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ABSTRACT 

In recent years, Next Generation Sequencing (NGS) has become a cornerstone of clinical genetics and 

diagnostics. Many clinical applications require high precision, especially if rare events such as 

somatic mutations in cancer or genetic variants causing rare diseases need to be identified. Although 

random sequencing errors can be modeled statistically and deep sequencing minimizes their impact, 

systematic errors remain a problem even at high depth of coverage. Understanding their source is 
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crucial to increase precision of clinical NGS applications. In this work, we studied the relation 

between recurrent biases in allele balance (AB), systematic errors and false positive variant calls 

across a large cohort of human samples analyzed by whole exome sequencing (WES). We have 

modeled the allele balance distribution for biallelic genotypes in 987 WES samples in order to 

identify positions recurrently deviating significantly from the expectation, a phenomenon we termed 

allele balance bias (ABB). Furthermore, we have developed a genotype callability score based on 

ABB for all positions of the human exome, which detects false positive variant calls that passed state-

of-the-art filters. Finally, we demonstrate the use of ABB for detection of false associations proposed 

by rare variant association studies (RVAS). Availability: https://github.com/Francesc-Muyas/ABB. 

Keywords: Genetic variant detection, allele balance, systematic NGS errors, false positive variant 

calls 

INTRODUCTION 

The rapid improvement of next generation sequencing (NGS) throughput and cost has changed 

biomedical research as well as clinical diagnostics of genetic diseases and cancer (Altmann et al., 

2012). Numerous genome-sequencing projects catalogued millions of frequent and rare variants, some 

of which are associated to disease (Auton et al., 2015). NGS has facilitated the identification of novel 

therapeutic targets or genomic markers for clinical diagnostics and treatment, becoming the 

technology of choice to study the genetic causes of diseases (Hwang et al., 2015; Oleksiewicz et al., 

2015; Pabinger et al., 2014). 

Despite the widespread use of NGS in genetic disease studies and diagnostics, the use of short reads 

for identification of causal or disease-associated variants is still sensitive to technical errors and may 

generate false associations and diagnoses (Hardwick, Deveson, & Mercer, 2017; Lee, Abecasis, 

Boehnke, & Lin, 2014; Yan et al., 2016). If the studied event is rare, such as de novo germline 

mutations, the likelihood to observe false positive calls is further increased (Gómez-Romero et al., 

2018; Veltman & Brunner, 2012). Moreover, rare variant association studies (RVAS) can generate 
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false results if genes are enriched with sequencing or alignment errors, leading to false associations to 

the studied disease (Hou et al., 2017; Johnston, Hu, & Cutler, 2015; Yan et al., 2016). Hence, some 

RVAS methods take into account error probabilities (He et al., 2015) or by pass genotype calls 

completely by directly modeling sequencing reads (Hu, Liao, Johnston, Allen, & Satten, 2016). The 

impact of false genotype calls is amplified in the study of recurrent somatic mutations in cancer, 

particularly, if ultra-deep sequencing is used to identify sub-clonal mutations with low minor allele 

frequency (Cai, Yuan, Zhang, He, & Chou, 2016). Moreover, recent benchmarking studies reported 

substantial disagreement between somatic SNV and indel prediction methods (Alioto et al., 2015). 

Although most variant calling algorithms can deal with random sequencing errors, systematic errors 

have mostly been neglected in the past and thus more often lead to false positive variant calls. Several 

causes of errors of sequencing by synthesis-based platforms are well described, such as crosstalk and 

dephasing (Ledergerber & Dessimoz, 2011; Pfeiffer et al., 2018; Sleep, Schreiber, & Baumann, 

2013), missed nucleotides in low complexity regions (H. Li, 2014), index hopping („bleeding‟) (Vodák 

et al., 2018), and DNA damage during library preparation (Chen, Liu, Evans, & Ettwiller, 2017) 

caused by e.g. 8-oxo-G formation when using acoustic shearing or oxidative stress during probe 

hybridization (Newman et al., 2016; Park et al., 2017) and decreased coverage in regions of very high 

or low CG content (Sleep et al., 2013). Li et al. (H. Li, 2014) showed that a large fraction of 

systematic errors found in variant callsets were not due to sequencing errors, but erroneous re-

alignments in low-complexity and repetitive regions (about 2% and 45% of the human genome, 

respectively), as well as the incompleteness of the reference genome with respect to the analyzed 

sample. While repetitive regions lead to ambiguous alignments of short reads and thus increase the 

likelihood of assigning a read to the wrong locus, low complexity regions also cause mis-alignment of 

reads at the correct position (Cordaux & Batzer, 2009; H. Li, 2014). Furthermore, many aligners tend 

to mis-align indels close to the end of a read, as their scoring function favors mismatches over gap 

openings. 



 

 

 

This article is protected by copyright. All rights reserved. 

