessity to study regular systems if we want uniqueness we present an 

example: 

Example 2. Suppose a financial system with 𝑁 = {1,2} and 𝑧 = (0,0) and firms have 

liabilities of 1 to each other. Hence, 

 

L = (
0 1
1 0

). 

 

The risk orbits of the system are 𝑜(1) = 𝑜(2) = {1,2}. Clearly {1,2} is not a surplus set 

because 𝑧1 + 𝑧2 = 0. This implies that the financial system is not regular and, moreover, 

there is not a unique clearing matrix that satisfies LL, AP and PROP. In fact, there are 

infinite solutions that clear the system of the form  

 

𝑃𝑡 = (
0 𝑡
𝑡 0

), 

 

where 𝑡 ∈ [0,1] and the value of equity is for all different alternatives: 

 

𝐸1(𝑁, 𝑧, 𝑃𝑡) = 𝐸2(𝑁, 𝑧, 𝑃𝑡) = 0   ∀𝑡 ∈ [0,1]. 

 

Theorem 2: There is a unique clearing matrix 𝑃 satisfying LL, AP and PROP. 

 

Next, we introduce and explain an algorithm to compute such unique clearing matrix 𝑃. 

This algorithm is very similar, to the sequence of defaults presented in Eisenberg and 

Noe. Their proof (Lemma 3) that their algorithm provides the unique clearing matrix 𝑃 

under LL, AP and PROP can also be used for the algorithm we present here. 
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3.2. The algorithm 

 

In the following, on the class of regular financial systems we denote by 𝑃∗(𝑁, 𝑧, 𝐿) = 𝑃∗ 

the clearing matrix proposal satisfying LL, AP and PROP and 𝑝̅∗ will denote the 

associated clearing payment vector. 

Our algorithm is similar, but simpler and slightly different from the Eisenberg and Noe’s 

algorithm. Additionally, we have developed an R code implementing our algorithm. The 

code is included in the Appendix. 

The algorithm works as follows: 

Let (𝑁, 𝑧, 𝐿) ∈ Γ. First, we will determine the set of firms that default if we assume LL, 

AP and PROP. By 𝐷(𝐿) ⊂ 𝑁 we will denote the firms that default. To this aim, let us first 

introduce the proportion of liabilities that a firm 𝑖 ∈ 𝑁 can pay in case it receives all its 

claims against the rest of firms, that is ∀𝑖 ∈ 𝑁 define: 

 

𝛿𝑖(𝐿) = {

𝑧𝑖 + 𝑙.𝑖  

𝑙𝑖̅.

𝑖𝑓 𝐸𝑖(𝑁, 𝑧, 𝐿) < 0 (𝑧𝑖 + 𝑙.𝑖 < 𝑙𝑖̅. )

1 otherwise (𝑧𝑖 + 𝑙.𝑖 ≥ 𝑙𝑖̅. )

. 

 

where 𝑙.𝑖 = ∑ 𝑙𝑗𝑖𝑗∈𝑁 . Note that 1 ≥ 𝛿𝑖(𝐿) ≥ 0 ∀𝑖 ∈ 𝑁. 

We first assume that every 𝑖 ∈ 𝑁 fully pays its debts to other firms according to 𝐿. Under 

this assumption either (𝑎) no firm defaults, that is, 𝐸𝑖(𝑁, 𝑧, 𝐿) ≥ 0 ∀𝑖 ∈ 𝑁 or (𝑏) some 

firms default, ∃ 𝑖 ∈ 𝑁 such that 𝐸𝑖(𝑁, 𝑧, 𝐿) < 0. If (𝑎) by AP, all firms completely satisfy 

its obligations with other firms, thus, the unique clearing payment matrix is determined 

by setting 𝑃∗(𝑁, 𝑧, 𝐿) = 𝐿 and the unique clearing payment vector is 𝑝̅∗ = (𝑙1̅., 𝑙2̅., … , 𝑙𝑛̅.) 

and our financial system is not in risk. If (𝑏), define 𝐷1(𝐿) = {𝑖 ∈ 𝑁: 𝐸𝑖(𝑁, 𝑧, 𝐿) < 0} to 

be the first-order defaulting firms, such firms will be unable to satisfy all its obligations 

with the rest of firms, although the other firms pay entirely their debts. By LL, AP and 

PROP a firm 𝑖 ∈ 𝐷1(𝐿) will pay the proportion 𝛿𝑖(𝐿) of 𝑙𝑖𝑗 to all 𝑗 ∈ 𝑁 which will be 

possible only if 𝑙𝑗𝑖 are all fully covered ∀𝑗 ∈ 𝑁. 

Accordingly define the 𝑛 × 𝑛 matrix 𝐿1 of liabilities by 

 

𝑙𝑖𝑗
1 = {

𝑙𝑖𝑗 ∀𝑗 ∈ 𝑁 𝑖𝑓 𝑖 ∉ 𝐷1(𝐿)

𝛿𝑖(𝐿) · 𝑙𝑖𝑗 ∀𝑗 ∈ 𝑁 𝑖𝑓 𝑖 ∈ 𝐷1(𝐿)
. 

 

Note that for all 𝑖 ∈ 𝐷1(𝐿),  
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𝐸𝑖(𝑁, 𝑧, 𝐿1) = 𝑧𝑖 + ∑ 𝑙𝑗𝑖
1

𝑗∈𝑁

− ∑ 𝑙𝑖𝑗
1

𝑗∈𝑁

= 𝑧𝑖 + ∑ 𝛿𝑖(𝐿) · 𝑙𝑗𝑖

𝑗∈𝐷1

+ ∑ 𝑙𝑖𝑗

𝑗∈𝑁\𝐷1

− ∑ 𝛿𝑖(𝐿) · 𝑙𝑖𝑗

𝑗∈𝑁

≤

≤ 𝑧𝑖 + ∑ 𝑙𝑗𝑖

𝑗∈𝑁

− ∑ 𝛿𝑖(𝐿) · 𝑙𝑖𝑗

𝑗∈𝑁

= 0. 

 

where the last equality follows from the definition of 𝛿𝑖(𝐿). 

On the other hand, for any 𝑖 ∈ 𝑁\𝐷1(𝐿) 

𝐸𝑖 (𝑁, 𝑧, 𝐿1) = 𝑧𝑖 + ∑ 𝑙𝑗𝑖
1

𝑗∈𝑁

− ∑ 𝑙𝑖𝑗
1

𝑗∈𝑁

= 𝑧𝑖 + ∑ 𝛿𝑖(𝐿) · 𝑙𝑗𝑖

𝑗∈𝐷1(𝐿)

+ ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝐷1(𝐿)

− ∑ 𝑙𝑖𝑗

𝑗∈𝑁

≤ 𝐸𝑖(𝑁, 𝑧, 𝐿). 

 

Consequently, there might be a firm 𝑖 ∈ 𝑁\𝐷1(𝐿) that does not default in first-order that 

can default in succesive orders. Define 𝐷2(𝐿) = {𝑖 ∈ 𝑁\𝐷1(𝐿): 𝐸𝑖(𝑁, 𝑧, 𝐿1) < 0} to be 

the second-order defaulting firms, that do not default according to matrix 𝐿, but they do 

according to matrix 𝐿1. 

If 𝐷2 = ∅ stop. There are not defaulting firms in second-order and the set of firms that 

default under LL, AP and PROP is 𝐷(𝐿) = 𝐷1(𝐿). If 𝐷2(𝐿) ≠ ∅, by LL, AP and PROP 

every 𝑖 ∈ 𝐷2(𝐿) will only pay 𝛿𝑖
1(𝐿) of their liabilities according to 𝐿 if it receives all its 

claims also according to 𝐿1. 𝛿𝑖
1(𝐿) is of the form 

 

𝛿𝑖
1(𝐿) = {

𝑧𝑖 + 𝑙.𝑖
1

𝑙𝑖̅.

𝑖𝑓 𝑖 ∈ 𝐷1(𝐿) ∪ 𝐷2(𝐿) (𝑧𝑖 + 𝑙1.𝑖 < 𝑙𝑖̅. )

1 𝑖𝑓 𝑖 ∉ 𝐷1(𝐿) ∪ 𝐷2(𝐿) (𝑧𝑖 + 𝑙1.𝑖 ≥ 𝑙𝑖̅. )

. 

