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Abstract: Quantum Mechanics and Quantum Field Theory treatment for the scattering of two
fermions is compared to find out an instantaneous effective Yukawa potential describing the inter-
action in the non relativistic limit. The comparison is made between the S matrix element for the
scattering of 2 particles in time independent QM and the non relativistic limit of the scattering
amplitude of 2 fermions due to a Yukawa interaction in QFT.

I. INTRODUCTION

The understanding of interactions between particles is
essential for any theory that attempts to explain the fun-
damental structure and behaviour of matter, because it’s
this understanding which allows to make predictions that
can be then observed (or not) in real life, and thus test
a theory.
Quantum Mechanics explains that particles are sources of
potential, and this potential covers some region of space
that if another particle were to enter it, an atractive or
repulsive interaction depending on the potential would
then occur.
Quantum Field Theory describes interactions from the
perspective of virtual particle exchange between the par-
ticles that are interacting, so instead of an instantaneous
potential, there’s a deeper understanding on how the
propagation of information is carried.
The purpose of this work is to connect these two descrip-
tions in the scattering of 2 fermions, in order to derive in
the non relativistic limit one of the first discovered effec-
tive potentials between nucleons, the Yukawa potential.
This paper is written in natural units, ~ = c = 1, and
bold letters denote 3-vectors.

II. S MATRIX IN QM

Given a scattering process in QM due to some poten-
tial V̂ , we will work with a hamiltonian Ĥ that can be
written as Ĥ = Ĥ0 + V̂ , with Ĥ0 being the free (non in-

teracting) hamiltonian, and the potential V̂ causing the
interaction. In this description, we want the solutions for
the Schrödinger equation of Ĥ0 and Ĥ to have the same
eigenvalue, meaning that when we connect the interac-
tion V̂ the energy stays the same as in the free case:

Ĥ0|φa〉 = Ea|φa〉 (1)

Ĥ|ψa〉 = Ea|ψa〉 (2)

The scattering process will be described by how some
initial |ψi〉 and final |ψf 〉 interacting states with their
respective free solutions |φi〉 and |φf 〉 relate to each other.

This connection will be made introducing an S matrix
element as follows [1]:

Sfi = 〈ψf |ψi〉 (3)

Manipulating eqs. (1) and (2) in order to work out eq.
(3), we can obtain the following relations between |ψa〉
and |φa〉:

|ψ±a 〉 = |φa〉+
1

(Ea − Ĥ0 ± iε)
V̂ |ψ±a 〉 (4)

|ψ±a 〉 = |φa〉+
1

(Ea − Ĥ ± iε)
V̂ |φa〉 (5)

Where the ±iε have been introduced to avoid the sin-
gularities provided that we take the limit ε → 0 at the
end of the calculation. The initial (final) states are then
defined as the ones with the + (−) sign for the physical
reasons discussed in [1], [2], and so (3) now reads:

Sfi = 〈ψ−f |ψ
+
i 〉 (6)

If we develop (6) by using the hermitian conjugate of
eq. (5) for the 〈ψ−f |, and then using (4) on the first term

for the |ψ+
i 〉, one gets:

〈ψ−f |ψ
+
i 〉 = 〈φf |φi〉 −

2iε

(Ef − Ei)2 + ε2
〈φf |V̂ |ψ+

i 〉

= δfi − 2πiδ(Ef − Ei)〈φf |V̂ |ψ+
i 〉 (7)

Where we have used the identity lim
ε→∞

1

π

ε

x2 + ε2
= δ(x).

In eq. (7) we can substitute (4) as many times as we

want, getting every time higher powers of V̂ and thus
an infinite series for the perturbative expansion of the
scattering amplitudes.

III. 2 PARTICLE SCATTTERING IN QM

To first order in V , the second term in (7) becomes:
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−2πiδ(Ef − Ei)〈φf |V̂ |φi〉 (8)

In orther to compare this result with the scattering
of two fermions in QFT, we develop the term 〈φf |V̂ |φi〉
in (8) with a two particle state of plane waves, |φi〉 =
|p1,p2〉, |φf 〉 = |p′1,p′2〉 and a traslational invariant po-
tential:

∫
d3x1

∫
d3x2V (x1 − x2)ei(p1−p

′
1)x1ei(p2−p

′
2)x2 (9)

If the masses of the two particles are m1,m2, we can
change {x1,x2} for the center of mass and the relative
coordinates {xCM ,xR} :

xCM =
m1x1 +m2x2

m1 +m2

xR = x1 − x2 (10)