 

4 

Strategies for identification of systematic genotyping errors 

A multitude of variant calling algorithms that apply various strategies to reduce the false positive rate 

(FPR) has been developed. Commonly used tools for germline variant prediction include GATK 

HaplotypeCaller (McKenna, 2009), Samtools mpileup (H. Li, 2011), Freebayes (Garrison & Marth, 

2012) or Varscan (Koboldt et al., 2009; Koboldt DC, Larson DE, 2013). Other tools, e.g. Strelka 

(Saunders et al., 2012), VarScan2 and MuTect (Cibulskis et al., 2013), specialize in somatic mutation 

calling using tumor-normal pairs. Most of these methods apply Bayesian statistics (e.g. Bayesian 

classifiers) to compute genotype likelihoods (Garrison & Marth, 2012; Van der Auwera et al., 2013), 

or, in case of somatic mutations, the likelihood of the variant model (Cibulskis et al., 2013). Some 

systematic alignment issues can be addressed by haplotype-based variant calling as performed by 

FreeBayes (Garrison & Marth, 2012). Issues with gapped alignments around indel alleles are tackled 

by alignment post-processing, using either multiple-read re-alignment or local assembly (DePristo et 

al., 2011; Van der Auwera et al., 2013). Still, stringent post-filtration of callsets using machine 

learning based error models (e.g. Variant Quality Score Recalibration,VQSR (Carson et al., 2014; 

Van der Auwera et al., 2013)) or thresholds on various call quality statistics (e.g. genotype quality, 

read depth, variant allele frequency (H. Li, 2014), clustered variants, Fisher strand bias (Guo et al., 

2012) is a necessity. Other strategies include removal of variants in low complexity regions as well as 

in repeats incompletely represented in the reference genome (typically indicated by significantly 

increased read coverage) (Carson et al., 2014; H. Li, 2014). However, a general issue of many post-

filtration strategies is their use of hard thresholds for the various quality metrics, where small changes 

can dramatically influence false negative and false positive rates, or their dependence on large sample 

sets to be effective (e.g. VQSR) (De Summa et al., 2017; Lek et al., 2016). 

Here we present a new strategy to identify systematic sequencing or alignment errors leading to false 

variant calls, which is based on the recurrent and significant deviation of observed to expected allele 

balance in a genomic position across large control cohorts. This signature, termed allele balance bias 
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(ABB), was found in 0.03% of all exonic positions, 4% of high confidence germline SNV calls in 987 

exomes and 8% of somatic SNV calls in 200 tumor-normal pairs. We present two algorithms: one for 

computing ABB for all positions of the exome (or genome) using large cohorts of WES (or WGS) 

samples, and one for refining candidate gene lists generated by rare variant association studies 

(RVAS). We have trained an ABB model for the human exome optimized for the use in clinical 

exome diagnostics and rare variant association testing in coding genes. Finally, we provide ABB 

genotype callability scores for all positions of the human exome. 

MATERIAL AND METHODS 

Whole-Exome Sequencing and Data Analysis. We have analyzed 1197 germline samples assembled 

from various genetic disease and cancer studies, including case and control cohorts sequenced at the 

CRG-CNAG, Barcelona. Included individuals are of European ancestry. Exome capture has been 

performed using five different in-solution capture methods: Agilent SureSelect versions 35MB, 

50MB, 71MB and V5 and Roche-Nimblegen SeqEz v3 (detailed information on samples and library 

preparation can be found in Supporting materials and Supp. Table S1). We removed regions showing 

less than an average of 10x read coverage across samples analyzed using the same kit. For variant 

analysis, we extended captured regions by 50 bp upstream and downstream flanking regions. 

Sequencing was performed on Illumina HiSeq2000 or HiSeq2500 using 2 x 100bp paired end reads 

(Bentley et al., 2008). Reads were aligned against the human reference genome (hg19) using BWA-

MEM (H. Li, 2013; H. Li & Durbin, 2009). Alignment post-processing was performed according to 

GATK best practice guidelines (Van der Auwera et al., 2013), including PCR duplicate marking, 

Indel realignment and base quality recalibration (Bao et al., 2014). Variant calling was performed 

using GATK HaplotypeCaller v3.3(McKenna, 2009; Van der Auwera et al., 2013). Variants with 

genotype quality below 20 or Fisher strand bias (FS) in the top 10 percentile were removed. For 

benchmarking purposes, we generated two callsets, one with and one without applying GATK VQSR 

filter (tranche threshold of 99.9%). See „ACCESION NUMBERS‟ section for available data. 
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Deviation of observed from expected allele balance. We investigated the relationship between 

recurrent deviation of observed from expected allele balance, systematic errors and false positive 

SNV calls in whole-exome sequencing (WES) data. Allele balance (AB) describes the fraction of 

reads supporting the alternative allele in a focal position (AB = Alternative Read Count / Total read 

count at focal position). When sequencing diploid species, heterozygous genotypes are expected to 

show an AB close to ~0.5. We modeled read distribution for heterozygous genotypes using a binomial 

distribution Binomial(D, ~0.5) (Guo et al., 2013; Nothnagel et al., 2011; O‟Fallon, Wooderchak-

Donahue, & Crockett, 2013). Homozygous genotypes are expected to have close to 100% of reads 

supporting the same allele, with the amount of deviating reads depending on the sequencing and 

alignment error rate and other variables. We modeled the expected read distribution for homozygous 

reference using zero inflated beta distribution and for homozygous alternative using one inflated beta 

distribution, where AB would be inside the range [0, 1] (Ospina & Ferrari, 2012). The corresponding 

probability density function is given by  

beinf(         ) = {

 (   )                           
                                        

(    ) (     )                 (   ) 
 

where f (y; μ, φ) is the beta density function, and μ and φ are the parameters that define the shape of 

the beta distribution. Note that, if y ∼ BEINF(α,γ,μ,φ), then P(y = 0) = α(1 − γ ) and P(y = 1) = αγ 