 

We will then define 𝐿2 accordingly and proceed as before, defining 𝑙𝑖𝑗
2 : 

 

𝑙𝑖𝑗
2 = {

𝑙𝑖𝑗 ∀𝑗 ∈ 𝑁 𝑖𝑓 𝑖 ∉ 𝐷1(𝐿) ∪ 𝐷2(𝐿)

𝛿𝑖
1(𝐿) · 𝑙𝑖𝑗 ∀𝑗 ∈ 𝑁 𝑖𝑓 𝑖 ∈ 𝐷1(𝐿) ∪ 𝐷2(𝐿)

. 

 

Must be noted that  ∀𝑖 ∈ 𝐷1(𝐿), 𝛿𝑖(𝐿) ≥ 𝛿𝑖
1(𝐿) because 𝑙.𝑖 ≥ 𝑙.𝑖

1
. 

This process is iterated 𝑘 times until 𝐷𝑘(𝐿) = ∅. Since there are 𝑛 firms this will occur 

in 𝑘 ≤ 𝑛 steps. Then, the firms that default under LL, AP and PROP are  

 

𝐷(𝐿) = ⋃ 𝐷𝑡(𝐿)

𝑘−1

𝑡=1

. 
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Note that the matrix 𝐿𝑘, if proposed as final payoffs, will satisfy AP and PROP but may 

not satisfy 𝐿𝐿.  

Secondly, and knowing 𝐷(𝐿), we construct a linear system of |𝐷(𝐿)| equations, one for 

each defaulting firm in 𝐷(𝐿) with variables 𝑝̅𝑖.
∗  ∀𝑖 ∈ 𝐷(𝐿). 

By LL, AP and PROP  ∀𝑖 ∈ 𝐷(𝐿) we construct an equation of the form 

𝐸𝑖(𝑁, 𝑧, 𝑃∗) = 𝑧𝑖 + ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝐷(𝐿)

+ ∑ Π𝑗𝑖(𝐿)

𝑗∈𝐷(𝐿)

𝑝̅𝑗.
∗ − 𝑝̅𝑖.

∗ = 0. 

 

By Eisenberg and Noe (2001), under regularity, this system will have a unique solution 

that will determine 𝑝̅𝑖.
∗ ∀𝑖 ∈ 𝐷(𝐿). For every 𝑖 ∈ 𝑁\𝐷(𝐿) we set 𝑝̅𝑖.

∗ = 𝑙𝑖̅.
∗. It is worth to 

notice that if the financial system is not regular, and due to Theorem 1, then any solution 

of the system of equations will satisfy LL, AP and PROP but the equity value of all firms 

will be the same for every different solution. Once all 𝑝̅𝑖.
∗  ∀𝑖 ∈ 𝑁 are computed, the 

algorithm finishes. Observe that 𝑝𝑖𝑗
∗ (𝑁, 𝑧, 𝐿) = 𝑝̅𝑖.

∗ · Π𝑖𝑗(𝐿). 

Next, to illustrate the proper functioning of the algorithm, we present and solve a simple 

example. Additionally, this same example is solved with R code and it is included in the 

Appendix. 

Example 2. Consider the financial system (𝑁, 𝑧, 𝐿) ∈ Γ with four firms 𝑁 = {1,2,3,4} 
with operating cash flows and liabilities presented in 𝑧 and 𝐿: 

 

𝑧 = (0, 0, 20, 20), 

𝐿 = (

0 20 15 15
10 0 10 20
10
20

10
10

0
20

20
0

). 

 

We construct 𝑙𝑖̅., 𝑙.𝑖 and the matrix Π(L): 

 

𝑙𝑖̅.  = (50, 40, 40, 50), 

𝑙.𝑖 = (40, 40, 45, 55), 

Π(L) = (

0 0.4 0.3 0.3
0.25 0 0.25 0.5
0.25
0.4

0.25
0.2

0
0.4

0.5
0

). 

 

We assume fully payment of all debts and compute the vector of equities: 

 



16 
 

𝐸(𝑁, 𝑧, 𝐿) = (−10, 0, 25, 25). 

 

As we can see, firm 1 is the only firm that has negative value of equity and, thus, is the 

only defaulting firm in first order, so 𝐷1(𝐿) = {1}. Then, 

 

𝛿(𝐿) = (0.8, 1, 1, 1). 

 

 To check if there are any second-order defaults, 𝐿1 matrix is constructed 

 

𝐿1 = (

0 16 12 12
10 0 10 20
10
20

10
10

0
20

20
0

). 

 

Once again, we assume that the obligations according to this matrix are completely 

satisfied and construct the vector of values of equity: 

 

𝐸(𝑁, 𝑧, 𝐿1) = (0, −4, 22, 22). 

 

We can see that the only second-order default is by firm 2, then 𝐷2(𝐿) = {2}. We 

construct 𝛿1(𝐿) and with this vector, 𝐿2 is defined 

 

𝛿1(𝐿) = (0.8, 0.9, 1, 1), 

𝐿2 = (

0 16 12 12
9 0 9 18

10
20

10
10

0
20

20
0

). 

 

Then 

 

𝐸(𝑁, 𝑧, 𝐿2) = (−1, 0, 21, 20). 

 

We can observe that neither 3 or 4 see their value of equity reduced enough to not being 

able to pay all their debts, so they do not default in third-order, so 𝐷3(𝐿) = ∅ and 𝐷(𝐿) =
𝐷1(𝐿) ∪ 𝐷2(𝐿) = {1,2}. Now, we stop iterating and proceed with the next step: we have 

to solve the linear equation system below to obtain the unique an unknown value of 𝑝̅1.
∗  

and 𝑝̅2.
∗ . The system of equations to solve in this example is 
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(10 + 20) + 0.25𝑝̅2.
∗ − 𝑝̅1.

∗ = 0, 

(10 + 10) + 0.4𝑝̅1.
∗ − 𝑝̅2.

∗ = 0, 

 

and its solutions are 𝑝̅1
∗ = 38.89 and 𝑝̅2

∗ = 35.56. Additionally, since 3 and 4 do not 

default, 𝑝̅3.
∗ = 𝑙3̅. = 40 and 𝑝̅4.

∗ = 𝑙4̅. = 50. Therefore,  

 

𝑝̅𝑖.
∗ = (38.89, 35.56, 40, 50). 

 

With the help of matrix Π(L) we can construct the clearing payment matrix, 𝑃∗(𝑁, 𝑧, 𝐿) =
𝑃∗: 

 

𝑃∗ = (

0 15.5556 11.6667 11,6667
8.8889 0 8.8889 17.7778

10
20

10
10

0
20

20
0

). 

 

Finally, we can obtain the equity value vector: 

 

𝐸(𝑁, 𝑧, 𝑃∗) = (0, 0, 20.56, 19.44). 

 

By looking at 𝐸(𝑁, 𝑧, 𝑃∗), we check that the properties established by Eisenberg and Noe 

are hold by the clearing payment vector that we have obtained: 1 and 2 are defaulting 

firms, so by AP, their value of equity must be 0 while in the case of 3 and 4 can be (and 

they are) positive. Moreover, none of the values of equity are negative, respecting LL and 

no institution receives a higher payment than their debt, as we can see in the clearing 

payment matrix 𝑃∗. Furthermore, the payments defined by this matrix confirm that PROP 

is hold, since each 𝑝𝑖𝑗  is proportional to the claim that firm 𝑖 owe to firm 𝑗. Finally, this 

financial system is regular (𝑜(1) = 𝑜(2) = 𝑜(3) = 𝑜(4) = {1,2,3,4}), so we ensure that 

the clearing payment matrix obtained computing the algorithm is the only matrix that hold 

LL, AP and PROP. 

 

4. Manipulation by merging and splitting 

 

In the traditional claims’ problems (see Thompson, 2002, for a survey) a single firm goes 

bankrupt and faces a number of claims of 𝑛 creditors (𝑙1, 𝑙2, … , 𝑙𝑛) among whom an 

insufficient state 𝐸 has to be distributed. This problem is first introduced by O’Neill 

(1982) and motivated by numerous fragments of the Talmud.  
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The proportional, to claims, rule, distributes 𝐸 in proportion to the list of liabilities and 

plays the same role than the property of Proportionality in our context. Proportionality is 

indeed, the most common way to distribute 𝐸 in case of bankruptcy, according to law. 