The determinant of the jacobian matrix for this trans-
formation is equal to 1, and so (9) now reads:

∫
d3xCMe

i(p1+p2−p
′
1−p

′
2)xCM

×
∫
d3xRV (xR)e

i
(
m2(p1−p′1)

m1+m2
−m1(p2−p′2)

m1+m2

)
xR (11)

From this change of variables we can then see that mo-
mentum conservation delta arises naturally, and defining
q = p1 − p′1 as the momentum transfered from one par-
ticle to the other, the integral over xR becomes a Fourier
transform of the potential. With this, the S matrix ele-
ment to first order in V̂ for the scattering of 2 particles
is:

Sfi = δfi−i(2π)4δ(Ef−Ei)δ(p1+p2−p′1−p′2)Ṽ (q) (12)

IV. S MATRIX IN QFT

In QFT,we treat scattering from a time evolution per-
spective, meaning that the scattering amplitudes are cal-
culated with the matrix element between the final state
and the time evolution of the initial one.
Given a certain interacting hamiltonian Ĥ = Ĥ0 + Ĥint,
where Ĥ0 describes the particle fields (Dirac, Klein Gor-

don, photons etc.) and Ĥint the interaction between
them, when dealing with scattering it is useful to use the
interaction picture. In this picture, states and operators
are defined as:

|ψ(t)〉I = eiH0t|ψ(t)〉S (13)

ÔI = eiH0tÔSe
−iH0t (14)

Where the S subindex refers to the operator in the
Schrödinger picture. Staying in the interaction picture,
states evolve according to the following equation:

i
d|ψ(t)〉I
dt

= ĤI |ψ(t)〉I (15)

If one tries to write the solution of (15) as |ψ(t)〉I =
UI(t, t0)|ψ(t0)〉I with U(t0, t0) = 1, that would be:

UI(t, t0) = 1 + (−i)
∫ t

t0

dt1HI(t1)

+ (−i)2

∫ t

t0

dt1

∫ t1

t0

dt1dt2HI(t1)HI(t2) + . . . (16)

Eq.(16) can be written in a compact way introducing
the time ordering operator T, which puts earlier time
defined operators to the right and later ones to the right:

U(t, t0) = T
{
e
−i

∫ t
t0
ĤI(t′)dt′}

(17)

Where since T is linear, the time ordering of the ex-
ponential is defined as the taylor series with each term
time ordered. The S matrix is then defined as [3]:

Ŝ = lim
t±→±∞

U(t−, t+) (18)

In QFT the S matrix is often decomposed separating
the non interacting term from the interacting as follows:

S = 1+ iT (19)

When we calculate scattering amplitudes, the identity
term doesn’t contribute because we consider processes in
which the initial state is different from the final one.

V. FERMION-FERMION SCATTERING IN QFT

We want to look at the fermion-fermion scattering due
to a Yukawa interaction:

HI =

∫
d3xgφψ̄ψ (20)

Where g is the coupling constant of the interacting the-
ory, with |g| < 1, and the φ, ψ, ψ̄ fields are defined in the
appendix. We will proceed to do this using Wick’s the-
orem for the time ordered operator [3]. The free hamil-
tonian will be the sum of real Klein Gordon and Dirac
hamiltonians, and every operator or state we write is in
the interaction picture, thus we will drop the subindex
I. Our initial and final states, |i〉 and |f〉, will be two
fermions with definite momenta and spin with the rela-
tivistic normalization:
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|i〉 ≡ |p1, p2〉 =
√

2E1

√
2E2b

r†
p1b

s†
p2 |0〉 (21)

〈f | ≡ 〈p′1, p′2| = 〈0|bs
′

p′2
br
′

p′1

√
2E′2

√
2E′1 (22)

The scattering amplitude for the process is:

〈p′1, p′2|T
{
e−i

∫
d4xφψ̄ψ

}
|p1, p2〉 (23)

The zero order term of the exponential series in (23)
is clearly contributing to the 1 in (19), and so it is not
relevant for the scattering process. Now if we look at
the first order, this has only one φ ∼ a† + a, and these
creation and anihilation operators conmute with the
b′s and c′s because they create and anihilate different
particles. Since our initial and final states don’t have
any bosons in them, this would end up with either a|0〉
or 〈0|a†, giving it zero contribution.

We see then, the leading contribution is the second
order:

(−ig)2

2!