(Ospina & Ferrari, 2009), where α is the mixture parameter and γ represents the parameter of the 

cumulative distribution function of a Bernoulli random variable. Here, y represents the allele balance 

variable. Parameters for expected AB distributions for each diploid genotype class have been 

estimated using post-VQSR variant calls from GATK HaplotypeCaller by maximum (penalized) 

likelihood estimation (GAMLSS R package). We genotyped every position of the exomes of 1197 

samples by comparing observed to expected AB, obtaining one p-value for each of the three possible 

diploid genotypes. We assumed that the greatest p-value represents the most likely genotype of a focal 

sample and position. Given this genotype, we measured the deviation of observed from expected AB 
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(devAB equal to AB - 0 for homozygous reference, |AB - 0.5| for heterozygous and |AB – 1| for 

homozygous alternative). 

Allele Balance Bias. Using devAB at a focal position in hundreds of samples we can identify positions 

showing recurrent deviation of observed from expected AB, termed Allele Balance Bias (ABB). To 

quantify and model ABB we processed a training cohort of 987 germline WES samples, leaving 200 

germline samples for validation and testing of the model (randomly chosen from normal tissue 

exomes of 450 Chronic Lymphocytic Leukemia patients) (Puente et al., 2015). For Sanger validation, 

we used 10 independent samples, which were all obtained after ABB training (and for which ample 

amounts of DNA were available) (see Supporting Material and Supp. Table S1-S2 for detailed sample 

information). Note that the influence of somatic mutations on model training can be neglected, as 

training is performed only on healthy blood or normal tissue samples, in which somatic mutations are 

expected to be extremely rare and not recurrent across samples.   

We obtained pileup files (samtools mpileup version 1.1) for each sample and collected read depth and 

allele counts for more than 80 Million exonic positions. We computed alternative allele fractions, 

most likely genotype and devAB for positions covered by at least 20 reads with base quality 20 

(considered informative). Positions with less than 80 informative samples were excluded from further 

analysis. We calculated three measures of ABB strength for each position of the exome based on 

sample-wise devAB, termed RdAB1, RdAB2 and RdAB3. RdAB1 represents the mean of devAB across 

all informative samples at a focal position. RdAB2 measures the fraction of samples with a significant 

deviation from the expected distribution of the most likely genotype. RdAB3 represents the arithmetic 

mean of -log10 (p-value) across all samples at a focal position. 

ABB-based genotype callability model. To integrate the three measures of ABB into one genotype 

callability score, we trained a logistic regression model using the variant calls of 200 samples not used 

for defining RdAB1, RdAB2 and RdAB3.  This variant callset was obtained using GATK 

HaplotypeCaller as described above but omitting VQSR to allow the capture of an increased number 
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of potentially false calls for training purposes. We focused our analysis on heterozygous variants with 

at least 60 affected samples, resulting in 27,953 positions. To obtain the labels, we calculated the 

mean devAB values for all 27,953 positions, and split them into two sets using Gaussian Mixture 

Modeling (mclust R package, R version 3.2.3): non-recurrently deviated AB positions (labeled 0), and 

recurrently deviated AB positions (labeled 1). Two thirds of the data points (18,635 positions) were 

used for ABB model training (training set) 4659 positions were used for validation of the resulting 

ABB model and 4659 positions for final evaluation of the LR1 ABB model (test set).  The logistic 

regression model LR1 uses RdAB1, RdAB2, and RdAB3 as features to predict the labels obtained by 

Gaussian Mixture Modeling. It returns the probability of a variant site belonging to the label 1 

(recurrently deviated AB positions) using the R function glm with family = “binomial”: 

log(y/(1-y)) = β0 + β1 · rdAB1 + β2 · rdAB2 + β3 · rdAB3 + β4 · rdAB2 · rdAB3  

with y=1 (recurrently deviated positions). 

Subsequent to the estimation of the logistic regression parameters βi, we calculated F1 scores at 

different probability levels and chose the maximum as optimal cutoff to assign labels. For this cutoff 

we calculated precision, recall, F score and false positive rate (FPR) (see formulas in Supporting 

Material), as well as Precision-Recall Area Under the Curve (PR-AUC) and ROC Area Under the 

Curve (ROC-AUC) values.  

Using LR1, we calculated the probabilities to belong to the label recurrently deviated AB for each 

position of the human exome. We mapped the LR response value (probability) to precision values 

using the results obtained for validation and test sets. The resulting score, termed ABB genotype 

callability score, can be applied to estimate the callability of any position of the exome, with higher 

values indicating a higher likelihood of systematic errors. Based on visual inspection of the LR 

response to precision curve (Fig. 1D) we defined four genotype callability levels, comprising high 

confidence (ABB <= 0.15), medium confidence (0.15 < ABB <=0.75), low confidence (0.75 < ABB 

<= 0.9) and very low confidence (ABB > 0.9) positions. 
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Evaluation of ABB by Sanger sequencing. To benchmark the ability of ABB to identify false positive 

variant calls we randomly selected and Sanger sequenced 209 „suspicious‟ SNP calls (0.2 <= Allele 

Balance <= 0.35) from 10 samples not used for model training, selection or evaluation (see 

Supporting Material and Supp. Table S3 for more details). SNPs were sampled to similarly represent 

all four ABB genotype callability levels (42 high confidence, 73 medium confidence, 46 low 

confidence and 48 very low confidence SNPs). Additionally, 45 Sanger validations of novel disease 

variant candidates obtained within previous studies were included in the benchmarking. We compared 

false positive (FP) and failure rates (failed Sanger sequencing or ambiguous base call) between ABB 

bins and computed a ROC curve. Note that all variants selected for Sanger validation passed the 

GATK VQSR, fisher strand and minimum allele balance filters following the GATK best practice 

guidelines.  