Moreover, is the most intuitive interpretation of justice or equity in justice (see Aristotle, 

1985). 

The Proportional rule for claims problems has been characterized by non-manipulability 

axioms as splitting-proofness (non-manipulability via splitting) and merging-proofness 

(non-manipulability via merging) in different works as de Frutos (1999) and Ju (2003), 

among others.  

Other works, like Moreno-Ternero (2006) impose a stronger axiom of non-manipulability 

that puts together non-splitting and non-merging incentives. Csoka and Herings (2017) 

follows this last approach in the setting of financial systems. Here we pretend to study 

splitting-proofness and merging-proofness separately when combining it with LL, AP and 

the central idea of Proportionality. 

Definition: We say that a clearing matrix 𝑃: Γ → ℳ𝑛×𝑛 satisfies splitting-proofness (SP) 

if ∀𝑁′, 𝑁 ∈ 𝒩 and for all (𝑁, 𝑧, 𝐿) and (𝑁′, 𝑧′, 𝐿′), with 𝑁′ ⊂ 𝑁, if there is 𝑚 ∈ 𝑁′ such 

that 

(i) 𝑧𝑚
′ = 𝑧𝑚 + ∑ 𝑧𝑘𝑘∈𝑁\𝑁′ , 

(ii) 𝑙𝑚𝑗
′ = 𝑙𝑚𝑗 + ∑ 𝑙𝑘𝑗𝑘∈𝑁\𝑁′  for all 𝑗 ∈ 𝑁′, 

(iii) 𝑙𝑗𝑚
′ = 𝑙𝑗𝑚 + ∑ 𝑙𝑗𝑘𝑘∈𝑁\𝑁′   for all 𝑗 ∈ 𝑁′, 

while ∀𝑖, 𝑗 ∈ 𝑁′\{𝑚}, 𝑙𝑖𝑗
′ = 𝑙𝑖𝑗 and 𝑧𝑖

′ = 𝑧𝑖. 

Then,  

 

𝐸𝑚(𝑁′, 𝑧′, 𝑃′) ≥ 𝐸𝑚(𝑁, 𝑧, 𝑃) + ∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁\𝑁′

 

 

where 𝑃′ = 𝑃(𝑁′, 𝑧′, 𝐿′) and 𝑃 = 𝑃(𝑁, 𝑧, 𝐿). 

For simplicity, in case of splitting, we call 𝑀 = (𝑁\𝑁′) ∪ {𝑚} the set of firms in (𝑁, 𝑧, 𝐿) 

resulting of the splitting of 𝑚 in (𝑁′, 𝑧′, 𝐿′), including 𝑚. Then 𝑀 = |𝑁| − |𝑁′| + 1.  

In words, suppose a firm 𝑚 splits in |𝑀| different firms satisfying 

(i) the aggregate cash flows of the firms in 𝑀 sum up the operating cash flow of 

𝑚. 

(ii) the liabilities to another firm 𝑗 of all the firms in 𝑀 sum up the same liability 

to 𝑗 of firm 𝑚. 

(iii) the debts of a firm 𝑗 with 𝑚 equal the sum of debts of 𝑗 to the firms in 𝑀. 

Then, the value of the equity of 𝑚 should be larger or equal to the sum of the values of 

the equities of the splitting firms. If not, 𝑚 would have incentives to split. 

Contrary to the classical claims problems with a unique firm that bankrupts, we show that 

in a financial system PROP together with AP and LL, is no longer compatible with SP. 
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Surprisingly, the incompatibility is even stronger. In the next theorem we show that LL, 

AP and SP are incompatible. 

Theorem 3: There is not clearing matrix that satisfies LL, AP and SP. 

 

Proof. Let 𝑃 be a clearing matrix satisfying LL, AP and SP. 

Consider the financial system (𝑁′, 𝑧′, 𝐿′) with three firms 𝑁′ = {1,2,3} and operating 

cash flows and liabilities: 

 

𝑧′ = (30, 10, 20), 

𝐿′ = (
0 10 30

10 0 10
5 25 0

). 

 

Since no firm defaults, by LL and AP we obtain the clearing payment matrix 𝑃′ =
𝑃(𝑁′, 𝑧′, 𝐿′): 

 

𝑃′ = (
0 10 30

10 0 10
5 25 0

). 

 

Let 𝑚 = 1, so firm 1 will split. In concrete in two new firms: one will inherit all the 

obligations of 𝑚 to others, the other one will, on the contrary, inherit all the obligations 

of the other firms with 𝑚. 

Consider now the financial system (𝑁, 𝑧, 𝐿) with 𝑁 = {1,2,3,4}, 

 

𝑧 = (30, 10, 20, 0), 

𝐿 = (

0 0 0 0
10 0 10 0
5
0

25
10

0 0
30 0

). 

 

It is easy to observe that firm 1 in (𝑁′, 𝑧′, 𝐿′) has splitted into firms 1 and 4 in (𝑁, 𝑧, 𝐿), 

so 𝑀 = {1,4}. 

Note that new firm 4 defaults, and it is the only firm defaulting. Moreover, note that 𝑧4 +
𝑙.4 = 0. This is because, when firm 1 splits, it keeps the collection rights and the operating 

cash flow while it leaves all the debts in firm 4. 

Again, by LL and AP we obtain that 𝑃 = 𝑃(𝑁, 𝑧, 𝐿) is 
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𝑃 = (

0 0 0   0
10 0 10 0
5
0

25
0

0   0
0   0

). 

 

Note that for firm 4 only LL and AP are needed to obtain the payments made by the firm 

𝑝4𝑗 = 0  ∀𝑗 ∈ 𝑁 since 𝑧4 + 𝑙.4 = 0. 

Easy computations lead to 

 

𝐸1(𝑁′, 𝑧′, 𝑃′) = 30 + 15 − 40 = 5 

𝐸1(𝑁, 𝑧, 𝑃) = 30 + 15 − 0 = 45 

𝐸4(𝑁, 𝑧, 𝑃) = 0 + 0 − 0 = 0 

 

Then 𝐸1(𝑁′, 𝑧′, 𝑃′) < 𝐸1(𝑁, 𝑧, 𝑃) + 𝐸4(𝑁, 𝑧, 𝑃), which is a contradiction with SP. ■ 

This result is particularly interesting because it implies that if LL and AP are imposed, 

independently of which principle is employed when a firm bankrupt and has to pay its 

obligations to others, there might be institutions with incentives to split. 

The result, indeed, captures the intrinsic idea that under LL, it is always better to split in 

two firms: the good one, the one that inherits the claims against others and the operating 

cash flow, and the bad one, the one that inherits all the debts to the other firms. 

However, and this is more surprising, LL, AP and PROP are compatible with merging-

proofness. 

 

Definition: We say that a clearing matrix 𝑃: Γ → ℳ𝑛×𝑛  satisfies merging-proofness 

(MP) if ∀𝑁′, 𝑁 ∈ 𝒩 that 

(i) 𝑧𝑚
′ = 𝑧𝑚 + ∑ 𝑧𝑘𝑘∈𝑁\𝑁′ , 

(ii) 𝑙𝑚𝑗
′ = 𝑙𝑚𝑗 + ∑ 𝑙𝑘𝑗𝑘∈𝑁\𝑁′  for all 𝑗 ∈ 𝑁′, 

(iii) 𝑙𝑗𝑚
′ = 𝑙𝑗𝑚 + ∑ 𝑙𝑗𝑘𝑘∈𝑁\𝑁′   for all 𝑗 ∈ 𝑁′, 

while ∀𝑖, 𝑗 ∈ 𝑁′\{𝑚}, 𝑙𝑖𝑗
′ = 𝑙𝑖𝑗 and 𝑧𝑖

′ = 𝑧𝑖. 

Then,  

 

𝐸𝑚(𝑁′, 𝑧′, 𝑃′) ≤ 𝐸𝑚(𝑁, 𝑧, 𝑃) + ∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁\𝑁′

 

 

where 𝑃′ = 𝑃(𝑁′, 𝑧′, 𝐿′) and 𝑃 = 𝑃(𝑁, 𝑧, 𝐿). 
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For simplicity, in case of merging, we call 𝑀 = (𝑁\𝑁′) ∪ {𝑚} the set of firms in 

(𝑁′, 𝑧′, 𝐿′) resulting of the mergin of 𝑚 in (𝑁, 𝑧, 𝐿), including 𝑚. Then 𝑀 = |𝑁| − |𝑁′| +
1.  