∫
d4x

∫
d4y T

{(
φψ̄ψ

)
x

(
φψ̄ψ

)
y

}
(24)

The only contribution from the time ordered product
to the physical proccess is the one that anihilates two
fermions on the right and two fermions on the left [3],
[4]. Plugging it into (23) and omitting the integrals over
x and y, we get the following expression:

〈p′1, p′2|(−ig)2 :
(
φψ̄ψ

)
x

(
φψ̄ψ

)
y

: |p1, p2〉 (25)

The scalar propagator (see (39)) that arises from the
contracion of the φ’s won’t be shown in the expressions
until it is needed. The momenta and spins for fields (KG
particles not included) are written as k1, k2, k3, k4 and
l1, l2, l3, l4 from left to right. Expression (25), omitting
the integrals and the constant factors, once it’s normal
ordered, looks like:

ei(k1−k2)xei(k3−k4)y
[
ūl1(k1)ul2(k2)

][
ūl3(k3)ul4(k4)

]
× (−1)〈0|bs

′

p′2
br
′

p′1

(
bl1†k1 b

l3†
k3
bl2k2b

l4
k4

)
br†p1b

s†
p2 |0〉 (26)

The minus sign comes from conmuting bl2k2 and bl3†k3 and

the ”[ ]” are to denote that the Dirac spinor indexes are
contracted inside of it. The minus sign will be left out
until the final result. Using the anticonmutation relations
(40), we move the b and b† operators from the fields of
the interaction through the b†’s and b’s of the initial and
final state. After performing then the integrals over all
the k’s, the expression left is:

[
ūr′(p

′
1)us(p2)

][
ūs′(p

′
2)ur(p1)

]
ei(p

′
1−p2)x+i(p′2−p1)y

−
[
ūr′(p

′
1)ur(p1)

][
ūs′(p

′
2)us(p2)

]
ei(p

′
2−p2)x+i(p′1−p1)y

+(x↔ y) (27)

We now use the symetry of the propagator DF (x−y) =
DF (y−x) and multiply the first two terms by DF (y−x)
and the last two by DF (x − y) so when we integrate x
and y the contributions are the same for (x,y) as for (y,x).
Plugging the exponentials from the propagator as men-
tioned and performing the itegrals over x and y, omitting
the integral over the momentum q of the propagator, (27)
becomes:

[
ūr′(p

′
1)us(p2)

][
ūs′(p

′
2)ur(p1)

]
×

(2π)82δ(p′1 − p2 + q)δ(p′2 − p1 − q)
−
[
ūr′(p

′
1)ur(p1)

][
ūs′(p

′
2)us(p2)

]
×

(2π)82δ(p′2 − p2 + q)δ(p′1 − p1 − q) (28)

This 2 factor that appears from our convenient use of
DF (x − y) cancels the 1/2! from (24). Performing the
integral over q with either of the deltas that appear on
each term, the final amplitude is:

ig2(2π)4δ(p1 + p2 − p′1 − p′2)×(
[ūr′(p

′
1)us(p2)][ūs′(p

′
2)ur(p1)]

(p′2 − p1)2 −m2
φ

− [ūr′(p
′
1)ur(p1)][ūs′(p

′
2)us(p2)]

(p1 − p′1)2 −m2
φ

)
(29)

This would correspond to the two possible diagrams of
two identical fermions that interact exchanging a virtual
scalar of mass mφ. The diagram for the first term in (29)
is:

p1

p′1 p′2

p2

q

And the diagram for the second one is:

p1

p′1 p′2

p2

q

VI. OBTENTION OF THE YUKAWA
POTENTIAL

So far we have computed the amplitude for the
scattering of 2 particles in QM, and the amplitude for
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the scattering of 2 fermions in QFT formalism. In orther
to compare them, a few aspects must be taken into
consideration:

Notice how the amplitude in QFT has 2 different
terms, and in QM we only have one. In the QM case,
when we fixed |p′1,p′2〉 and |p1,p2〉 as the final and ini-
tial state, we forced the particles to be distinguishable,
since momenta {p′1,p1} were assigned to the coordinate
x1, and {p′2,p2} to x2. The calculation done in QFT
doesn’t have this restriction, as can be seen diagramati-
cally.
If we had distinguishable fermions in QFT, as happens
to be the case of QM, the only contribution to the am-
plitude would be the second term in (29), corresponding
to the second diagram, which is the term that from now
on we will consider for the comparison between the two
amplitudes.