Relationship of ABB with other genomic features, quality measures and variant databases. Using 

variant calls generated by GATK-HaplotypeCaller for 10 samples (filtered with VQSR), we 

interrogated the correlation of ABB, fisher strand bias and transition-transversion ratio (Ti-Tv) for 

sites likely affected by systematic errors (ABB >= 0.9) using Wilcox test and Pearson‟s chi-square 

test, respectively. Using chi square Pearson‟s test we further investigated the enrichment of very low 

confidence variants in different public databases (dbSNP version 146, ExAC version 0.3v, 1000GP 

phase 3, EVS ESP6500), compared to the fraction across all informative positions of the exome.  

Similarly, we compared the relation of ABB with simple sequence repeats (SSRs) and tandem 

duplications. For that, we randomly selected a set of positions of very low (ABB >= 0.9) and high 

(ABB<0.15) confidence and compared the fraction of SSRs and tandem duplications using a Chi-

square Pearson‟s test. We visualized the intersection of positions labeled un-callable by Genome in a 

Bottle (GIAB v3.3.2 High-Confidence regions (Zook et al., 2016)) and ABB using Venn diagrams 

and compared the performance in filtering false positive SNP calls on 209 sites validated by Sanger 

sequencing. 
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We interrogated the enrichment of very low confidence sites in somatic variant calls using tumor-

normal paired data from 200 Chronic Lymphocytic Leukemia (CLL) patients, whose normal sample 

had not been used for ABB model building (germline variant positions used in model building were 

also excluded from enrichment analysis). Somatic SNVs were predicted using MuTect (Cibulskis et 

al., 2013). We measured the enrichment of high, medium, low and very low confidence sites in 

somatic mutation calls compared to their exome-wide expectation and the enrichment of each quality 

bin in Cosmic and dbSNP using in both cases Chi-Square Pearson‟s test.  

Quality control for RVAS analysis. To test if ABB can identify false associations from rare variant 

association studies (RVAS) we developed Association-ABB, a method that tests if ABB can explain 

the difference in alternative allele counts („burden‟) for a gene between cases and controls, and hence 

the genotype-phenotype association hypothesis can be rejected. In summary, the algorithm computes 

gene-wise aggregated measures of ABB in case and control cohorts in order to detect false 

associations arising from an uneven impact of ABB on variant calls in cases compared to controls. 

The algorithm takes as input the variants from the candidate genes generated by RVAS, and, for each 

variable position, identifies cases and control samples for which the variant caller might have missed 

or falsely predicted the alternative allele. Possibly “missed” alternative alleles are defined as 

homozygous reference calls for which the p-value within the homozygous AB zero-inflated beta 

distribution is less than 0.05. First, for each variant in RVAS candidate genes we test if the ratio of 

“called” compared to “missed” alternative genotypes is biased between cases and controls (Fisher 

exact test). Second, for each RVAS candidate gene, three tests are performed: 1) called-missed ratio 

test (similar to the variant-wise test but aggregating all rare variants per gene); 2) re-running the 

association test but including the “missed” calls as variants (Chi-Square Pearson‟s test aggregating all 

variants per gene); and 3) re-running the association test but removing significantly AB biased sites 

(Chi-Square Pearson‟s test). Genes with FDR lower than 0.1 in the called-missed ratio test or genes 

not significantly associated (FDR > 0.1) when adding “missed” variants or removing ABB variants 

are considered potential false positive associations. Association-ABB is available as part of the ABB 
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package at https://github.com/Francesc-Muyas/ABB. We have tested Association-ABB on an RVAS 

study for Chronic Lymphocytic Leukemia (see Supporting Material for details) in which the 

comparison of germline variants from 437 cases and 780 controls by SKAT-O (S. Lee, Wu, & Lin, 

2012), Burden (B. Li & Leal, 2008; Madsen & Browning, 2009; Price et al., 2010), MiST (Sun, 

Zheng, & Hsu, 2013) and KBAC (Liu & Leal, 2010) association tests resulted in 43 CLL associated 

candidate genes, 10 of which were labeled as FP by Association-ABB. 

RESULTS 

We have developed a genotype callability score for NGS analysis based on the recurrent deviation of 

observed from expected allele balance, termed allele balance bias (ABB). Using an ABB model 

trained on 987 WES datasets we pre-computed ABB genotype callability scores for more than 81 

Million positions of the human exome. We did not observe biases in genotype callability rates 

between kits when focusing on regions well-covered in all kits (average coverage  10, see 

Supporting Material and PCA in Supp. Fig. S1). To evaluate the performance of ABB on 

identification of systematic errors and false positive genotype calls, we used an independent set of 210 

WES cases and Sanger validation. In addition, we demonstrate that ABB correlates with various 

measures of sequencing and alignment errors and show that public variant databases are enriched for 

systematic genotyping errors. 