In words, suppose 𝑚 merges with all firms in 𝑀\{𝑚} satisfying 

(i) the operating cash flow of 𝑚 equal the sum of all the cash flows of the firms 

in 𝑀. 

(ii) the liabilities of the new firm 𝑚 to any 𝑗 equals the sum of obligations to 𝑗 of 

all firms in 𝑀. 

(iii) the debts of 𝑗 with 𝑚 equals the sum of debts of 𝑗 with all firms in 𝑀. 

Then, the value of the equity of 𝑚 should be smaller or equal to the sum of the values of 

equities of the merging firms. If not, the firms in 𝑀 would have incentives to merge. 

Next theorem shows that LL, AP, PROP and MP are compatible. 

Theorem 4: Every clearing matrix 𝑃: Γ → ℳ𝑛×𝑛  satisfying LL, AP and PROP also 

satisfies MP. 

 

Lemma: Let 𝑁′, 𝑁 ∈ 𝒩 and (𝑁, 𝑧, 𝐿), (𝑁′, 𝑧′, 𝐿′) be such that 𝑁′ ⊂ 𝑁 and there is 𝑚 ∈
𝑁′ such that 

(i) 𝑧𝑚
′ = 𝑧𝑚 + ∑ 𝑧𝑘𝑘∈𝑁\𝑁′ , 

(ii) 𝑙𝑚𝑗
′ = 𝑙𝑚𝑗 + ∑ 𝑙𝑘𝑗𝑘∈𝑁\𝑁′  for all 𝑗 ∈ 𝑁′, 

(iii) 𝑙𝑗𝑚
′ = 𝑙𝑗𝑚 + ∑ 𝑙𝑗𝑘𝑘∈𝑁\𝑁′   for all 𝑗 ∈ 𝑁′, 

and 𝑙𝑖𝑗
′ = 𝑙𝑖𝑗, 𝑧𝑖

′ = 𝑧𝑖  ∀𝑖, 𝑗 ∈ 𝑁′\{𝑚}.  

Moreover, let 𝐸𝑚(𝑁′, 𝑧′, 𝐿′) > 0, being 𝑃′ = 𝑃′(𝑁′, 𝑧′, 𝐿′) under LL, AP and PROP. 

Then, by LL, AP and PROP, when applying the algorithm we have (i) 𝛿𝑖
𝑡(𝐿) ≤ 𝛿𝑖

𝑡(𝐿′) for 

all 𝑖 ∈ 𝑁′\{𝑚} and all 𝑡 = {1, … , 𝑘} being 𝑘 such that 𝐷𝑘(𝐿) = ∅ and (ii) 𝐷(𝐿′) ⊆ 𝐷(𝐿). 

 

Proof. For simplicity we will denote 𝑀 = 𝑁\𝑁′ ∪ {𝑚} the set of merging firms. So, 

𝑁′\{𝑚} = 𝑁\𝑀 is the set of firms that do not merge. 

Let 𝑖 ∈ 𝑁′\𝑚. We have: 

(i)    𝑙.𝑖
′ = ∑ 𝑙𝑗𝑖

′

𝑗∈𝑁′

= 𝑙𝑚𝑖
′ + ∑ 𝑙𝑗𝑖

′

𝑗∈𝑁′\{𝑚}

= ∑ 𝑙𝑗𝑖

𝑗∈𝑀

+ ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝑀

= 𝑙.𝑖  , 

(ii)  𝑙𝑖̅.
′ = ∑ 𝑙𝑖𝑗

′

𝑗∈𝑁′

= 𝑙𝑖𝑚
′ + ∑ 𝑙𝑖𝑗

′

𝑗∈𝑁′\{𝑚}

= ∑ 𝑙𝑖𝑗

𝑗∈𝑀

+ ∑ 𝑙𝑖𝑗

𝑗∈𝑁\𝑀

= 𝑙𝑖̅. , 

(iii) 𝑧𝑖
′ = 𝑧𝑖  

Consequently: 

𝐸𝑖(𝑁′, 𝑧′, 𝐿′) = 𝑧𝑖
′ + 𝑙.𝑖

′ − 𝑙𝑖̅.
′ = 𝐸𝑖(𝑁, 𝑧, 𝐿) and 𝛿𝑖(𝐿′) = 𝛿𝑖(𝐿). Hence, 𝑖 ∈ 𝐷1(𝐿) ⟺ 𝑖 ∈

𝐷1(𝐿′) for all 𝑖 ∈ 𝑁′\{𝑚} and 𝐷1(𝐿′) ⊆ 𝐷1(𝐿). On the other hand, note that 𝑚 ∉ 𝐷1(𝐿′) 

by hypothesis. 
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With the aim to compare 𝛿𝑖
1(𝐿′) with 𝛿𝑖

1(𝐿) we first look at the relation between  𝑙.𝑖
1 and 

(𝑙′).𝑖
1 . 

 

(𝑙′)
.𝑖

1
= ∑ (𝑙′)𝑗𝑖

1

𝑗∈𝑁′

= (𝑙′)𝑚𝑖
1 + ∑ (𝑙′)𝑗𝑖

1

𝑗∈𝑁′\{𝑚}∪𝐷1(𝐿)

+ ∑ (𝑙′)𝑗𝑖
1

𝑗∈𝐷1(𝐿′)

= 

= 𝑙𝑚𝑖
′ + ∑ 𝑙𝑗𝑖

′

𝑗∈𝑁′\{𝑚}∪𝐷1(𝐿)

+ ∑ 𝛿𝑗(𝐿′) · 𝑙𝑗𝑖
′

𝑗∈𝐷1(𝐿′)

= 

= ∑ 𝑙𝑗𝑖

𝑗∈𝑀

+ ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝑀∪𝐷1(𝐿′)

+ ∑ 𝛿𝑗(𝐿) · 𝑙𝑗𝑖

𝑗∈𝐷1(𝐿′)

≥ 

≥ ∑ 𝛿𝑗(𝐿) · 𝑙𝑗𝑖 + ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝑀∪𝐷1(𝐿)𝑗∈𝑀

+ ∑ 𝛿𝑗(𝐿) · 𝑙𝑗𝑖

𝑗∈𝐷1(𝐿)

= 𝑙.𝑖
1 . 

 

Here, the second equality follows from 𝑚 ∉ 𝐷1(𝐿′). The third equality follows from the 

definition of (𝐿′)1. The fourth equality, from the fact that 𝛿𝑗(𝐿′) = 𝛿𝑗(𝐿) for all 𝑗 ∈

𝑁′\{𝑚} . 

The inequality follows since 𝐷1(𝐿′) ≤ 𝐷1(𝐿). In particular note that there might be 

players in 𝑀 that belong to 𝐷1(𝐿) but not to 𝐷1(𝐿′). 

As consequence 𝛿𝑖
1(𝐿) ≤ 𝛿𝑖

1(𝐿′)∀𝑖 ∈ 𝑁′\{𝑚}.  

And, moreover, let 𝑖 ∈ 𝑁\{𝑚} 

 

𝐸𝑖 (𝑁′, 𝑧′, (𝐿′)1) = 𝑧𝑖
′ +  (𝑙′).𝑖

1 − (𝑙 ′̅)
.𝑖

1
≥ 𝑧𝑖 + 𝑙.𝑖

1 − 𝑙𝑖̅.
1 . 

 

If  𝑖 ∈ 𝐷1(𝐿′) then 𝑖 ∈ 𝐷1(𝐿) and so 𝑖 ∈ 𝐷1(𝐿′) ∪ 𝐷2(𝐿′) and 𝑖 ∈ 𝐷1(𝐿) ∪ 𝐷2(𝐿). If 𝑖 ∉

𝐷1(𝐿′) then 𝑖 ∉ 𝐷1(𝐿) and then (𝑙 ′̅)
.𝑖

1
= 𝑙𝑖̅.

1 = 𝑙𝑖̅. and, hence, 𝐸𝑖(𝑁′, 𝑧′, (𝐿′)1) ≥

𝐸𝑖(𝑁, 𝑧, 𝐿1). And if 𝑖 ∈ 𝐷2(𝐿′), then 𝑖 ∈ 𝐷1(𝐿) ∪ 𝐷2(𝐿) (it might have defaulted in first-

order in (𝑁, 𝑧, 𝐿) and have defaulted in second-order in (𝑁′, 𝑧′, 𝐿′)). 