The amplitude in QFT must also be taken in the non
relativistic limit, meaning that m� p. We shall consider
only terms to the lowest order in momenta, so p0 = m+
p2/2m→ m, and then for any 4-momentum p = (m,p).
In this limit, we have:

uλ(p)→
√
m

(
ξλ
ξλ

)
(30)

(p1 − p′1)2 = 0− |p1 − p′1|2 ≡ −q2 (31)

Where ξ are two component spinors that satisfy ξ†λξλ′ =
δλλ′ , and q is the 3-momentum carried by the virtual
scalar. The scattering amplitude then reads:

−ig2(2π)4δ(p1 + p2 − p′1 − p′2)(2m)2

(
δr′rδs′s
−q2 −m2

φ

)
(32)

Imposing spin conservation in this last expresion, we
can finally connect it to the last term on the r.h.s. of
(12):

Ṽ (q) = (2m)2 −g2

q2 +m2
φ

(33)

The factor (2m)2 comes from the relativistic normal-
ization of our states in QFT: 〈p|p′〉QFT = 2Eδ(p − p′),
with E = m. We are now comparing it with an equa-
tion that has been computed with the non relativistic
QM normalization 〈p|p′〉 = δ(p−p′), so the factor (2m)2

should be dropped.
The integration on q can now be performed:

V (r) = −g2

∫
d3q

(2π)3

eiqr

q2 +m2
φ

=
−g2

(2π)2

∫ ∞
0

d|q| |q|2

|q|2 +m2
φ

∫ 1

−1

d(cos θ) sin θei|q|r cos θ

=
−g2

(2π)2

∫ ∞
0

d|q| |q|
|q|2 +m2

φ

1

ir
(ei|q|r − e−i|q|r)

=
ig2

(2π)2r

∫ ∞
−∞

d|q| |q|
|q|2 +m2

φ

ei|q|r (34)

Closing the countour integral in the upper half of the
complex plane:

V (r) = − g2

4πr
e−mφr (35)

This is, the Yukawa potential arises as the lowest order
effective potential for the interaction between two distin-
guible fermions in the non relativistic limit.

VII. CONCLUSIONS

We have seen how the scattering of two fermions due
to a short range potential V is treated in time indepen-
dent Quantum Mechanics, and calculated the S matrix
element to first order in V . QFT formalism for inter-
actions has been introduced, and we have obtained the
scattering amplitude to leading order for 2 fermions that
interact exchanging a Klein Gordon scalar.
We have seen that in the non relativistic limit and con-
sidering distinguible particles, these two results can be
matched if the Yukawa potential is substituted as the
potential causing the interaction in QM.

VIII. APPENDIX

A. Klein Gordon and Dirac fields

The Klein Gordon equation (∂µ∂
µ + m2)φ = 0 de-

scribes a field for neutral bosons of spin 0. Its solution
is:

φ̂(x) =

∫
d3p

(2π)3

1√
2E

(
âpe
−ipx + â†pe

ipx
)

(36)

Where â and â† are the anihilation and creation opera-
tors for Klein Gordon bosons, and all of the conmutators
between them are zero except:

[
â~p, â

†
~q

]
= (2π)3δ(~p− ~q) (37)

The Dirac equation (i/∂ − m)ψ = 0 and its adjoint
(i/∂ + m)ψ̄ = 0 describe a field for spin 1/2 fermions,
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containing particles and antiparticles. The solutions for
these two equations are:

ψ̂(x) =

∫
d3p

(2π)3

1√
2E∑

λ

(
e−ipxuλ(p)b̂λp + eipxvλ(p)ĉλ†p

)
(38)

ψ̄(x) =

∫
d3p

(2π)3

1√
2E∑

λ

(
eipxūλ(p)b̂λ†p + e−ipxv̄λ(p)ĉλp

)
(39)

Where b̂ (ĉ) and b̂† (ĉ†) are the anihilation and creation
operators for Dirac particles (antiparticles). Since these
are fermions, obey anticonmutation relations, and all of
the anticonmutators between them are zero except:{

b̂λp , b̂
λ′†
q

}
=
{
ĉλp , ĉ

λ′†
q

}
= (2π)3δ(~p− ~q)δλλ

′
(40)

B. Propagator of the Klein Gordon field

The Wick contraction of two Klein Gordon fields at dif-
ferent times gives the propagator of the KG field (scalar).

Written as a 4-momentum integral, this propagator is:

φxφy = DF (x− y) =

∫
d4p

(2π)4

ie−ip(x−y)

p2 −m2
φ + iε

(41)

It is this exchange of a virtual φ particle between the
two fermions expressed with this propagator which gives
rise to the interaction and, in an effective way, to a non
relativistic instantaneous Yukawa potential, as in (33).
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