Training and Evaluation of the ABB Model 

We hypothesized that systematic sequencing or alignment errors lead to recurrent deviation of allele 

balances in affected genomic positions across hundreds of samples. To test this hypothesis we trained, 

evaluated and tested a logistic regression model distinguishing positions with and without recurrently 

and significantly deviated AB, which integrate three measures of allele balance deviation (Methods, 

Fig. 1A, B, C). All coefficients of the logistic regression significantly contributed to the selected 

model (p-values << 0.01). We calculated F1 scores at different probability levels and chose the 

maximum (LR response of 0.13 at F1 of 0.91) as cutoff to assign labels. On the evaluation set of 4659 
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variants, LR1 showed a precision of 0.893, recall of 0.915, PR-AUC of 0.940, ROC-AUC of 0.980 

and F1 of 0.904 for the optimal cutoff (Fig. 1C, Supp. Table S4). An independent test using the 

remaining 4,659 positions not used in any previous step showed similar performance (precision of 

0.898, recall of 0.899, PR-AUC of 0.933, ROC AUC of 0.975, F1 of 0.899), demonstrating that the 

model was not over-fitted and can be generalized to novel datasets. Based on the correlation of LR 

response values and precision (Fig. 1D), probabilities obtained for each position of the exome were 

transformed to the precision of predicting systematic errors, which we finally use as ABB score. 

Higher ABB score values indicate a higher probability to obtain systematic errors in variant calling, 

with ABB > 0.75 considered low confidence positions (0.033% of the exome) and ABB > 0.9 

considered very low confidence positions (0.025% of the exome). 

ABB genotype callability filter for germline and somatic variant calling  

To evaluate if the use of ABB as genotype callability filter leads to improved variant callsets, we 

applied an ABB very low confidence filter (ABB > 0.9) to variants predicted by GATK 

HaplotypeCaller with VQSR filtering. Using a callset for 10 samples not used during ABB model 

training, evaluation or testing, we found that 13,168 out of 346,894 (3.80%) variant sites overlapped 

with ABB very low confidence sites (compared to 0.025% of all exonic positions, p-value < 10
-16

, 

Table 1, Supp. Fig. S2), with an average of 1,317 (3.80%) variants per sample. Surprisingly, 44.59% 

of known germline variants were flagged as medium confidence sites. We found that polymorphisms 

with ABB medium confidence are enriched for high population AF in 1000GP (mean of 26%), while 

polymorphic sites with ABB high confidence are mostly rare variants (population AF of 0.08%, 

Wilcox test p-value < 10
-16

), reflecting that heterozygous sites are generally harder to call than 

homozygous sites due to a larger standard deviation of the heterozygous variant allele frequency 

(VAF) distribution. The distribution of allele balance across all 346,894 positions showed a „belly‟ on 

the left of the normal distribution (AF between 0.2 and 0.35, Fig. 2A-left).  Specifically, the VAF of 

SNVs classified as very low confidence was skewed (Fig. 2A-middle, red distribution), with a large 



 

 

 

This article is protected by copyright. All rights reserved. 

 

13 

fraction showing VAF between 0.2 and 0.35. Application of the ABB filter resulted in a „clean‟ 

normal distribution (Fig. 2A-right).  

The transition-transversion ratio expected to be around 3 in exomes was significantly smaller for very 

low (ABB > 0.9) compared to high (ABB < 0.15) confidence positions (1.76 compared to 2.54, p-

value < 10
-16

). Moreover, low confidence sites showed significantly increased fisher strand bias (p-

value < 10
-16

). Furthermore, very low confidence sites were enriched for segmental duplications 

(27.10% of positions, p-value < 10
-6

) and simple sequence repeats (SSRs, 16.27% of positions, p-

value < 10
-6

), compared to high confidence sites (2.50% and 0.95% of positions for segmental 

duplications and SRRs, respectively) (Supp. Table S5). 

In order to test the applicability of ABB for improving somatic mutation callsets we generated 

somatic SNV calls for 200 CLL tumor-normal pairs using MuTect and obtained pre-computed ABB 

scores for each site (importantly, note that the ABB model is not calculated using tumor tissues, but 

scores are obtained from the germline-based model described above). ABB low and very low 

confidence positions represented 5.9% and 8.1% of the somatic mutation calls, respectively (Table 1), 

representing a significant increase of very low confidence positions compared to 3.8% observed for 

germline variant calling (p-value < 10
-16

) and the exome-wide expectation (p-value < 10
-16

). 

Interestingly, 45.38% of the very low confidence mutations were found in dbSNP. This proportion 

was significantly higher (p-value < 10
-16

) than the fraction of high confidence somatic mutations in 

dbSNP (9.51%, Table 2), pointing at a systematic introduction of errors in dbSNP. 

To demonstrate that our model is not falsely labeling real somatic mutations as systematic errors we 

intersected positions marked as systematic errors (ABB>=0.9) with 1896 somatic mutations validated 

in two studies (Papaemmanuil et al., 2014; Tarpey et al., 2013) and 341 well-known cancer driver 

mutation hotspots (Chang et al., 2016). We found a minimal overlap of 2/1896 and 0/341, 

respectively. There was no significant difference between the fraction of systematic errors identified 

in the whole exome (Table 1) and the set of validated somatic SNV positions (p-value = 0.1421), 
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demonstrating that ABB does not misclassify true somatic mutations as systematic errors more than 

expected by chance (Supp. Table S6). 