Summarizing, 𝛿𝑖
1(𝐿) ≤ 𝛿𝑖

1(𝐿′)  ∀𝑖 ∈ 𝑁′\{𝑚} and 

 

⋃ 𝐷𝑟(𝐿′) ⊆ ⋃ 𝐷𝑟(𝐿)

2

𝑟=1

.

2

𝑟=1

 

 

Induction hypothesis: Let 𝑡 = {2, … , 𝑘} with 𝛿𝑖
𝑡−1(𝐿) ≤ 𝛿𝑖

𝑡−1(𝐿′) for all 𝑖 ∈ 𝑁′\{𝑚} and 

⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1 ⊆ ⋃ 𝐷𝑟(𝐿)𝑡

𝑟=1 . 
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We shall show that 𝛿𝑖
𝑡(𝐿) ≤ 𝛿𝑖

𝑡(𝐿′) ∀𝑖 ∈ 𝑁′\𝑚 and ⋃ 𝐷𝑟(𝐿′) ⊆𝑡+1
𝑟=1 ⋃ 𝐷𝑟(𝐿)𝑡+1

𝑟=1 . We first 

look at the relation between (𝑙′)
.𝑖

𝑡
 and 𝑙.𝑖

𝑡  following similar argument to those to show 

(𝑙′)
.𝑖

1
≥ 𝑙.𝑖

1 .  

 

(𝑙′)
.𝑖

𝑡
= 𝑙𝑚𝑖

′ + ∑ 𝑙𝑗𝑖
′

𝑗∈𝑁′\{𝑚} ⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1

+ ∑ 𝛿𝑗
𝑡−1(𝐿′) · 𝑙𝑗𝑖

′

𝑗∈⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1

≥ 

≥ ∑ 𝑙𝑗𝑖

𝑗∈𝑀

+ ∑ 𝑙𝑖𝑗

𝑗∈𝑁\𝑀 ⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1

+ ∑ 𝛿𝑗
𝑡−1(𝐿) · 𝑙𝑗𝑖

𝑗∈⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1

≥ 

≥ ∑ 𝛿𝑗
𝑡−1(𝐿) · 𝑙𝑗𝑖 + ∑ 𝑙𝑗𝑖

𝑗∈𝑁\𝑀 ⋃ 𝐷𝑟(𝐿)𝑡
𝑟=1

𝑗∈𝑀

+ ∑ 𝛿𝑗
𝑡−1(𝐿) · 𝑙𝑗𝑖

𝑗∈⋃ 𝐷𝑟(𝐿)𝑡
𝑟=1

= 𝑙.𝑖
𝑡  . 

 

The second equality follows from 𝑚 ∉ ⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1 . The first inequality follows from the 

induction hypothesis 𝛿𝑖
𝑡−1(𝐿) ≤ 𝛿𝑖

𝑡−1(𝐿′) ∀𝑖 ∈ 𝑁\{𝑚} and the second inequality holds 

by the induction hypothesis ⋃ 𝐷𝑟(𝐿′) ⊆ ⋃ 𝐷𝑟(𝐿)𝑡
𝑟=1

𝑡
𝑟=1 . As a direct consequence 

𝛿𝑖
𝑡(𝐿) ≤ 𝛿𝑖

𝑡(𝐿′) for all 𝑖 ∈ 𝑁′\{𝑚}.  

Moreover, let 𝑖 ∈ 𝑁′\{𝑚} 

 

𝐸𝑖(𝑁′, 𝑧′, (𝐿′)𝑡) = 𝑧𝑖
′ +  (𝑙′).𝑖

𝑡 − (𝑙 ′̅)
.𝑖

𝑡
≥ 𝑧𝑖 + 𝑙.𝑖

𝑡 − 𝑙𝑖̅.
𝑡  . 

 

If  𝑖 ∈ ⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1  then 𝑖 ∈ ⋃ 𝐷𝑟(𝐿)𝑡

𝑟=1  by induction hypothesis. 

If 𝑖 ∉ ⋃ 𝐷𝑟(𝐿′)𝑡
𝑟=1  and 𝑖 ∉ ⋃ 𝐷𝑟(𝐿′)𝑡

𝑟=1  then (𝑙 ′̅)
.𝑖

𝑡
= 𝑙𝑖̅.

𝑡 = 𝑙𝑖̅.. Hence, 𝐸𝑖(𝑁′, 𝑧′, (𝐿′)𝑡) ≥

𝐸𝑖(𝑁, 𝑧, 𝐿𝑡).  

Summarizing, for all 𝑖 ∈ 𝑁′\{𝑚}, 𝛿𝑖
𝑡(𝐿) ≤ 𝛿𝑖

𝑡(𝐿′)  ∀𝑖 ∈ 𝑁′\{𝑚} and 

 

⋃ 𝐷𝑟(𝐿′) ⊆ ⋃ 𝐷𝑟(𝐿)

𝑡+1

𝑟=1

.

𝑡+1

𝑟=1

 

 

In consequence, 𝐷(𝐿′) ⊆ 𝐷(𝐿), which finishes the proof. ■ 

Using the Lemma as a tool we can now prove the next Theorem. 

Theorem 5: Every clearing matrix 𝑃: Γ → ℳ𝑛×𝑛 satisfying LL, AP and PROP also 

satisfies MP.  
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Proof. Let 𝑁′, 𝑁 ∈ 𝒩 and (𝑁, 𝑧, 𝐿), (𝑁′, 𝑧′, 𝐿′) be such that 𝑁′ ⊂ 𝑁 and there is 𝑚 ∈ 𝑁′ 

such that 

(i) 𝑧𝑚
′ = 𝑧𝑚 + ∑ 𝑧𝑘𝑘∈𝑁\𝑁′ , 

(ii) 𝑙𝑚𝑗
′ = 𝑙𝑚𝑗 + ∑ 𝑙𝑘𝑗𝑘∈𝑁\𝑁′  for all 𝑗 ∈ 𝑁′, 

(iii) 𝑙𝑗𝑚
′ = 𝑙𝑗𝑚 + ∑ 𝑙𝑗𝑘𝑘∈𝑁\𝑁′   for all 𝑗 ∈ 𝑁′, 

and 𝑙𝑖𝑗
′ = 𝑙𝑖𝑗, 𝑧𝑖

′ = 𝑧𝑖  ∀𝑖, 𝑗 ∈ 𝑁′\{𝑚}.  

We shall show that if the clearing matrix satisfies LL, AP and PROP then if 𝑃 =
𝑃(𝑁, 𝑧, 𝐿) and 𝑃′ = 𝑃′(𝑁′, 𝑧′, 𝐿′), it holds that 

 

𝐸𝑚(𝑁′, 𝑧′, 𝑃′) ≤ 𝐸𝑚(𝑁, 𝑧, 𝑃) + ∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁\𝑁′

 .  (1) 

 

Observe first that under LL, AP and PROP and by Theorem 1, we do not have to impose 

the systems (𝑁, 𝑧, 𝐿) and (𝑁′, 𝑧′, 𝐿′) are regular. 

Assume, on the contrary that  𝐸𝑚(𝑁′, 𝑧′, 𝑃′) > 𝐸𝑚(𝑁, 𝑧, 𝑃) + ∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)𝑘∈𝑁\𝑁′ . By 

LL, AP and PROP, all equity values are non-negative. Hence (1) will hold if and only if 

𝐸𝑚(𝑁′, 𝑧′, 𝑃′) > 0 which can only happen if 𝑚 ∉ 𝐷′(𝐿). 

It is easy to see that for (𝑁, 𝑧, 𝐿) we have 

 

∑ 𝐸𝑖(𝑁, 𝑧, 𝑃)

𝑖∈𝑁′

= ∑ (𝑧𝑖 + ∑ 𝑝𝑗𝑖

𝑗∈𝑁

− ∑ 𝑝𝑖𝑗

𝑗∈𝑁

)

𝑖∈𝑁

= ∑ 𝑧𝑖

𝑖∈𝑁

+ ∑ ∑ 𝑝𝑗𝑖

𝑗∈𝑁𝑖∈𝑁

− ∑ ∑ 𝑝𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

= 

= ∑ 𝑧𝑖

𝑖∈𝑁

 . 