Sanger sequencing based evaluation of ABB scores 

We next evaluated if ABB scores correlate with the probability of calling false positive variants. To 

this end, we validated by Sanger a set of randomly selected 209 heterozygous SNPs predicted by 

GATK HaplotypeCaller with VQSR in 10 samples, which had AB between 0.2 and 0.35, and that 

were sampled equally from each of the four ABB genotype callability levels (Methods). We found 

that ABB genotype callability levels correlated with false positive rate (FPR) (Fig. 2C, Table 3 and 

Supp. Table S7). Furthermore, ABB scores were predictive of false positive calls (ROC-AUC = 

0.778, Fig. 2B). Although the original variant callset produced by GATK HaplotypeCaller and VQRS 

could be considered high quality (tranche threshold of 99.9%), we found an FPR of 50% in the very 

low confidence set and 31% FPR in the low confidence set, while high and medium confidence 

positions showed only 0% and 15.4% FPR, respectively. Interestingly, the fraction of failed 

(ambiguous) Sanger sequencing experiments was significantly higher for the low confidence range 

when compared against high confidence range (p-value < 0.025, Table 3), indicating that low 

complexity regions and repeats constitute one of the underlying issues, as these also affect efficiency 

of Sanger sequencing (Kieleczawa, 2006).     

Next, we compared the performance of ABB and the GIAB callability classifier on identification of 

false positive calls. Considering all exons of the autosomes (79,660,917bp included in the ABB 

model), GIAB classifies 75,442,680 sites as callable, leaving 4,218,237 sites as „un-callable‟. In 

comparison ABB classifies 46,396 sites as low or very low confidence (ABB >= 0.75, considered un-

callable from here on). Of the 46,396 sites classified un-callable by ABB, 52% are classified as 

callable by GIAB, demonstrating that the two methods are not redundant (Supp. Fig. S3).  Of the 40 

GATK SNV calls confirmed as false by Sanger sequencing (out of the 209 sites evaluated by Sanger) 

ABB identified 30 (75%), while GIAB identified 23 (57.5%), although ABB filters substantially 
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fewer sites across the whole exome than GIAB (40kb vs. 4MB) (see Supporting Material and Supp. 

Table S8 for details). In a similar manor, we showed that both GQ and Hardy-Weinberg Equilibrium 

provide complementary, but not redundant sources of information for filtering of variant calls (details 

in Supporting Materials, Supp. Figs. S4-S6 and Supp. Tables S9 and S10).  

Independent from the random Sanger evaluation we obtained validation data for disease variant 

candidates (novel mutations) prioritized in in-house analysis of various disorders (data unpublished). 

In each study, almost 50% of candidate variants were found to be false positives by Sanger validation. 

ABB labeled 11 out of 17 (64.7%) false positive calls as low or very low confidence sites, and 6 FPs 

as medium confidence, while all TP variants fell into the high confidence category (Supp. Table S11). 

We observed a large margin between ABB for TPs (average of 0.115) and FPs (average of 0.666). 

ABB scores of variants in public databases  

Public variant repositories differ in the way included variants are called, quality controlled and 

selected for integration. For instance, the 1000GP, ExAC/GnomAD and EVS databases are created in 

a consistent manner, using a defined pipeline for all samples (Lek et al., 2016). However, dbSNP does 

not dictate any specific variant prediction method or quality control procedure and contains both 

germline and somatic variants. Hence, we hypothesized that although all variant databases may 

contain systematic errors, dbSNP is specifically affected by false positives due to its inconsistent 

quality parameters, as previously suggested (Musumeci, 2011). We found that very low confidence 

positions were significantly enriched in several public variant databases (all p-values < 10
-16

, see 

Table
 
4). As expected, we found the strongest enrichment of systematic errors (ABB > 0.9) in dbSNP 

(15.9 times more than expected). As many variant analysis pipelines use the same tools as employed 

for generating 1000GP, ExAC, GnomAD or EVS, one should be cautious when considering variants 

found in these databases as validation gold standard for variants in newly generated callsets. As we 

expect to see systematic errors repeatedly, this circularity issue (validation using false variants 
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predicted by the same tools) can lead to a „self-fulfilling prophecy‟, where false variants are 

established as true positives in public databases and potentially influence disease studies in the future.  

Filtering candidate genes from Rare Variant Association Studies 

Whole exome sequencing is frequently applied to identify causal variants for genetic diseases, using 

rare variant association tests in large cohorts or analysis of affected families and parent-child trios. 

Although ABB can be used generically to filter results of variant callsets, we have in addition 

developed a custom algorithm, Association-ABB, for identification of cohort-specific false 

associations caused by systematic errors (Methods). We hypothesized that false associations can be 

introduced in case-control studies due to 1) a bias in systematic errors between cases and controls, 

leading to an uneven burden of false variant calls, or 2) copy number variants enriched in cases or 

controls e.g. due to biased population structure. Therefore, we re-analyzed variants in candidate genes 

in order to identify associations better explained by biases in the burden of systematic errors.  

The Association-ABB evaluation was performed on candidate genes resulting from an RVAS for 

Chronic Lymphocytic Leukemia (CLL) using WES of 437 CLL normal samples from ICGC-CLL 

(Quesada et al., 2011) and 780 control samples. In the 43 resulting candidate genes identified by 

SKAT-O and Burden (see Methods), Association-ABB labeled 24 out of 739 SNPs as affected by a 

bias in systematic errors that were called as variants to a different extent in cases and controls 

(„called-missed ratio fisher test‟, see Methods and Supp. Table S12). In addition, these variants 

showed a high ABB score (average of 0.8670). We next performed a gene-wise aggregated test of 

biased sites and found that 10 out of 43 candidate genes were likely false associations (Supp. Table 

S13). In brief, we tested if the RVAS association was still significant when 1) biased sites were 

excluded or 2) potentially missed calls were added to the test (Methods). 

One example gene, CTDSP2, is shown in Supp. Fig. S7. We observed that a different AB distribution 

in cases and controls in 8 biased positions led to an imbalanced genotyping efficiency of GATK 

HaplotypeCaller, explaining the significant association of this gene with CLL in the RVAS test. 
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Comparing called vs. potentially missed SNVs we found a significant enrichment of missed calls in 

the controls, i.e. positions called as homozygous reference, although more than expected reads 

showed the alternative allele. However, not only cases showed an enrichment of calls with 

significantly deviated AB in heterozygotes (AB around 0.25), but also controls that had been enriched 

using Agilent SureSelect, while controls prepared with NimblegenSeqEz were „clean‟ (Supp. Fig. S8 

and Supporting Material). We conclude that a systematic issue with few target regions of one 

enrichment kit introduced the false RVAS call.  

The AB patterns between cases and controls in the gene CDC27 look similar to CTDSP2, as shown in 

Supp. Fig. S9, although this enrichment was not associated to the capture method as CTDSP2 (see 

Supp. Fig. S10). Moreover, literature search revealed that this gene frequently harbors false positive 

SNVs (Jia et al., 2012), likely caused by multiple novel retroduplications (Abyzov et al., 2013). 

Indeed, we found that cases with deviating AB also showed significantly increased coverage on the 

exons affected potentially by retroduplications (Supp. Fig. S11) (See Supporting Material for detailed 

explanation of this section).  

Association testing when removing problematic site in CDC27 or CTDSP2 („cleaning‟) or when 

adding potentially missed calls led to non-significant association tests. In summary, ABB identified 

retrotransposition as well as exome hybridization kit-related systematic errors causing false 

associations in an RVAS study of CLL.  

DISCUSSION 

In this work, we present a new genotype callability filter for exome or genome sequencing analysis, 

which is based on the recurrent and significant deviation of observed from expected allele balance at a 

genomic position across hundreds of NGS datasets. We termed the underlying phenomenon allele 

balance bias (ABB). Up to 4% of the positions called as germline variants and 8% of positions called 

as somatic mutations by state-of-the art methods show ABB scores indicative of systematic errors. We 

used Sanger validation of random germline calls and of disease variant candidates to show that ABB 
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correlates with the likelihood to identify false positive SNVs, with more than 50% FPR in the lowest 

genotype confidence range. Furthermore, ABB low and very low confidence positions show a low 

transition-transversion ratio (TiTv) (Freudenberg-hua et al., 2003; Pattnaik, Vaidyanathan, Pooja, 

Deepak, & Panda, 2012) and are highly enriched for low complexity regions, supporting the 

hypothesis that LCRs are responsible for a large fraction of systematic errors (H. Li, 2014). 

Nonetheless, our findings indicate that several other issues can cause systematic errors, including 

incomplete reference genomes and unknown CNVs or segmental duplications, among others. 

Although the accuracy of variant callers has been optimized since the introduction of NGS, there are 

still systematic errors that cannot be identified by the current set of QC parameters. While ABB shows 

partial correlation with other QC measures like Fisher strand bias and LCRs, none of these parameters 

can identify the complete set of positions flagged by ABB, making ABB a valuable addition to the 

QC filter setup. Interestingly, we found that sites prone to systematic errors are highly enriched in 

public variant databases. As these databases are often used for benchmarking purposes this can lead to 

a „fixation‟ of falls calls, and can skew benchmark results. dbSNP by far showed the highest 

enrichment of systematic errors, as suggested previously (Musumeci, 2011), demonstrating that 

variant callsets created consistently by a defined and reproducible pipeline and parameter setting (e.g. 

1000GP, ExAC/GnomAD, EVS) are preferable. Systematic errors constitute an even bigger issue for 

somatic SNV calling. Even if ultra-deep sequencing is used to identify sub-clonal mutations, 

systematic errors, other than random errors, will still lead to false somatic SNV calls (Griffith et al., 

2015). Indeed, we observed that close to 14% of somatic SNVs called by MuTect were classified as 

ABB low or very low confidence sites, a significantly larger fraction than observed for germline 

variant calling or expected on an exome-wide level. Moreover, these false positive mutations are 

again highly enriched in dbSNP. Considering the importance of predicted point mutations for cancer 

diagnostics and optimal treatment selection, removal of these FP calls is essential for the applicability 

of NGS in precision oncology. 
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Systematic false positive calls can lead to false associations of genes with disease. Using Sanger 

validation of disease gene candidates prioritized in previous projects we demonstrated that high-

confidence ABB sites are 100% true positives, allowing to reduce the cost of Sanger validation by 

omitting validation of these sites. At the same time ABB identifies up to 65% of false candidates 

(considering low or very low confidence sites, up to 100% if also considering medium confidence as 

FP). We further demonstrate how systematic errors resulting in false associations can be identified by 

Association-ABB in a cohort specific manner. We found that in a rare variant association test for CLL 

around 25% of candidate gene associations were better explained by uneven burden of systematic 

errors in cases and controls. We further hypothesized that systematic SNV calling errors were 

introduced by an un-annotated CNV in at least couple of candidate genes, indirectly pointing to the 

real cause of the genotype-phenotype association.  