The same reasoning can be applied for (𝑁′, 𝑧′, 𝐿′). 

Hence, 

 

∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑀

+ ∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁′\{𝑚}

= 𝐸𝑚(𝑁′, 𝑧′, 𝑃′) + ∑ 𝐸𝑘(𝑁′, 𝑧′, 𝑃′)

𝑘∈𝑁′\{𝑚}

 

 

Then (1) holds if and only if  

 

∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁′\{𝑚}

> ∑ 𝐸𝑘(𝑁′, 𝑧′, 𝑃′)

𝑘∈𝑁′\{𝑚}

 .  (2) 
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Let 𝑘 ∈ 𝑁′\𝑚. In view of Lemma, 𝐷1(𝐿′) ⊆ 𝐷1(𝐿). We distinguish three cases: 

(a) 𝑘 ∈ 𝐷(𝐿′), then 𝑘 ∈ 𝐷(𝐿) and 𝐸𝑘(𝑁, 𝑧, 𝑃) = 𝐸𝑘(𝑁′, 𝑧′, 𝑃′) = 0, 

(b) 𝑘 ∉ 𝐷(𝐿′) and 𝑘 ∈ 𝐷(𝐿), then 𝐸𝑘(𝑁, 𝑧, 𝑃) = 0 < 𝐸𝑘(𝑁′, 𝑧′, 𝑃′), 

(c) 𝑘 ∉ 𝐷(𝐿′) and 𝑘 ∉ 𝐷(𝐿), then by AP and the definition of 𝑧′ and 𝐿′ 
 

𝐸𝑘(𝑁′, 𝑧′, 𝑃′) = 𝑧𝑘
′ + 𝑝.𝑖

′ − 𝑙𝑖̅.
′ = 𝑧𝑘 + 𝑝.𝑖

′ − 𝑙𝑖̅. . 

 

Moreover, 

 

𝐸𝑘(𝑁, 𝑧, 𝑃) = 𝑧𝑘 + 𝑝.𝑖 − 𝑙𝑖̅. . 

 

We obtain the values 𝑝.𝑖
′  and 𝑝.𝑖 solving the system of equations for 𝐷(𝐿′) and 𝐷(𝐿) as 

presented in the algorithm. Some easy algebra on the linear system of equations leads to 

 

𝑝.𝑖
′ ≥ 𝑝.𝑖 

 

and consequently 𝐸𝑘(𝑁′, 𝑧′, 𝑃′) ≥ 𝐸𝑘(𝑁, 𝑧, 𝑃). Hence, from (a), (b) and (c) it follows that 

 

∑ 𝐸𝑘(𝑁, 𝑧, 𝑃)

𝑘∈𝑁′\𝑚

≤ ∑ 𝐸𝑘(𝑁′, 𝑧′, 𝑃′)

𝑘∈𝑁′\𝑚

 

 

Which contradicts (2) and consequently contradicts (1), which finishes the proof. ■ 

This shows that although the firms in 𝑀 do not find incentives to merge, the non-merging 

firms are in equal or better situation if the merging occurs. 

 

To finish this section, we would like to study whether or not LL, AP and PROP are with 

a very natural invariance property that states that a clearing matrix should be invariant in 

front of bilateral compensations. 

We say that a clearing matrix satisfies invariant under net compensations (INC) if ∀𝑁 ∈
𝒩 

(i) 𝑧𝑖
𝐶 = 𝑧𝑖   for all 𝑖 ∈ 𝑁 

(ii) 𝑙𝑖𝑗
𝐶 = {

𝑙𝑖𝑗 − 𝑙𝑗𝑖 𝑖𝑓 𝑙𝑖𝑗 ≥ 𝑙𝑗𝑖

0 𝑖𝑓 𝑙𝑖𝑗 < 𝑙𝑗𝑖
 

Then 
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𝐸𝑖 (𝑁, 𝑧, 𝑃𝐶 ) = 𝐸𝑖(𝑁, 𝑧, 𝑃)  ∀𝑖 ∈ 𝑁 

 

In words, the net compensation of payments consists of, previously to pay the debts of 

matrix 𝐿, transform matrix 𝐿 in matrix 𝐿𝐶 , in which all firms have compensated bilaterally 

its debts with the other firms. 

Theorem 6: There is not clearing matrix 𝑃 that satisfies LL, AP, PROP and INC. 

 

Proof. Assume that 𝑃 is a clearing matrix that satisfies LL, AP, PROP and INC. Consider 

the financial system (𝑁, 𝑧, 𝐿) with four firms 𝑁 = {1,2,3,4} and operating cash flows and 

liabilities. 

 

𝑧 = (0, 20, 0, 20),   

𝐿 = (

0 10 20 10
10 0 10 30
0

10
10
20

0   0
10 0

). 

 

It is easy to check that under LL, AP and PROP, 𝐷(𝐿) = {1} and 𝑝̅𝑖., 𝑃 and the vector of 

values of equities 𝐸(𝑁, 𝑧, 𝑃) are 

 

𝑝̅𝑖. = (20,50,10,40), 

𝑃 = (

0 5 10 5
10 0 10 30
0

10
10
20

0   0
10 0

), 

𝐸(𝑁, 𝑧, 𝑃) = (0, 5, 20, 15). 

 

If the mutual debts are compensated before the payment, the liabilities matrix 𝐿𝐶  is 

 

𝐿𝐶 = (

0 0 20 0
0 0  0 10
0
0

0
0

0   0
10 0

). 

 

In this case, under LL, AP and PROP, again 𝐷(𝐿𝐶) = {1} and 𝑝̅𝐶 , 𝑃𝐶  and the vector 

𝐸(𝑁, 𝑧, 𝑃𝐶) are 

 

𝑧 = (0, 20, 0, 20),   
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𝑝̅𝐶 = (0, 10, 0, 10), 

𝑃𝐶 = (

0 0 0  0
0 0   0 10
0
0

0
0

 
0   0
10 0

), 

𝐸(𝑁, 𝑧, 𝑃𝐶) = (0, 10, 10, 20).   

 

Hence, 𝑃 does not satisfy 𝐼𝑁𝐶 ∎. 

Since the compensation of payments does not imply a change in the operating cash flow 

and in both sides of the inequality it is considered the value of equity of the whole firm 

set, the aggregate value of equity is equal to the aggregate operating cash flow of all firms, 

with or without compensation of payments. 

 

∑ 𝐸𝑖(𝑁, 𝑧, 𝐿𝐶)

𝑖∈𝑁

= ∑ 𝑧𝑖 = ∑ 𝐸𝑖(𝑁, 𝑧, 𝐿)

𝑖∈𝑁𝑖∈𝑁

 

 

Nevertheless, in order to be INC, the value of equity ∀𝑖 ∈ 𝑁 must be equal with or without 

compensation of the mutual debts, which is not true if LL, AP and PROP are hold, how 

the example proves. 

 

5. Conclusions 

 

As has been demonstrated through this work, Limited liability, Absolute priority and 

Proportionality are such strong properties that make very difficult that the only clearing 

matrix can hold other properties. 

We have proved that the clearing matrix is splitting-proof under Limited liability and 

Absolute priority, independently of the bankruptcy rule specified. Also, the clearing 

matrix is not invariant to bilateral compensations under the properties defined by 

Eisenberg and Noe. Meanwhile, and surprisingly, we have found that the clearing matrix 

is merging-proof. This result is specially shocking because it contradicts the findings of 

de Frutos (1999), who proves that in the classical bankruptcy problems the only 

bankruptcy rule that provides immunity to manipulation via merging and splitting is the 

proportionality rule.  

In our opinion, the investigation of the financial systems from an axiomatic point of view 

have still room to more research. In fact, the proportionality rule can be substituted for 

other bankruptcy rules such as constrained equal awards or constrained equal losses 

among others. If we had had more available time, we would have repeated the analysis 

with other bankruptcy rules and would have tried to find if the results are robust to the 

change of the bankruptcy rule. 
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7. Appendix 

 

7.1. Appendix 1: R code 

z<-c(0,0,20,20) 

L1<-c(0,20,15,15) 

L2<-c(10,0,10,20) 

L3<-c(10,10,0,20) 

L4<-c(20,10,20,0) 

L<-rbind(L1,L2,L3,L4)        #matrix of liabilities 

 

l<-rowSums (L)               #total amount of debts of i 

pi<-L/l;pi[is.na(pi)]<-0     #matrix Pi 

deltat<-rep(1,nrow(L))       #vector delta 

Delta<-rep(1,nrow(L))        #matrix Delta. Each row is the delta vector of t-order 

t=1,...,k 

D<-rep(0,nrow(L))            #vector of defaulting firms in t+1-order or any previous 

orders 

D0<-rep(1,nrow(L))           #vector of defaulting firms in t-order or any previous orders 

Dmat<-D                      #matrix of defaults. Each row is the vector of defaulting firms of 

t-order t=1,...,k  (1 if default) 

 

while(sum(D0)!=sum(D)){ 

  D0<-D 

  Lt<-deltat*L              #matrix L^t 

  lt<-rowSums (Lt)          #vector of sum of debts (L^t) 

  ct<-colSums (Lt)          #vector of sum of claims (L^t) 

  At<-z+ct                  #vector of assets or capacity to pay in t-order  

  Et<-(At-l)                #E(N,z,L^t) value of equity in t-order 

  deltat<-replace(deltat,(Et<=0|deltat<1),(At[Et<=0])/l[Et<=0]) 

  Delta<-rbind(Delta,deltat) 

  D<-replace(D,deltat<1,1) #defaulting firms set in t-order or any previous order 

  Dmat<-rbind(Dmat,D) 
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} 

if (sum(D)==1|sum(D)==0) { 

  p<-lt} else {if(nrow(t(as.matrix(Lt[lt==l,lt<l])))==1){ 

    c<--(z[lt<l]+L[lt==l,lt<l])}else{ 

      c<--(z[lt<l]+colSums(L[lt==l,lt<l]))} 

    def<-t(pi)[D==1,D==1] 

    deff<-replace(def,diag(1,sum(D))==1,-1) 

    solve(deff,c) 

    d<-replace(D,D==1,solve(deff,c)) 

    p<-replace(D,c(D==0,D==1),c(l[D==0],d[D==1])) 

    p<-replace(replace(D,D==0,l[D==0]),D==1,d[D==1]) #clearing vector p 

  } 

Dmat<-Dmat[-1,] 

P<-p*pi                     #clearing matrix P                      

Ep<-z+colSums(P)-rowSums(P) #E(N,z,P) 

colnames(L)<-rownames(P); colnames(P)<-rownames(P) 

colnames(Dmat)<-rownames(P);rownames(Dmat)<-seq(1,nrow(Dmat)) 

colnames(Delta)<-rownames(P);rownames(Delta)<-seq(1,nrow(Delta)) 

zn<-z; Ln<-L; Deltan<-Delta;Dmatn<-Dmat; pn<-p; Pn<-P; Epn<-Ep 

 

##SPLITTING-PROOFNESS## 

 

#the code only represents the case where the splitting firm in (N',z',L')  

#keeps all the assets and gives all the liabilites to the new firm created in (N,z,L) 

 

s<-1      #splitting firm 

L<-rbind(L,L[s,]);L<-cbind(L,rep(0,nrow(L)));L[s,]<-rep(0,nrow(L)) 

z<-c(z,0) #the new firm is {n+1} 

 

l<-rowSums (L)                

pi<-L/l;pi[is.na(pi)]<-0      

deltat<-rep(1,nrow(L))        
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DeltaS<-rep(1,nrow(L))       

D<-rep(0,nrow(L))            

D0<-rep(1,nrow(L))           

Dmat<-D       

 

while(sum(D0)!=sum(D)){ 

  D0<-D 

  Lt<-deltat*L              

  lt<-rowSums (Lt)           

  ct<-colSums (Lt)           

  At<-z+ct                   

  Et<-(At-l)                

  deltat<-replace(deltat,(Et<=0|deltat<1),(At[Et<=0])/l[Et<=0]) 

  DeltaS<-rbind(DeltaS,deltat) 

  D<-replace(D,deltat<1,1)  

  Dmat<-rbind(Dmat,D) 

} 

if (sum(D)==1|sum(D)==0) { 

  p<-lt} else {if(nrow(t(as.matrix(Lt[lt==l,lt<l])))==1){ 

    c<--(z[lt<l]+L[lt==l,lt<l])}else{ 

      c<--(z[lt<l]+colSums(L[lt==l,lt<l]))} 

    def<-t(pi)[D==1,D==1] 

    deff<-replace(def,diag(1,sum(D))==1,-1) 

    solve(deff,c) 

    d<-replace(D,D==1,solve(deff,c)) 

    p<-replace(D,c(D==0,D==1),c(l[D==0],d[D==1])) 

    p<-replace(replace(D,D==0,l[D==0]),D==1,d[D==1]) #clearing vector p 

  } 

Dmat<-Dmat[-1,] 

P<-p*pi                     #clearing matrix P                      

Ep<-z+colSums(P)-rowSums(P) #E(N,z,P) 

colnames(L)<-rownames(P); colnames(P)<-rownames(P) 
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colnames(Dmat)<-rownames(P);rownames(Dmat)<-seq(1,nrow(Dmat)) 

colnames(DeltaS)<-rownames(P);rownames(DeltaS)<-seq(1,nrow(DeltaS)) 

zS<-z; LS<-L; DS<-Delta; DmatS<-Dmat; pS<-p; PS<-P; EpS<-Ep 

 

#Does s have incentives to split? 

 

if(Epn[s]>=(EpS[s]+EpS[nrow(Ln)+1])){"NO" 

}else{"YES"} 

 

##MERGING-PROOFNESS## 

 

m<-c(1,4)  #firms which merge (M) 

 

z<-c(z[-m],sum(z[m])) 

if(nrow(t(as.matrix(L[-m,m])))==1&nrow(t(as.matrix(L[m,-m])))==1&length(z)-

length(m)==1){ 

L<-rbind(c(0,sum(L[m,-m])),c(sum(L[-m,m]),0))}else{ 

L<-rbind(cbind(L[-m,-m],rowSums(L[-m,m])),c(colSums(L[m,-m]),0))} 

 

l<-rowSums (L)                

pi<-L/l;pi[is.na(pi)]<-0      

deltat<-rep(1,nrow(L))       

DeltaM<-rep(1,nrow(L))        

D<-rep(0,nrow(L))             

D0<-rep(1,nrow(L))            

Dmat<-D                       

 

while(sum(D0)!=sum(D)){ 

  D0<-D 

  Lt<-deltat*L               

  lt<-rowSums (Lt)           

  ct<-colSums (Lt)          
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  At<-z+ct                   

  Et<-(At-l)                 

  deltat<-replace(deltat,(Et<=0|deltat<1),(At[Et<=0])/l[Et<=0]) 

  DeltaM<-rbind(DeltaM,deltat) 

  D<-replace(D,deltat<1,1)  

  Dmat<-rbind(Dmat,D) 

} 

if (sum(D)==1|sum(D)==0) { 

  p<-lt} else {if(nrow(t(as.matrix(Lt[lt==l,lt<l])))==1){ 

    c<--(z[lt<l]+L[lt==l,lt<l])}else{ 

      c<--(z[lt<l]+colSums(L[lt==l,lt<l]))} 

    def<-t(pi)[D==1,D==1] 

    deff<-replace(def,diag(1,sum(D))==1,-1) 

    solve(deff,c) 

    d<-replace(D,D==1,solve(deff,c)) 

    p<-replace(D,c(D==0,D==1),c(l[D==0],d[D==1])) 

    p<-replace(replace(D,D==0,l[D==0]),D==1,d[D==1]) #clearing vector p 

  } 

Dmat<-Dmat[-1,] 

P<-p*pi                      

Ep<-z+colSums(P)-rowSums(P)  

colnames(L)<-rownames(P); colnames(P)<-rownames(P) 

colnames(Dmat)<-rownames(P);rownames(Dmat)<-seq(1,nrow(Dmat)) 

colnames(DeltaM)<-rownames(P);rownames(DeltaM)<-seq(1,nrow(DeltaM)) 

zM<-z; LM<-L; DeltaM<-Delta; DmatM<-Dmat; pM<-p; PM<-P; EpM<-Ep 

 

#Do have M incentives to merge? 