The current ABB model has been built using alignments generated by bwa-mem. Hence, some 

systematic errors identified in our study might reflect specific alignment issues of bwa-mem and 

might not be observed when using e.g. bowtie2. However, bwa-mem is one of the most used aligners 

for human genomics, making our model directly applicable to a majority of projects using whole-

exome or whole-genome sequencing of human samples. Nonetheless, one could retrain the ABB 

model for specific computational analysis pipelines, for other species, for whole genomes or using 

thousands of additional samples, a process we support by offering all scripts for generating dedicated 

ABB models (see Availability section). 

In summary, our novel genotype callability estimator based on allele balance bias (ABB) can identify 

systematic variant calling errors not found by other measures and can improve the accuracy of 

germline and somatic variant sets as well as disease association studies in families or large cohorts. 
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ABB tool is an open source package available in the GitHub repository (https://github.com/Francesc-

Muyas/ABB). The pre-computed ABB score can be downloaded in 

https://public_docs.crg.es/sossowski/publication_data/ABB/ABB_SCORE.txt. 

ACCESSION NUMBERS 

Sequencing data of CLL individuals have been deposited at the European Genome-Phenome Archive 

(EGA, http://www.ebi.ac.uk/ega/), which is hosted by the EBI and the CRG), under accession number 

EGAS00000000092. Variant calls have been deposited at the European Genome-phenome Archive 

(EGA), which is hosted by the EBI and the CRG, under accession number EGAS00001003027. 
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Figure 1. (A) Observed (bars) and expected (density) allele balance (AB) distributions split by 

genotype. (B) Gaussian mixture model of the allele balance deviation devAB, separating non-deviated 

(0) and deviated (1) positions. (C) Precision-Recall curves and PR-AUC for the linear regression 

model LR-1. The color gradient on the right shows the LR response value (probability to belong to 

class 1) obtained by logistic regression. (D) Correlation of LR response and precision. Precision was 

measured in the test and validation sets using labels defined by the GMM. Confidence levels were 

defined by visual inspection. 
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Figure 2. (A) ABB classifications of heterozygous SNPs reported by GATK Haplotype Caller. Shape 

of AB distribution of variants identified by GATK + VQSR (left); AB distribution of low (red) 

compared to high (green) confidence positions (middle); and AB distribution after ABB filtering 

(right). (B) ROC curve of Sanger validation results compared with ABB (AUC = 0.778). (C) 

Proportion of True Positive (TP) and False Positive (FP) variants in four ABB genotype callability 

ranges. 

 

Table 1. Distribution of ABB genotype callability levels in the whole exome, germline SNV calls and 

somatic SNV calls. 

ABB callability 
Whole 

Exome 

Germline 

SNV 

Somatic 

SNV 

High Confidence [0-0.15) 99.736% 44.955% 80.286% 

Medium Confidence [0.15-0.75) 0.205% 44.585% 5.771% 

Low Confidence [0.75-0.9) 0.033% 6.665% 5.865% 

Very Low Confidence [0.9-1] 0.025% 3.796% 8.077% 

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

28 

Table 2. Enrichment of somatic SNV calls in dbSNP and Cosmic, separated by ABB callability 

range. Row 1 shows results for the complete call set used as baseline. 

ABB callability Novel  Cosmic  DbSNP 

All SNVs [0-1] 80.89% 4.53% 14.58% 

High Confidence [0-0.15) 85.60% 4.89% 9.51% 

Mid Confidence [0.15-0.75) 68.08% 3.47% 28.45% *** 

Low Confidence [0.75-0.9) 67.95% 4.06% 27.99% *** 

Very Low Confidence [0.9-1] 52.60% 2.02% * 45.38% *** 

* p-value < 10-E3 

   

** p-value < 10E-6 

   

*** p-value < 2E-16 

   

Table 3. Results of Sanger validation grouped by ABB genotype callability levels. Failed Sanger 

sequencing experiments were ignored for the FP and TP rate calculation. 

ABB callability SNVs TP TP rate FP FP rate Failed Fail rate 

High Confidence [0-0.15) 42 38 100.00% 0 0.00% 4 9.52% 

Mid Confidence [0.15-0.75) 73 55 84.62% 10 15.38% 8 10.96% 

Low Confidence [0.75-0.9) 46 20 68.97% 9 31.03% 17 36.96% 

Very Low Confidence [0.9-1] 48 21 50.00% 21 50.00% 6 12.50% 

Table 4. Enrichment of ABB very low confidence (VLC) positions in public variant databases. The 

fraction of VLC positions in the exome was used as expected value. 

Database 
Total 

positions 
VLC Obs. VLC Freq. Obs. Ratio Obs./Exp. 

Exome 81,609,944 20,725 0.03% 1 

dbSNP 3,172,724 12,787 0.40% 15.87*** 

EVS 1,840,709 1,114 0.06% 2.38*** 

1000GP 2,653,982 4,690 0.18% 6.96*** 

EXAC 2,662,396 3,510 0.13% 5.19*** 

*** (P-value < 10E-16) 

     