 

if(EpM[nrow(LM)]<=sum(Epn[m])){"NO" 

}else{"YES"} 

 

##INVARIANT UNDER NET COMPENSATIONS## 
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L<-L-t(L) 

L<-replace(L,L<0,0) 

 

l<-rowSums (L)                

pi<-L/l;pi[is.na(pi)]<-0      

deltat<-rep(1,nrow(L))        

DeltaC<-rep(1,nrow(L))         

D<-rep(0,nrow(L))             

D0<-rep(1,nrow(L))            

Dmat<-D                       

 

while(sum(D0)!=sum(D)){ 

  D0<-D 

  Lt<-deltat*L               

  lt<-rowSums (Lt)           

  ct<-colSums (Lt)           

  At<-z+ct                   

  Et<-(At-l)                 

  deltat<-replace(deltat,(Et<=0|deltat<1),(At[Et<=0])/l[Et<=0]) 

  DeltaC<-rbind(DeltaC,deltat) 

  D<-replace(D,deltat<1,1)  

  Dmat<-rbind(Dmat,D) 

} 

if (sum(D)==1|sum(D)==0) { 

  p<-lt} else {if(nrow(t(as.matrix(Lt[lt==l,lt<l])))==1){ 

    c<--(z[lt<l]+L[lt==l,lt<l])}else{ 

      c<--(z[lt<l]+colSums(L[lt==l,lt<l]))} 

    def<-t(pi)[D==1,D==1] 

    deff<-replace(def,diag(1,sum(D))==1,-1) 

    solve(deff,c) 

    d<-replace(D,D==1,solve(deff,c)) 



35 
 

    p<-replace(D,c(D==0,D==1),c(l[D==0],d[D==1])) 

    p<-replace(replace(D,D==0,l[D==0]),D==1,d[D==1]) #clearing vector p 

  } 

Dmat<-Dmat[-1,] 

P<-p*pi                      

Ep<-z+colSums(P)-rowSums(P)  

colnames(L)<-rownames(P); colnames(P)<-rownames(P) 

colnames(Dmat)<-rownames(P);rownames(Dmat)<-seq(1,nrow(Dmat)) 

colnames(DeltaC)<-rownames(P);rownames(DeltaC)<-seq(1,nrow(DeltaC)) 

zinc<-z; Linc<-L; Deltainc<-Delta; Dmatinc<-Dmat; pinc<-p; Pinc<-P; Epinc<-Ep 

 

#Is the financial system invariant under net compensations? 

 

if(FALSE %in% (Epn==Epinc)){"NO" 

}else{"YES"} 

 

7.2. Appendix 2: Example 3 

 

To show accurately each step of Example 3, the code has been slightly modified: 

> # Consider the financial system (N,z,L) in Gamma with four firms N={1,2,3,4} with 

operating cash flows and liabilities presented in z and L: 

>  

> z<-c(0,0,20,20) 

> L1<-c(0,20,15,15) 

> L2<-c(10,0,10,20) 

> L3<-c(10,10,0,20) 

> L4<-c(20,10,20,0) 

> L<-rbind(L1,L2,L3,L4)         

>  

> z 

[1]  0  0 20 20 

> L 

   [,1] [,2] [,3] [,4] 

L1    0   20   15   15 

L2   10    0   10   20 

L3   10   10    0   20 

L4   20   10   20    0 

>  

> # We construct l, c and matrix Π(L): 
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>  

> l<-rowSums (L)                

> pi<-L/l;pi[is.na(pi)]<-0      

> c<-colSums (L) 

> l          

L1 L2 L3 L4  

50 40 40 50  

> c 

[1] 40 40 45 55 

> pi 

   [,1] [,2] [,3] [,4] 

L1 0.00 0.40 0.30  0.3 

L2 0.25 0.00 0.25  0.5 

L3 0.25 0.25 0.00  0.5 

L4 0.40 0.20 0.40  0.0 

>  

> # We assume fully payment of all debts and compute the vector of equities: 

>  

>                   

> EL<-z+c-l 

> EL 

 L1  L2  L3  L4  

-10   0  25  25  

>  

> # As we can see, firm 1 is the only firm that has negative value of equity and, thus, is 

the only defaulting firm in first order, so D1(L)={1}. Then, 

>  

> delta<-rep(1,nrow(L)) 

> delta<-replace(delta,EL<=0,(z[EL<=0]+c[EL<=0])/l[EL<=0]) 

> D1<-rep(0,nrow(L)) 

> D1<-replace(D1,delta<1,1) 

> delta 

[1] 0.8 1.0 1.0 1.0 

>  

> # To check if there are any second-order defaults, L^1 matrix is constructed 

> L1<-delta*L 

> L1 

   [,1] [,2] [,3] [,4] 

L1    0   16   12   12 

L2   10    0   10   20 

L3   10   10    0   20 

L4   20   10   20    0 

>  

> # Once again, we assume that the obligations according to this matrix are completely 

satisfied and construct the vector of values of equity: 

> l1<-rowSums (L1) 

> c1<-colSums (L1) 

> EL1<-z+c1-l1 

> EL1 

L1 L2 L3 L4  
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 0 -4 22 22  

>  

> # We can see that the only second-order default is by firm 2, then D2(L)={2}. We 

construct δ^1(L) and with this vector, L^2 is defined 

> delta1<-rep(1,nrow(L)) 

> delta1<-replace(delta,(EL1<=0|delta<1),(z[EL1<=0]+c1[EL1<=0])/l[EL1<=0]) 

> D2<-rep(0,nrow(L)) 

> D2<-replace(D2,delta1<1,1)-D1 

> L2<-delta1*L 

> delta1 

[1] 0.8 0.9 1.0 1.0 

> L2 

   [,1] [,2] [,3] [,4] 

L1    0   16   12   12 

L2    9    0    9   18 

L3   10   10    0   20 

L4   20   10   20    0 

>  

> # Then 

> l2<-rowSums (L2) 

> c2<-colSums (L2) 

> EL2<-z+c2-l2 

> EL2 

L1 L2 L3 L4  

-1  0 21 20  

>  

> # We can observe that neither 3 or 4 see their value of equity reduced enough to not 

being able to pay all their debts, so they do not default in third-order, so D3(L)=∅ and 

D(L)=D1(L)∪D2(L)={1,2}. Now, we stop iterating and proceed with the next step: we 

have to solve the linear equation system below to obtain the unique an unknown value 

of p*1 and p*2. The system of equations to solve in this example is 

> delta2<-rep(1,nrow(L)) 

> delta2<-replace(delta2,(EL2<=0|delta2<1),(z[EL2<=0]+c2[EL2<=0])/l[EL2<=0]) 

> D3<-rep(0,nrow(L)) 

> D3<-replace(D3,delta2<1,1)-D1-D2 

> D3 

[1] 0 0 0 0 

> D<-D1+D2 

> if (sum(D)==1|sum(D)==0) { 

+   p<-lt} else {if(nrow(t(as.matrix(L2[l2==l,l2<l])))==1){ 

+     c<--(z[l2<l]+L[l2==l,l2<l])}else{ 

+       c<--(z[l2<l]+colSums(L[l2==l,l2<l]))} 

+     def<-t(pi)[D==1,D==1] 

+     deff<-replace(def,diag(1,sum(D))==1,-1) 

+     solve(deff,c) 

+     d<-replace(D,D==1,solve(deff,c)) 

+     p<-replace(D,c(D==0,D==1),c(l[D==0],d[D==1])) 

+     p<-replace(replace(D,D==0,l[D==0]),D==1,d[D==1]) #clearing vector p 

+   } 

>  
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> # and its solutions are p*1=38.89 and p*2=35.56. Additionally, since 3 and 4 do not 

default, p*3=l3=40 and p*4=l4=50. Therefore,  

> p 

[1] 38.88889 35.55556 40.00000 50.00000 

>  

> # With the help of matrix Π(L) we can construct the clearing payment matrix, 

P*(N,z,L)=P*: 

> P<-p*pi 

> P 

        [,1]     [,2]      [,3]     [,4] 

L1  0.000000 15.55556 11.666667 11.66667 

L2  8.888889  0.00000  8.888889 17.77778 

L3 10.000000 10.00000  0.000000 20.00000 

L4 20.000000 10.00000 20.000000  0.00000 

>  

> # Finally, we can obtain the equity value vector: 

> Ep<-z+colSums(P)-rowSums(P) 

> Ep 

      L1       L2       L3       L4  

 0.00000  0.00000 20.55556 19.44444  

 


